首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncoupling proteins (UCPs) belong to a distinct cluster of the mitochondrial anion carrier family. Up to five different uncoupling protein types were found in mitochondria of mammals and plants, and recently in fishes, fungi and protozoa. They exhibit a significantly conserved structure with several motifs specific to either the whole cluster or protein type. Uncoupling proteins, as well as the whole mitochondrial anion carrier gene family, probably emerged in evolution before the separation of animal, fungi, and plant kingdoms and originate from an anion/nucleotide or anion/anion transporter ancestor. Mammalian UCP1, UCP2, UCP3, and plant uncoupling proteins pUCP1 and pUCP2 are similar and seem to form one subgroup, whereas UCP4 and BMCP1 belong to a different group. Molecular, biochemical, and phylogenic data suggest that UCP2 could be considered as an UCP-prototype. UCP1 plays its biological role mainly in the non-shivering thermogenesis while the role of the other types is unknown. However, hypotheses have suggested that they are involved in the general balance of basic energy expenditure, protection from reactive oxygen species, and, in plants, in fruit ripening and seed ontogeny.  相似文献   

2.
Mitochondrial uncoupling proteins (UCPs) have been postulated to be regulators of thermogenesis, energy balance, and oxidative stress. Brain mitochondrial carrier protein-1 (BMCP1) is a new member of the UCP family, but little is known about the gene regulation and the role of BMCP1 in the central nervous system. In the present study, we first cloned BMCP1 cDNA encoding 325 amino acids from rat brain. The BMCP1 mRNA showed a distinct distribution pattern compared with that of UCP2 gene in human brain. Cold exposure did not affect the mRNA levels of BMCP1 and UCP2 in rat whole brain, but did increase the expression of UCP2 in the spinal cord. The mRNA level of BMCP1 in the brain of 26-month-old rats was decreased by 30% and that of UCP2 increased by 60% compared with the levels in 6-month-old rats. These results suggest differential roles of BMCP1 and UCP2 in thermoregulation and aging.  相似文献   

3.
Hanák P  Jezek P 《FEBS letters》2001,495(3):137-141
We searched for the previously defined uncoupling protein (UCP) signatures [Jezek, P. and Urbánková, E. (2000) IUBMB Life 49, 63-70] in genomes of Drosophila melanogaster, Caenorhabditis elegans, Dictyostelium discoideum, and Arabidopsis thaliana. We identified four UCPs in Drosophila and one in Caenorhabditis or Dictyostelium as close relatives of human UCP4 (BMCP), but distant from UCP1, UCP2, UCP3, and two plant UCPs of Arabidopsis. But the third Arabidopsis UCP is the closest UCP4 relative. This suggests that UCP4 represents the ancestral UCP from which other mammalian and plant UCPs diverged. Speculations on UCP4 participation in apoptosis are thus supported by its early phylogenetic occurrence.  相似文献   

4.
Brain mitochondrial carrier protein-1 (BMCP1), a new member of the mitochondrial uncoupling carrier, has been shown to be expressed predominantly in the brain of the mice and humans. We cloned rat BMCP1 cDNA and investigated its mRNA level during postnatal development and under various metabolic conditions. The nucleotide sequence of the cDNA revealed that rat BMCP1 protein was composed of 322 amino acid residues, and was 99 and 96% identical to the mouse and human proteins and 29, 33 and 35% identical to rat uncoupling protein (UCP) 1, UCP2 and UCP3, respectively. The molecular weight was predicted to be 36017 Da and the protein of this size was detectable when the cDNA was expressed in vitro. Using Northern blot analysis, the corresponding mRNA, approximately 1.8-kb in size, was found expressed predominantly in the cerebrum, cerebellum and hypothalamus. A unique developmental pattern was identified in the brain, where BMCP1 expression was low in their fetal life, but significantly elevated in the first postnatal week. Thereafter BMCP1 mRNA was maintained to be gradually increased. In 48-h fasted or insulin-induced hypoglycemic rats, BMCP1 mRNA expression in the hypothalamus slightly, but significantly, decreased compared with that in their appropriate controls. The present results indicate that BMCP1 may be involved in pathogenesis of mitochondrial dysfunction in neurons induced by aging or neurodegenerative disorders, and perhaps in energy balance in the brain.  相似文献   

5.
Mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1) is classically associated with non-shivering thermogenesis by brown fat. Recent evidence indicates that UCP family proteins are also present in selected neurons. Unlike UCP1, these proteins (UCP2, UCP4 and BMCP1/UCP5) are not constitutive uncouplers and are not crucial for non-shivering thermogenesis. However, they can be activated by free radicals and free fatty acids, and their activity has a profound influence on neuronal function. By regulating mitochondrial biogenesis, calcium flux, free radical production and local temperature, neuronal UCPs can directly influence neurotransmission, synaptic plasticity and neurodegenerative processes. Insights into the regulation and function of these proteins offer unsuspected avenues for a better understanding of synaptic transmission and neurodegeneration.  相似文献   

6.
7.
Outside the nervous system, members of the mitochondrial uncoupling protein (UCP) family have been proposed to contribute to control of body temperature and energy metabolism, and regulation of mitochondrial production of reactive oxygen species (ROS). However, the function of brain mitochondrial carrier protein 1 (BMCP1), which is highly expressed in brain, remains to be determined. To study BMCP1 expression and function in the nervous system, a high-affinity antibody to BMCP1 was generated and used to analyze tissue expression of BMCP1 protein in mouse. BMCP1 protein was highly expressed in heart and kidney, but not liver or lung. In the nervous system, BMCP1 was present in cortex, basal ganglia, substantia nigra, cerebellum, and spinal cord. Both BMCP1 mRNA and protein expression was almost exclusively neuronal. To study the effect of BMCP1 expression on mitochondrial function, neuronal (GT1-1) cell lines with stable overexpression of BMCP1 were generated. Transfected cells had higher State 4 respiration and lower mitochondrial membrane potential (psi(m)), consistent with greater mitochondrial uncoupling. BMCP1 expression also decreased mitochondrial production of ROS. These data suggest that BMCP1 can modify mitochondrial respiratory efficiency and mitochondrial oxidant production, and raise the possibility that BMCP1 might alter the vulnerability of brain to both acute injury and to neurodegenerative conditions.  相似文献   

8.
Mitochondrial Proton Leak and the Uncoupling Proteins   总被引:4,自引:0,他引:4  
An energetically significant leak of protons occurs across the mitochondrial inner membranesof eukaryotic cells. This seemingly wasteful proton leak accounts for at least 20% of thestandard metabolic rate of a rat. There is evidence that it makes a similar contribution tostandard metabolic rate in a lizard. Proton conductance of the mitochondrial inner membranecan be considered as having two components: a basal component present in all mitochondria,and an augmentative component, which may occur in tissues of mammals and perhaps ofsome other animals. The uncoupling protein of brown adipose tissue, UCP1, is a clear exampleof such an augmentative component. The newly discovered UCP1 homologs, UCP2, UCP3,and brain mitochondrial carrier protein 1 (BMCP1) may participate in the augmentativecomponent of proton leak. However, they do not appear to catalyze the basal leak, as this isobserved in mitochondria from cells which apparently lack these proteins. Whereas UCP1plays an important role in thermogenesis, the evidence that UCP2 and UCP3 do likewiseremains equivocal.  相似文献   

9.
Mitochondrial uncoupling proteins--what is their physiological role?   总被引:1,自引:0,他引:1  
The physiological functions of the mitochondrial uncoupling proteins (UCP2 and UCP3) are still under debate. There is, however, ample evidence to indicate that, in contrast to UCP1, they are not crucial for nonshivering thermogenesis and do not catalyze the basal proton conductance of mitochondria. Rather, there is good evidence that they increase mitochondrial proton conductance when activated by superoxide, reactive oxygen species derivatives such as hydroxynonenal, and other alkenals or their analogues. This review critically examines the evidence of the different proposed mechanisms for UCPs functions, namely (a) to export fatty acid anions from mitochondria, (b) to regulate insulin secretion in pancreatic beta-cells, and (c) to cause mild uncoupling and so diminish mitochondrial superoxide production, hence protecting against oxidative damage. Beside, available scientific data on UCP4 and UCP5/BMCP1 will be reviewed. However, their physiological function has not yet been established.  相似文献   

10.
11.
Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins.  相似文献   

12.
Uncoupling proteins 2 and 3 (UCP2/3) are essential for mitochondrial Ca(2+) uptake but both proteins exhibit distinct activities in regard to the source and mode of Ca(2+) mobilization. In the present work, structural determinants of their contribution to mitochondrial Ca(2+) uptake were explored. Previous findings indicate the importance of the intermembrane loop 2 (IML2) for the contribution of UCP2/3. Thus, the IML2 of UCP2/3 was substituted by that of UCP1. These chimeras had no activity in mitochondrial uptake of intracellularly released Ca(2+), while they mimicked the wild-type proteins by potentiating mitochondrial sequestration of entering Ca(2+). Alignment of the IML2 sequences revealed that UCP1, UCP2 and UCP3 share a basic amino acid in positions 163, 164 and 167, while only UCP2 and UCP3 contain a second basic residue in positions 168 and 171, respectively. Accordingly, mutants of UCP3 in positions 167 and 171/172 were made. In permeabilized cells, these mutants exhibited distinct Ca(2+) sensitivities in regard to mitochondrial Ca(2+) sequestration. In intact cells, these mutants established different activities in mitochondrial uptake of either intracellularly released (UCP3(R171,E172)) or entering (UCP3(R167)) Ca(2+). Our data demonstrate that distinct sites in the IML2 of UCP3 effect mitochondrial uptake of high and low Ca(2+) signals.  相似文献   

13.
Sequence alignment of conserved signature motifs predicts the existence of the uncoupling protein 5 (UCP5)/brain mitochondrial carrier protein (BMCP1) homologue in Drosophila melanogaster. Here we demonstrate the functional characterization of the Drosophila melanogaster UCP5 protein (DmUCP5) in the heterologous yeast system, the first insect UCP reported to date. We show that physiological levels of DmUCP5 expression are responsible for an increase in state 4 respiration rates and a decrease in mitochondrial membrane potential. Furthermore, similar to UCP1, UCP2, and UCP3, the uncoupling activity of DmUCP5 is augmented by fatty acids and inhibited by the purine nucleotide GDP. Thus, DmUCP5 shares the mechanisms known to regulate the UCPs characterized to date. A lack of growth inhibition observed in DmUCP5 expressing yeast is consistent with the notion that physiological uncoupling has a minimal effect on cell growth. Finally, semiquantitative RT-PCR analysis shows a distinctive pattern of DmUCP5 expression predominantly localized in the adult head, similar to the expression pattern of its mammalian homologues. The conserved regulation of the expression of this gene from mammals to fruit flies suggests a role for UCP5 in the brain.  相似文献   

14.
15.
The uncoupling protein (UCP) of brown adipose tissue mitochondria is a specialized member of the family of evolutionarily related mitochondrial membrane transporters, which also includes the ADP/ATP translocator and the phosphate carrier. We have generated a library of bacterial clones randomly expressing short subsequences of the UCP fused to the MalE periplasmic protein of Escherichia coli. Anti-UCP sera were used to select clones expressing antigenic sequences of the UCP. Ten different fusion proteins representing eight non-overlapping subsequences of the UCP were obtained. The ability of fusion proteins to select antibodies directed against a short segment of the UCP was used to study the topological organization of the UCP in the inner mitochondrial membrane. Four different fusion proteins were used to determine the orientation of the N-terminal extremities of the first, second, third and fourth predicted alpha-helices of the UCP. This topological study together with previous data on the UCP provides an experimental basis for the predicted structure of the UCP and for other homologous carrier proteins.  相似文献   

16.
Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide did not need to be exported or to cycle across the inner membrane to cause uncoupling. We conclude that superoxide (or its products) exerts its uncoupling effect by activating the proton transport mechanism of uncoupling proteins at the matrix side of the mitochondrial inner membrane.  相似文献   

17.
Uncoupling proteins, a subgroup of the mitochondrial anion transporter superfamily, have beenidentified in prokaryotes, plants, and mammalian cells. Evolutionary conservation of thesemolecules reflects their importance as regulators of two critical mitochondrial functions, i.e.,ATP synthesis and the production of reactive oxygen species (ROS). Although the amino acidsequences of the three mammalian uncoupling proteins, UCP1, UCP2 and UCP3, are verysimilar, each homolog is the product of a unique gene and important differences have beendemonstrated in their tissue-specific expression and regulation. UCP1 and UCP3 appear to bekey regulators of energy expenditure, and hence, nonshivering thermogenesis, either in brownadipose tissue (UCP1) or skeletal muscle (UCP3). UCP2 is expressed more ubiquitously,although generally at low levels, in many tissues. There is conflicting evidence about itsimportance as a regulator of resting metabolic rate. However, evidence suggests that thishomolog might modulate the mitochondrial generation of ROS in some cell types, includingmacrophages and hepatocytes. While the induction of various uncoupling protein homologsprovides adaptive advantages, both to the organism (e.g., thermogenesis) and to individual cells(e.g., reduced ROS), increased uncoupling protein activity also increases cellular vulnerability tonecrosis by compromising the mitochondrial membrane potential. This narrow risk—benefitmargin necessitates tight control of uncoupling protein activity in order to preserve cellularviability and much remains to be learned about the regulatory mechanisms involved.  相似文献   

18.
The YidC family of proteins are membrane insertases that catalyze the translocation of the periplasmic domain of membrane proteins via a hydrophilic groove located within the inner leaflet of the membrane. All homologs have a strictly conserved, positively charged residue in the center of this groove. In Bacillus subtilis, the positively charged residue has been proposed to be essential for interacting with negatively charged residues of the substrate, supporting a hypothesis that YidC catalyzes insertion via an early-step electrostatic attraction mechanism. Here, we provide data suggesting that the positively charged residue is important not for its charge but for increasing the hydrophilicity of the groove. We found that the positively charged residue is dispensable for Escherichia coli YidC function when an adjacent residue at position 517 was hydrophilic or aromatic, but was essential when the adjacent residue was apolar. Additionally, solvent accessibility studies support the idea that the conserved positively charged residue functions to keep the top and middle of the groove sufficiently hydrated. Moreover, we demonstrate that both the E. coli and Streptococcus mutans YidC homologs are functional when the strictly conserved arginine is replaced with a negatively charged residue, provided proper stabilization from neighboring residues. These combined results show that the positively charged residue functions to maintain a hydrophilic microenvironment in the groove necessary for the insertase activity, rather than to form electrostatic interactions with the substrates.  相似文献   

19.
Statistical approaches have been applied to examine amino acid pairing preferences within parallel beta-sheets. The main chain hydrogen bonding pattern in parallel beta-sheets means that, for each residue pair, only one of the residues is involved in main chain hydrogen bonding with the strand containing the partner residue. We call this the hydrogen bonded (HB) residue and the partner residue the non-hydrogen bonded (nHB) residue, and differentiate between the favorability of a pair and that of its reverse pair, e.g. Asn(HB)-Thr(nHB)versus Thr(HB)-Asn(nHB). Significantly (p < or = 0.000001) favoured pairings were rationalised using stereochemical arguments. For instance, Asn(HB)-Thr(nHB) and Arg(HB)-Thr(nHB) were favoured pairs, where the residues adopted favoured chi1 rotamer positions that allowed side-chain interactions to occur. In contrast, Thr(HB)-Asn(nHB) and Thr(HB)-Arg(nHB) were not significantly favoured, and could only form side-chain interactions if the residues involved adopted less favourable chi1 conformations. The favourability of hydrophobic pairs e.g. Ile(HB)-Ile(nHB), Val(HB)-Val(nHB) and Leu(HB)-Ile(nHB) was explained by the residues adopting their most preferred chi1 and chi2 conformations, which enabled them to form nested arrangements. Cysteine-cysteine pairs are significantly favoured, although these do not form intrasheet disulphide bridges. Interactions between positively and negatively charged residues were asymmetrically preferred: those with the negatively charged residue at the HB position were more favoured. This trend was accounted for by the presence of general electrostatic interactions, which, based on analysis of distances between charged atoms, were likely to be stronger when the negatively charged residue is the HB partner. The Arg(HB)-Asp(nHB) interaction was an exception to this trend and its favorability was rationalised by the formation of specific side-chain interactions. This research provides rules that could be applied to protein structure prediction, comparative modelling and protein engineering and design. The methods used to analyse the pairing preferences are automated and detailed results are available (http://www.rubic.rdg.ac.uk/betapairprefsparallel/).  相似文献   

20.
Uncoupling protein 1 (UCP1) is a mitochondrial inner membrane protein that dissipates the proton electrochemical gradient built up by the respiratory chain. Its activity is stimulated by free fatty acids and inhibited by purine nucleotides. Here we investigated how active and regulated recombinant UCP1 expressed in yeast at approximately 1 and approximately 10 microg/mg of total mitochondrial proteins induced changes in the mitochondrial proteome and in oxygen free radical production. Using two-dimensional differential in-gel electrophoresis (2D-DIGE), we found that most of the proteins involved in the response to ectopically expressed UCP1 are related to energy metabolism. We also quantified the cellular H(2)O(2) release in the absence or in the presence of UCP1. Our results suggest that UCP1 has a dual influence on free radical generation. On one side, FFA-activated UCP1 was able to decrease the superoxide anion production, demonstrating that a decrease in the generation of reactive oxygen species is an obligatory outcome of UCP1 activity even in a heterologous context. On the other side, an increase in UCP1 content was concomitant with an increase in the basal release of superoxide anion by mitochondria as a side consequence of the overall increase in oxidative metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号