首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selegiline is a centrally acting sympatholytic agent with neuroprotective properties. It also has been shown to promote sympathetic reinnervation after sympathectomy. These actions of selegiline may be beneficial in heart failure that is characterized by increased sympathetic nervous activity and functional sympathetic denervation. Twenty-seven rabbits with rapid cardiac pacing (360 beats/min, 8 wk) and twenty-three rabbits without pacing were randomly assigned to receive selegiline (1 mg/day, 8 wk) or placebo. Rapid pacing increased plasma norepinephrine (NE) and decreased left ventricular fractional shortening, baroreflex sensitivity, cardiac sympathetic nerve terminal profiles, cardiac NE uptake activity, and myocardial beta-adrenoceptor density. Selegiline administration to animals with rapid ventricular pacing attenuated the increase in plasma NE and decreases in fractional shortening, baroreflex sensitivity, sympathetic nerve profiles, NE uptake activity and beta-adrenoceptor density. Thus selegiline appears to exert a sympatholytic and cardiac neuroprotective effect in pacing-induced cardiomyopathy. The effects are potentially beneficial because selegiline not only improves cardiac function but also increases baroreflex sensitivity in heart failure.  相似文献   

2.
To examine whether cardiac hypertrophy is associated with changes in beta-adrenoceptor signal transduction mechanisms, pressure overload (PO) was induced by occlusion of the abdominal aorta and volume overload (VO) by creation of an aortocaval shunt for 4 and 24 wk in rats. After hemodynamic assessment of the animals, the left ventricular (LV) particulate fraction was isolated for measurement of beta(1)-adrenoceptors and adenylyl cyclase activity, and cardiomyocytes were isolated for monitoring of the intracellular Ca(2+) concentration. Although PO and VO produced cardiac hypertrophy and increased LV end-diastolic pressure at 4 wk, cardiac function was increased in animals subjected to PO but remained unaltered in animals subjected to VO. Cardiac hypertrophy and increased LV end-diastolic pressure were associated with depressed cardiac function at 24 wk of PO or VO, but clinical signs of congestive heart failure were evident only in animals subjected to VO. Isoproterenol-induced increases in cardiac function, activation of adenylyl cyclase activity, and increase in intracellular Ca(2+) concentration, as well as beta(1)-adrenoceptor density, were unaltered by PO at 4 wk, augmented by VO at 4 wk, and attenuated by PO and VO at 24 wk. These results suggest that alterations in beta(1)-adrenoceptor signal transduction are dependent on the type and stage of cardiac hypertrophy.  相似文献   

3.
Right heart failure (RHF) is characterized by chamber-specific reductions of myocardial norepinephrine (NE) reuptake, beta-receptor density, and profiles of cardiac sympathetic nerve ending neurotransmitters. To study the functional linkage between NE uptake and the pre- and postsynaptic changes, we administered desipramine (225 mg/day), a NE uptake inhibitor, to dogs with RHF produced by tricuspid avulsion and progressive pulmonary constriction or sham-operated dogs for 6 wk. Animals receiving no desipramine were studied as controls. We measured myocardial NE uptake activity using [(3)H]NE, beta-receptor density by [(125)I]iodocyanopindolol, inotropic responses to dobutamine, and noradrenergic terminal neurotransmitter profiles by glyoxylic acid-induced histofluorescence for catecholamines, and immunocytochemical staining for tyrosine hydroxylase and neuropeptide Y. Desipramine decreased myocardial NE uptake activity and had no effect on the resting hemodynamics in both RHF and sham animals but decreased myocardial beta-adrenoceptor density and beta-adrenergic inotropic responses in both ventricles of the RHF animals. However, desipramine treatment prevented the reduction of sympathetic neurotransmitter profiles in the failing heart. Our results indicate that NE uptake inhibition facilitates the reduction of myocardial beta-adrenoceptor density and beta-adrenergic subsensitivity in RHF, probably by increasing interstitial NE concentrations, but protects the cardiac noradrenergic nerve endings from damage, probably via blockade of NE-derived neurotoxic metabolites into the nerve endings.  相似文献   

4.
Alterations in general characteristics and morphology of the heart, as well as changes in hemodynamics, myosin heavy chain isoforms, and beta-adrenoceptor responsiveness, were determined in Sprague-Dawley rats at 1, 2, 4, 8, and 16 wk after aortocaval fistula (shunt) was induced by the needle technique. Three stages of cardiac hypertrophy due to volume overload were recognized during the 16-wk period. Developing hypertrophy occurred within the first 2 wk after aortocaval shunt was induced and was characterized by a rapid increase of cardiac mass in both left and right ventricles. Compensated hypertrophy occurred between 2 and 8 wk after aortocaval shunt where normal or mild depression in hemodynamic function was observed. Decompensated hypertrophy or heart failure occurred between 8 and 16 wk after aortocaval shunt and was characterized by circulatory congestion, decreased in vivo and in vitro cardiac function, and a shift in myosin heavy chain isozyme expression. However, the positive inotropic effect of isoproterenol was augmented at all times during the 16-wk period. Characterization of beta-adrenoceptor binding in failing hearts at 16 wk revealed a significant increase in beta(1)-receptor density, whereas beta(2)-receptor density was unchanged. Consistent with this, basal adenylyl cyclase activity was significantly increased, and both isoproterenol- and forskolin-stimulated adenylyl cyclase activities were also increased. These results indicate that upregulation of beta-adrenoceptor signal transduction is a unique feature of cardiac hypertrophy and failure induced by volume overload.  相似文献   

5.
We reported recently that inhibition of neuronal reuptake of norepinephrine (NE) by desipramine prevented the reduction of sympathetic neurotransmitters in the failing right ventricle of right heart failure animals. In this study, we studied whether desipramine also reduced the sympathetic neurotransmitter loss in animals with left heart failure induced by rapid ventricular pacing (225 beats/min) or after chronic NE infusion (0.5 microg. kg(-1). min(-1)). Desipramine was given to the animals for 8 wk beginning with rapid ventricular pacing or NE infusion. Animals receiving no desipramine were studied as controls. We measured myocardial NE content, NE uptake activity, and sympathetic NE, tyrosine hydroxylase, and neuropeptide Y profiles by histofluorescence and immunocytochemical techniques. Effects of desipramine on NE uptake inhibition were evidenced by potentiation of the pressor response to exogenous NE and reduction of myocardial NE uptake activity. Desipramine treatment had no effect in sham or saline control animals but attenuated the reduction of sympathetic neurotransmitter profiles in the left ventricles of animals with rapid cardiac pacing and NE infusion. In contrast, the panneuronal marker protein gene product 9.5 profile was not affected by either rapid pacing or NE infusion, nor was it changed by desipramine treatment in the heart failure animals. The study confirms that excess NE contributes to the reduction of cardiac sympathetic neurotransmitters in heart failure. In addition, it shows that the anatomic integrity of the sympathetic nerves is relatively intact and that the neuronal damaging effect of NE involves the uptake of NE or its metabolites into the sympathetic nerves.  相似文献   

6.
Cardiac sympathetic transmitter stores are reduced in the failing heart. In this study, we proposed to investigate whether the reduction of cardiac sympathetic neurotransmitters was associated with increased interstitial norepinephrine (NE) and reactive oxygen species in congestive heart failure (CHF), using a microdialysis technique and salicylate to detect .OH generation. Rabbits with and without rapid ventricular pacing (340 beats/min) were randomized to receive desipramine (10 mg/day) or placebo for 8 wk. Rapid pacing produced left ventricular dilation and systolic dysfunction. The failing myocardium also showed reduced tissue contents of NE and tyrosine hydroxylase protein and activity. In contrast, myocardial interstitial NE was increased in CHF (0.89 +/- 0.11 ng/ml) compared with the sham-operated animals (0.26 +/- 0.03 ng/ml). In addition, cardiac oxidative stress was increased in CHF animals as measured by myocardial interstitial .OH radical, tissue oxidized glutathione, and oxidized mitochondrial DNA. Desipramine treatment produced significant NE uptake inhibition as evidence by an exaggerated pressor response and a greater increase of myocardial interstitial NE in response to intravenous NE infusion but no significant effects on cardiac function or hemodynamics in sham-operated or CHF animals. However, desipramine treatment attenuated the reductions of tissue NE and tyrosine hydroxylase protein and activity in CHF. Desipramine also prevented the reduction of tyrosine hydroxylase produced by NE in PC12 cells. Thus the reduction of cardiac sympathetic neurotransmitters is related to the increased interstitial NE and tissue oxidative stress in CHF. Also, normal neuronal uptake of NE is required for NE or its oxidized metabolites to exert their neurotoxic effects.  相似文献   

7.
Cardiac beta-adrenergic receptor (beta-AR) signaling and left ventricular (LV) responses to beta-AR stimulation are impaired with aging. It is shown that exercise and beta-AR blockade have a favorable effect on cardiac and vascular beta-AR signaling in several cardiovascular diseases. In the present study, we examined the effects of these two different strategies on beta-AR dysregulation and LV inotropic reserve in the aging heart. Forty male Wistar-Kyoto aged rats were randomized to sedentary, exercise (12 wk treadmill training), metoprolol (250 mg.kg(-1).day(-1) for 4 wk), and exercise plus metoprolol treatment protocols. Ten male Wistar-Kyoto sedentary young rats were also used as a control group. Old trained, old metoprolol-treated, and old trained plus metoprolol-treated rats showed significantly improved LV maximal and minimal first derivative of the pressure rise responses to beta-AR stimulation (isoproterenol) compared with old untrained animals. We found a significant reduction in cardiac sarcolemmal membrane beta-AR density and adenylyl cyclase activity in old untrained animals compared with young controls. Exercise training and metoprolol, alone or combined, restored cardiac beta-AR density and G-protein-dependent adenylyl cyclase activation in old rats. Although cardiac membrane G-protein-receptor kinase 2 levels were not upregulated in untrained old compared with young control rats, both exercise and metoprolol treatment resulted in a dramatic reduction of G-protein-receptor kinase 2 protein levels, which is a further indication of beta-AR signaling amelioration in the aged heart induced by these treatment modalities. In conclusion, we demonstrate for the first time that exercise and beta-AR blockade can similarly ameliorate beta-AR signaling in the aged heart, leading to improved beta-AR responsiveness and corresponding LV inotropic reserve.  相似文献   

8.
Chronic angiotensin-converting enzyme (ACE) inhibition has been shown to improve cardiac sympathetic nerve terminal function in heart failure. To determine whether similar effects could be produced by angiotensin II AT(1) receptor blockade, we administered the ACE inhibitor quinapril, angiotensin II AT(1) receptor blocker losartan, or both agents together, to rabbits with pacing-induced heart failure. Chronic rapid pacing produced left ventricular dilation and decline of fractional shortening, increased plasma norepinephrine (NE), and caused reductions of myocardial NE uptake activity, NE histofluorescence profile, and tyrosine hydroxylase immunostained profile. Administration of quinapril or losartan retarded the progression of left ventricular dysfunction and attenuated cardiac sympathetic nerve terminal abnormalities in heart failure. Quinapril and losartan together produced greater effects than either agent alone. The effect of renin-angiotensin system inhibition on improvement of left ventricular function and remodeling, however, was not sustained. Our results suggest that the effects of ACE inhibitors are mediated via the reduction of angiotensin II and that angiotensin II plays a pivotal role in modulating cardiac sympathetic nerve terminal function during development of heart failure. The combined effect of ACE inhibition and angiotensin II AT(1) receptor blockade on cardiac sympathetic nerve terminal dysfunction may contribute to the beneficial effects on cardiac function in heart failure.  相似文献   

9.
It is now well known that the signal transduction pathway involving beta-adrenoceptors and adenylyl cyclase is altered in ischemic heart disease. Since leukocytes accumulate in the ischemic heart and produce hypochlorous acid (HOCl), we investigated the effects of HOCl upon beta-adrenoceptors and adenylyl cyclase activities by perfusing rat hearts with 0.1 mM HOCl for 10 min and isolating cardiac membranes. Marked depressions in both the density and affinity of beta1-adrenoceptors were observed, whereas no significant change in the affinity or density of beta2-adrenoceptors was seen in hearts perfused with HOCl. After treatment of hearts with HOCl, competition curves using isoproterenol, a beta-adrenoceptor agonist, revealed a decrease in the proportion of high affinity binding sites. The adenylyl cyclase activities in the absence and presence of forskolin, NaF, Gpp(NH)p, or isoproterenol were depressed in hearts perfused with HOCl; however, the stimulatory effects of these agents on adenylyl cyclase were either unaltered or augmented. The presence of methionine in the perfusion medium prevented the HOCl-induced changes in beta1-adrenoceptors and adenylyl cyclase activity. These results suggest that HOCl may produce a defect in the beta-adrenoceptor linked signal transduction mechanism by affecting both beta1-adrenoceptors and adenylyl cyclase enzyme in the myocardium.  相似文献   

10.
Beta-adrenergic receptors of the normal heart and in heart failure   总被引:2,自引:0,他引:2  
The heart is often refereed to as an "beta-adrenergic organ" because beta-adrenergic agonists are powerful stimulants of cardiac contractility. Catecholamines acting through beta-adrenoceptors produce both positive inotropic and chronotropic effects in human heart. It is now generally accepted that in human heart both beta 1- and beta 2-adrenoceptors coexist. beta-Adrenergic transduction system consist of membrane-bound beta-receptors, the effector enzyme adenylyl cyclase and guanine nucleotide-binding transduction (G) proteins. Repeated long-lasting agonist stimulus evokes homologous or heterologous desensitization of transduction system. Chronic heart failure accompanies with decreased responsiveness to beta-adrenoceptor agonists and is thought to exacerbate the loss of cardiac contractility. Depending on the etiology of heart failure abnormalities of the beta-receptor-G protein-adenylyl cyclase system result from a reduced of beta 1-receptors, uncoupling of beta 1- or beta 2-receptors, alteration of G-protein function, or decreased catalytic subunit activity of adenylyl cyclase and enhanced expression of beta-adrenoceptor kinase. The model most widely used is that of circulating lymphocytes that contain a homogeneous population of beta 2-adrenoceptors. The biochemical and pharmacological properties of human lymphocyte beta 2-adrenoceptors are quite comparable to those of heart beta 2-receptors. The analysis of lymphocyte beta 2-adrenoceptor-adenylyl cyclase system can be used as a model for long-term regulation of human cardiac beta 1- and beta 2-adrenoceptors only if serial changes in response to administration of non-selective beta-adrenergic agonists or antagonists are being investigated. This review concentrates on beta-adrenoceptors in human healthy heart and in heart failure and also on lymphocyte beta 2-adrenoceptors and on the changes of these receptors properties under the influence of some cardiotropic drugs.  相似文献   

11.
Experiments were performed to determine if there is regional heterogeneity in sympathetic neural activation of peripheral tissues in rats with chronic heart failure (HF; 6-8 wk after coronary artery ligation). Norepinephrine (NE) turnover, an index of sympathetic activation, was determined on the basis of the decline in tissue NE levels that occurs during the 8-h after tyrosine hydroxylase inhibition (alpha-methyl-DL-p-tyrosine, 300 mg/kg ip at 4-h intervals). Compared with sham-operated rats, NE turnover was increased in the cardiac left ventricle, skeletal muscle, duodenum, and kidney of rats with HF, but was unaltered in liver and spleen. The increased renal NE turnover in HF was largely a reflection of increased turnover in the cortex, with no change evident in the medulla. Blockade of sympathetic ganglionic traffic (hexamethonium, 2 mg/kg sc at 2-h intervals) eliminated the tissue-specific effects of HF on tissue NE levels measured 8-h after tyrosine hydroxylase inhibition. These data support the contention that chronic HF evokes a central nervous system-mediated increase in basal sympathetic tone that exhibits regional heterogeneity (both between and within organs), a phenomenon that likely contributes to the functional consequences of this pathophysiological state.  相似文献   

12.
Earlier studies have revealed an improvement of cardiac function in animals with congestive heart failure (CHF) due to myocardial infarction (MI) by treatment with angiotensin converting enzyme (ACE) inhibitors. Since heart failure is also associated with attenuated responses to catecholamines, we examined the effects of imidapril, an ACE inhibitor, on the beta-adrenoceptor (beta-AR) signal transduction in the failing heart. Heart failure in rats was induced by occluding the coronary artery, and 3 weeks later the animals were treated with g/(kg x day) (orally) imidapril for 4 weeks. The animals were assessed for their left ventricular function and inotropic responses to isoproterenol. Cardiomyocytes and crude membranes were isolated from the non-ischemic viable left ventricle and examined for the intracellular concentration of Ca2+ [Ca2+]i and beta-ARs as well as adenylyl cyclase (AC) activity, respectively. Animals with heart failure exhibited depressions in ventricular function and positive inotropic response to isoproterenol as well as isoproterenol-induced increase in [Ca2+]i in cardiomyocytes; these changes were attenuated by imidapril treatment. Both beta1-AR receptor density and isoproterenol-stimulated AC activity were decreased in the failing heart and these alterations were prevented by imidapril treatment. Alterations in cardiac function, positive inotropic effect of isoproterenol, beta1-AR density and isoproterenol-stimulated AC activity in the failing heart were also attenuated by treatment with another ACE inhibitor, enalapril and an angiotensin II receptor antagonist, losartan. The results indicate that imidapril not only attenuates cardiac dysfunction but also prevents changes in beta-AR signal transduction in CHF due to MI. These beneficial effects are similar to those of enalapril or losartan and thus appear to be due to blockade of the renin-angiotensin system.  相似文献   

13.
Increased glucose utilization and regional differences in contractile function are well-known alterations of the failing heart and play an important pathophysiological role. We tested whether, similar to functional derangement, changes in glucose uptake develop following a regional pattern. Heart failure was induced in 13 chronically instrumented minipigs by pacing the left ventricular (LV) free wall at 180 beats/min for 3 wk. Regional changes in contractile function and stress were assessed by magnetic resonance imaging, whereas regional flow and glucose uptake were measured by positron emission tomography utilizing, respectively, the radiotracers [(13)N]ammonia and (18)F-deoxyglucose. In heart failure, LV end-diastolic pressure was 20 +/- 4 mmHg, and ejection fraction was 35 +/- 4% (all P < 0.05 vs. control). Sustained pacing-induced dyssynchronous LV activation caused a more pronounced decrease in LV systolic thickening (7.45 +/- 3.42 vs. 30.62 +/- 8.73%, P < 0.05) and circumferential shortening (-4.62 +/- 1.0 vs. -7.33 +/- 1.2%, P < 0.05) in the anterior/anterior-lateral region (pacing site) compared with the inferoseptal region (opposite site). Conversely, flow was reduced significantly by approximately 32% compared with control and was lower in the opposite site region. Despite these nonhomogeneous alterations, regional end-systolic wall stress was uniformly increased by 60% in the failing LV. Similar to wall stress, glucose uptake markedly increased vs. control (0.24 +/- 0.004 vs. 0.07 +/- 0.01 micromol x min(-1) x g(-1), P < 0.05), with no significant regional differences. In conclusion, high-frequency pacing of the LV free wall causes a dyssynchronous pattern of contraction that leads to progressive cardiac failure with a marked mismatch between increased glucose uptake and regional contractile dysfunction.  相似文献   

14.
Right ventricular (RV) pacing is now recognized to play a role in the development of heart failure in patients with and without underlying left ventricular (LV) dysfunction. We used the cardiac norepinephrine spillover method to test the hypothesis that RV pacing is associated with cardiac sympathetic activation. We studied 8 patients with normal LV function using temporary right atrial and ventricular pacing wires. All measurements were carried out during a fixed atrial pacing rate. The radiotracer norepinephrine spillover technique was employed to measure total body and cardiac sympathetic activity while changes in LV performance were evaluated with a high-fidelity manometer catheter. Atrioventricular synchronous RV pacing, compared with atrial pacing alone, was associated with a 65% increase in cardiac norepinephrine spillover, an increase in LV end-diastolic pressure, and a reduction in myocardial efficiency. These responses may play a role in the development of heart failure and poor outcomes that are associated with chronic RV pacing.  相似文献   

15.
Although different experimental and clinical studies have revealed varying degrees of defects in beta-adrenoceptors (beta-ARs) during the development of heart failure, the mechanisms for differences in beta-AR signal transduction between the left (LV) and right ventricle (RV) are not understood. Because biochemical alterations in the myocardium depend on the stage of heart disease, this study was undertaken to assess the status of beta-ARs in the LV and RV at different stages of heart failure. Myocardial infarction was induced in rats by occluding the left coronary artery for 8 and 24 weeks. The beta-AR signal transduction was monitored by measuring beta1-AR density, the isoproterenol-induced positive inotropic effect, the increase in [Ca2+]i in cardiomyocytes, and the activation of adenylyl cyclase. The beta-AR signal transduction parameters in the 8- and 24-week failing LV were depressed, whereas the RV showed upregulation at 8 weeks and downregulation at 24 weeks of these mechanisms. These results suggest that beta-AR-mediated signal transduction in the LV and RV are differentially regulated and are dependent upon the stage of development of congestive heart failure due to myocardial infarction.  相似文献   

16.
1. A comparison was made between adrenergic receptor binding properties and catecholamine-stimulated adenylyl cyclase activity in cardiac membrane fractions from the rat and the marmoset monkey. 2. [125I]HEAT and [125I]ICYP were used to determine respectively, the alpha- and beta-adrenergic receptor binding in cardiac membrane fractions. 3. Greatest adrenergic receptor density and degree of specific binding was evident using membranes sedimenting between 6000 and 46,000 g. 4. In rat heart, the ratio of beta- to alpha-adrenergic receptors was 57:43, while for the marmoset this ratio was 92:8. 5. Basal, isoproterenol, sodium fluoride and forskolin-stimulated adenylyl cyclase activities in the rat and marmoset monkey were investigated in several different cardiac membrane fractions. 6. The highest-fold stimulation of adenylyl cyclase activity was present in membranes sedimenting between 0 and 500 g. 7. Adenylyl cyclase activities were higher in the marmoset heart membrane preparations, however the rat heart adenylyl cyclase exhibited greater sensitivity to isoproterenol; ED50 3.8 X 10(-7) M compared with 7.5 X 10(-7) M for the marmoset. 8. Differences between rat and marmoset catecholamine-sensitive adenylyl cyclase activity were apparent when a variety of adrenergic agonists and antagonists were tested. 9. In the marmoset but not the rat, adrenergic antagonists alone stimulated basal adenylyl cyclase activity. 10. Differences in the activation of cardiac adenylyl cyclase by GTP and GMP-PNP were also evident between the rat and the marmoset monkey, particularly with regard to basal and isoproterenol-stimulated activity.  相似文献   

17.
We examined the hypothesis that oxidants generated nitroso derivatives, activated latent matrix metalloproteinase (MMP), and induced proteinase-activated receptor 1 (PAR-1), leading to disconnection between the endothelium and myocytes. Administration of cardiospecific tissue inhibitor of metalloproteinase-4 (TIMP-4/CIMP) ameliorated the oxidative-proteolytic stress and endothelial-myocyte uncoupling in chronic heart failure (CHF) in mice. Aortic-vena cava fistula (AVF) was created in 30 male mice (C57BL/6J) and studied at 0-, 2-, and 8-wk AVF. To reverse cardiac remodeling, as measured by MMP activation, purified CIMP was administered by an osmotic minipump subcutaneously after 8-wk AVF, and groups of mice (n = 6 mice/group) were examined after 12 and 16 wk. Levels of PAR-1 in the left ventricle (LV) were increased at 2 and 8 wk (compared with 0 wk of no CIMP treatment) but were normal at 12 and 16 wk after CIMP treatment, as measured by Western blot analysis. Similar results were obtained for LV levels of nitrotyrosine, MMP-2 and -9 activities, and TIMP-1 and -3. However, the levels of TIMP-4, endothelial cell density, and responses of cardiac rings to acetylcholine and bradykinin were attenuated at 2 and 8 wk and normalized after CIMP administration in AVF mice. CIMP induced nitric oxide in microvascular endocardial endothelial cells. The results suggest that nitro generation activated MMP and PAR-1, leading to endothelial-myocyte uncoupling. CIMP treatment normalized PAR-1 expression and ameliorated endothelial-myocyte uncoupling by decreasing oxidant-mediated proteolytic stress in CHF.  相似文献   

18.
Regional changes occur in the sympathetic innervation of the heart after myocardial infarction (MI), including loss of norepinephrine (NE) uptake and depletion of neuronal NE. This apparent denervation is accompanied by increased cardiac NE spillover. One potential explanation for these apparently contradictory findings is that the sympathetic neurons innervating the heart are exposed to environmental stimuli that alter neuronal function. To understand the changes that occur in the innervation of the heart after MI, immunohistochemical, biochemical, and molecular analyses were carried out in the heart and stellate ganglia of control and MI rats. Immunohistochemistry with panneuronal markers revealed extensive denervation in the left ventricle (LV) below the infarct, but sympathetic nerve fibers were retained in the base of the heart. Western blot analysis revealed that tyrosine hydroxylase (TH) expression (normalized to a panneuronal marker) was increased significantly in the base of the heart and in the stellate ganglia but decreased in the LV below the MI. NE transporter (NET) binding sites, normalized to total protein, were unchanged, except in the LV, where [3H]nisoxetine binding was decreased. TH mRNA was increased significantly in the left and right stellate ganglia after MI, while NET mRNA was not. In the base of the heart, increased TH coupled with no change in NET may explain the increase in extracellular NE observed after MI. Coupled with substantial denervation in the LV, these changes likely contribute to the onset of cardiac arrhythmias.  相似文献   

19.
Norepinephrine (NE)-induced desensitization of the adrenergic receptor pathway may mimic the effects of hypoxia on cardiac adrenoceptors. The mechanisms involved in this desensitization were evaluated in male Wistar rats kept in a hypobaric chamber (380 Torr) and in rats infused with NE (0.3 mg. kg(-1). h(-1)) for 21 days. Because NE treatment resulted in left ventricular (LV) hypertrophy, whereas hypoxia resulted in right (RV) hypertrophy, the selective hypertrophic response of hypoxia and NE was also evaluated. In hypoxia, alpha(1)-adrenergic receptors (AR) density increased by 35%, only in the LV. In NE, alpha(1)-AR density decreased by 43% in the RV. Both hypoxia and NE decreased beta-AR density. No difference was found in receptor apparent affinity. Stimulated maximal activity of adenylate cyclase decreased in both ventricles with hypoxia (LV, 41%; RV, 36%) but only in LV with NE infusion (42%). The functional activities of G(i) and G(s) proteins in cardiac membranes were assessed by incubation with pertussis toxin (PT) and cholera toxin (CT). PT had an important effect in abolishing the decrease in isoproterenol-induced stimulation of adenylate cyclase in hypoxia; however, pretreatment of the NE ventricle cells with PT failed to restore this stimulation. Although CT attenuates the basal activity of adenylate cyclase in the RV and the isoproterenol-stimulated activity in the LV, pretreatment of NE or hypoxic cardiac membranes with CT has a less clear effect on the adenylate cyclase pathway. The present study has demonstrated that 1) NE does not mimic the effects of hypoxia at the cellular level, i.e., hypoxia has specific effects on cardiac adrenergic signaling, and 2) changes in alpha- and beta-adrenergic pathways are chamber specific and may depend on the type of stimulation (hypoxia or adrenergic).  相似文献   

20.
Unlike most other experimental models of congestive heart failure, the volume overload model induced by aortocaval shunt (AVS) in rats was found to exhibit enhanced beta-adrenoceptor (beta-AR) signaling. To study whether the adenylyl cyclase (AC)-G protein system is involved in such a change, we examined cardiac AC activity and protein content as well as G(s)alpha and G(i)alpha activities, protein contents, and mRNA levels in both left (LV) and right (RV) ventricles at the failing stage (16 wk after surgery). Basal and forskolin-stimulated AC activities were significantly increased in both LV and RV from the failing hearts; this change was associated with an upregulation of type V/VI AC protein. In contrast to 5'-guanylyl imidodiphosphate and NaF, the stimulatory effect of isoproterenol on AC was increased in the failing heart. Although G(s)alpha and G(i)alpha protein contents in the failing hearts were not altered, the mRNA level for G(s)alpha was decreased by 20% and that for G(i)alpha was increased by 20%. In addition, the activity of G(s)alpha, but not G(i)alpha, as assessed by toxin-catalyzed ADP ribosylation, was significantly decreased in the failing heart. Losartan and imidapril treatments improved cardiac function and attenuated alterations in mRNA levels for G(s)alpha and G(i)alpha proteins, as well as G(s)alpha activity, without affecting changes in AC protein content or activities in heart failure due to volume overload. These data suggest that increased AC activity may contribute to the enhanced beta-AR signaling in the AVS model of heart failure, whereas alterations in gene expression for G proteins may be of an adaptive nature at this stage of heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号