首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
During toluene hydroxylation, catalyzed by Pseudomonas putida UV4 one molecule of oxygen is added to the aromatic ring to produce the dihydroxylated (non-aromatic) ring structure, toluene cis-glycol. Toluene, which is toxic to the cells at aqueous phase concentration above ( approximately 2.4 mmol), is fed to the reactor. A feed-back control system based on oxygen uptake rate measurements was used to control the feed rate, and thus maintain the aqueous phase toluene concentration in the desired range for zero order kinetics.  相似文献   

2.
A constitutive blocked mutant (UV4) of Pseudomonas putida was grown in a 2.5-l fermentor on a mineral salts medium. Glucose was fed normally over an 18-h period. Gluconate reached about 5 gl–1 in the medium and then fell to zero as it was utilised. The maximum toluene dioxygenase specific activity (2 g g–1 h–1) was obtained over the last 6 h of the fermentation when the pH was fully controlled. In fermentations done at low dissolved O2 tension (DOT) values there was an overall reduction in the cellular enzyme level. When stored at 4°C in phosphate buffer, pH 7.0, harvested bacteria lost half their activity in about 90 h.  相似文献   

3.
The solvent-tolerant strain Pseudomonas putida DOT-T1E has been engineered for biotransformation of toluene into 4-hydroxybenzoate (4-HBA). P. putida DOT-T1E transforms toluene into 3-methylcatechol in a reaction catalyzed by toluene dioxygenase. The todC1C2 genes encode the alpha and beta subunits of the multicomponent enzyme toluene dioxygenase, which catalyzes the first step in the Tod pathway of toluene catabolism. A DOT-T1EdeltatodC mutant strain was constructed by homologous recombination and was shown to be unable to use toluene as a sole carbon source. The P. putida pobA gene, whose product is responsible for the hydroxylation of 4-HBA into 3,4-hydroxybenzoate, was cloned by complementation of a Pseudomonas mendocina pobA1 pobA2 double mutant. This pobA gene was knocked out in vitro and used to generate a double mutant, DOT-T1EdeltatodCpobA, that was unable to use either toluene or 4-HBA as a carbon source. The tmo and pcu genes from P. mendocina KR1, which catalyze the transformation of toluene into 4-HBA through a combination of the toluene 4-monoxygenase pathway and oxidation of p-cresol into the hydroxylated carboxylic acid, were subcloned in mini-Tn5Tc and stably recruited in the chromosome of DOT-T1EdeltatodCpobA. Expression of the tmo and pcu genes took place in a DOT-T1E background due to cross-activation of the tmo promoter by the two-component signal transduction system TodST. Several independent isolates that accumulated 4-HBA in the supernatant from toluene were analyzed. Differences were observed in these clones in the time required for detection of 4-HBA and in the amount of this compound accumulated in the supernatant. The fastest and most noticeable accumulation of 4-HBA (12 mM) was found with a clone designated DOT-T1E-24.  相似文献   

4.
Summary Pseudomonas putida MST, previously isolated in the presence of -methylstyrene, has been shown to transform several substituted aromatic compounds. It was able to modify halogenated aromatic compounds by co-oxidation. It regiospecifically hydroxylates chlorobenzene and 2-chlorophenol to 3-chlorocatechol, and 4-chlorophenol to 4-chlorocatechol; both metabolites were identified in the cultures.  相似文献   

5.
The cyoABCDE gene cluster of Pseudomonas putida DOT-T1E encodes a terminal cytochrome oxidase. A 500-bp 'cyoB' DNA fragment was cloned in pCHESI Omega Km and used to generate a cyoB knock-out mutant in vivo. The mutant strain was not limited in the generation of proton-motif force, although when grown on minimal medium with glucose or citrate, the CyoB mutant exhibited a slight increase in duplication time with respect to the wild-type strain. This effect was even more pronounced when toluene was supplied in the gas phase. In consonance with the negative effect of toluene on the growth was the finding that the CyoB mutant was hypersensitive to sudden 0.3% (v/v) toluene shocks, in contrast with the wild-type strain. This effect was particularly exacerbated in cells that reached the stationary phase. The increased sensitivity to solvents of the CyoB mutant did not appear to be related to the inability of the cells to strengthen the membrane package or to induce the efflux pumps in response to the solvent, but rather to solvent-induced plasmolysis that may be triggered by wrinkles in the cytoplasmic membrane at the poles of the mutant cells, and invagination of the outer membranes, which eventually lead to cell death.  相似文献   

6.
Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol.  相似文献   

7.
8.
Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol.  相似文献   

9.
Toluene-induced cells of Pseudomonas putida NCIMB 11767 lost their ability to oxidise toluene within 300 h under conditions of carbon/energy or nitrogen deprivation at 30°C, while incubation at 4°C improved the stability of this activity. Provision of inducing substrates (toluene or phenol) to nitrogen-deprived cells at 30°C also enhanced the stability of toluene oxidation, whereas provision of a non-inducing carbon/energy source (ethanol) led to a total loss of toluene oxidation within 160 h. Disappearance of toluene-induced proteins, at different rates accompanied the loss of toluene oxidation in carbon-deprived cells. The data suggest that degradation of one or more of the major proteins of toluene metabolism determines the stability of toluene oxidation in carbon-deprived cells. Around 40% of the whole-cell toluene oxidation rate was recoverable after cryopreservation (–20°C under glycerol) of toluene-induced cells but most of this recovered activity (86%) was associated with dead cells. These observations may have important implications for the application of these toluene-induced cells as in situ bioremediation catalysts.  相似文献   

10.
Biocatalytic hydrocarbon oxyfunctionalizations are typically accomplished using oxygenases in living bacteria as biocatalysts. These processes are often limited by either oxygen mass transfer, cofactor regeneration, and/or enzyme instabilities due to the formation of reactive oxygen species. Here, we discuss an alternative approach based on molybdenum (Mo)-containing dehydrogenases, which produce, rather than consume, reducing equivalents in the course of substrate hydroxylation and use water as the oxygen donor. Mo-containing dehydrogenases have a high potential for overcoming limitations encountered with oxygenases. In order to evaluate the suitability and efficiency of a Mo-containing dehydrogenase-based biocatalyst, we investigated quinaldine 4-oxidase (Qox)-containing Pseudomonas strains and the conversion of quinaldine to 4-hydroxyquinaldine. Host strain and carbon source selection proved to be crucial factors influencing biocatalyst efficiency. Resting P. putida KT2440 (pKP1) cells, grown on and induced with benzoate, showed the highest Qox activity and were used for process development. To circumvent substrate and product toxicity/inhibition, a two-liquid phase approach was chosen. Without active aeration and with 1-dodecanol as organic carrier solvent a productivity of 0.4 g l (tot) (-1) h(-1) was achieved, leading to the accumulation of 2.1 g l (tot) (-1) 4-hydroxyquinaldine in 6 h. The process efficiency compares well with values reported for academic and industrially applied biocatalytic oxyfunctionalization processes emphasizing the potential and feasibility of the Qox-containing recombinant cells for heteroaromatic carbon oxyfunctionalizations without the necessity for active aeration.  相似文献   

11.
12.
13.
Toluene was oxidized by a mutant strain of Pseudomonas putida (strain NG1) to toluene Cis-Glycol (TCG). Product was accumulated in fed-batch cultures to concentrations (18-24 g/L) higher than hitherto achieved. In vitro activities of toluene dioxygenase from P. Putida NG1 were fivefold lower than that from the toluene-grown wild-type organism, whereas comparable activities of both catechol 2,3- and catechol 1,2-oxygenase were obtained; irreversible inhibition of toluene dioxygenase activity by TCG was shown in vitro. Ammonia deprivation during the production phase limited the growth of revertant organisms but had little effect on either the duration (25h) of the process or the final concentration of TCG achieved. The rate of glucose utilization decreased throughout the biotransformation and cell death accompanied the cessation of TCG accumulation in cultures. These changes were a consequence of TCG formation and a cooperative toxic effect was demonstrated for toluene and TCG. Adenylate energy charge values decreased from ca. 0.8 to 0.2 over the course of the biotransformation but were maintained above 0.5 in the absence of TCG. Similarly, cellular AMP levels increased dramatically during biotransformation, presumably as a consequence of RNA degradation, but were maintained at low levels in the absence of TCG. The results suggest that TCG is the mediate of a gradual deterioration in the state of the culture which leads to a loss of both in vivo and in vitro toluence dioxygenase activity and a marked decrease in culture viability.  相似文献   

14.
Degradation of an immiscible aromatic solvent, toluene, and a water-soluble aromatic compound, p-toluic acid, by a Pseudomonas putida strain in the presence of beta-cyclodextrin (beta-CD) was investigated. The ability of CDs to interact with hydrophobic organics and form inclusion compounds was exploited in this study to remove or alleviate the toxicities of substrates and consequently to enable or enhance degradation. Liquid toluene was found to be highly toxic to P. putida. However, this phase toxicity was removed when crystalline beta-CD-complexed toluene was provided as the substrate. The latter was fully degraded at a concentration of up to 10 g/liter. Degradation of toluene vapors was enhanced in the presence of beta-CD as a result of reduced molecular toxicity and facilitated absorption of the gaseous substrate. Similarly, beta-CD alleviated the inhibitory effect of p-toluic acid on P. putida. This protective effect of CD was remarkably more prominent when the microbial culture was shock loaded with an otherwise toxic dose of p-toluic acid (1.8 g/liter).  相似文献   

15.
16.
A strain of Pseudomonas putida (2NP8) capable of growing on both 2-nitrophenol and 3-nitrophenol, but not on nitrobenzene (NB), was isolated from municipal activated sludge. 2-Nitrophenol was degraded by this strain with production of nitrite. Degradation of 3-nitrophenol resulted in the formation of ammonia. Cells grown on 2-nitrophenol did not degrade nitrobenzene. A specific nitrobenzene degradation activity was induced by 3-nitrophenol. Ammonia, nitrosobenzene, and hydroxylaminobenzene have been detected as metabolites of nitrobenzene degradation by cells grown in the presence of 3-nitrophenol. These results indicated a NB cometabolism mediated by 3-nitrophenol nitroreductase.  相似文献   

17.

Pseudomonas putida T-57 was isolated from an activated sludge sample after enrichment on mineral salts basal medium with toluene as a sole source of carbon. P. putida T-57 utilizes n-butanol, toluene, styrene, m-xylene, ethylbenzene, n-hexane, and propylbenzene as growth substrates. The strain was able to grow on toluene when liquid toluene was added to mineral salts basal medium at 10–90% (v/v), and was tolerant to organic solvents whose log  P ow (1-octanol/water partition coefficient) was higher than 2.5. Enzymatic and genetic analysis revealed that P. putida T-57 used the toluene dioxygenase pathway to catabolize toluene. A cis-toluene dihydrodiol dehydrogenase gene (todD) mutant of T-57 was constructed using a gene replacement technique. The todD mutant accumulated o-cresol (maximum 1.7 g/L in the aqueous phase) when cultivated in minimal salts basal medium supplemented with 3% (v/v) toluene and 7% (v/v) 1-octanol. Thus, T-57 is thought to be a good candidate host strain for bioconversion of hydrophobic substrates in two-phase (organic-aqueous) systems.

  相似文献   

18.
Pseudomonas putida T-57 was isolated from an activated sludge sample after enrichment on mineral salts basal medium with toluene as a sole source of carbon. P. putida T-57 utilizes n-butanol, toluene, styrene, m-xylene, ethylbenzene, n-hexane, and propylbenzene as growth substrates. The strain was able to grow on toluene when liquid toluene was added to mineral salts basal medium at 10-90% (v/v), and was tolerant to organic solvents whose log P(ow) (1-octanol/water partition coefficient) was higher than 2.5. Enzymatic and genetic analysis revealed that P. putida T-57 used the toluene dioxygenase pathway to catabolize toluene. A cis-toluene dihydrodiol dehydrogenase gene (todD) mutant of T-57 was constructed using a gene replacement technique. The todD mutant accumulated o-cresol (maximum 1.7 g/L in the aqueous phase) when cultivated in minimal salts basal medium supplemented with 3% (v/v) toluene and 7% (v/v) 1-octanol. Thus, T-57 is thought to be a good candidate host strain for bioconversion of hydrophobic substrates in two-phase (organic-aqueous) systems.  相似文献   

19.
Whole cells of Pseudomonas putida containing toluene dioxygenase were able to remove all detectable trichloroethylene (TCE) from assay mixtures. The capacity of cells to remove TCE was 77 microM/mg of protein with an initial rate of removal of 5.2 nmol/min/ng of protein. TCE oxidation resulted in a decrease in the growth rate of cultures and caused rapid cell death. Addition of dithiothreitol to assay mixtures increased the TCE removal capacity of cells by up to 67% but did not prevent TCE-mediated cell death. TCE induced toluene degradation by whole cells to a rate approximately 40% of that induced by toluene itself.  相似文献   

20.
Sequence analysis in Pseudomonas putida DOT-T1E revealed a second toluene efflux system for toluene metabolism encoded by the ttgDEF genes, which are adjacent to the tod genes. The ttgDEF genes were expressed in response to the presence of aromatic hydrocarbons such as toluene and styrene in the culture medium. To characterize the contribution of the TtgDEF system to toluene tolerance in P. putida, site-directed mutagenesis was used to knock out the gene in the wild-type DOT-T1E strain and in a mutant derivative, DOT-T1E-18. This mutant carried a Tn5 insertion in the ttgABC gene cluster, which encodes a toluene efflux pump that is synthesized constitutively. For site-directed mutagenesis, a cassette to knock out the ttgD gene and encoding resistance to tellurite was constructed in vitro and transferred to the corresponding host chromosome via the suicide plasmid pKNG101. Successful replacement of the wild-type sequences with the mutant cassette was confirmed by Southern hybridization. A single ttgD mutant, DOT-T1E-1, and a double mutant with knock outs in the ttgD and ttgA genes, DOT-T1E-82, were obtained and characterized for toluene tolerance. This was assayed by the sudden addition of toluene (0.3% [vol/vol]) to the liquid culture medium of cells growing on Luria-Bertani (LB) medium (noninduced) or on LB medium with toluene supplied via the gas phase (induced). Induced cells of the single ttgD mutant were more sensitive to sudden toluene shock than were the wild-type cells; however, noninduced wild-type and ttgD mutant cells were equally tolerant to toluene shock. Noninduced cells of the double DOT-T1E-82 mutant did not survive upon sudden toluene shock; however, they still remained viable upon sudden toluene shock if they had been previously induced. These results are discussed in the context of the use of multiple efflux pumps involved in solvent tolerance in P. putida DOT-T1E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号