首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human amyloid beta protein is the major constituent of the brain amyloid plaques found in Alzheimer disease. The gene that encodes this protein is located on chromosome 21, and individuals with Down syndrome (trisomy 21) also exhibit an early onset form of Alzheimer disease. We have used the cloned human amyloid beta protein gene and a panel of somatic cell hybrids to map the location of the mouse homolog of this gene. We report here that the mouse gene is located on chromosome 16 within the region 16C3----ter, in common with three other genes which map within the Down syndrome region of human chromosome 21.  相似文献   

2.
The human gene for cystathionine beta-synthase (CBS), the enzyme deficient in classical homocystinuria, has been assigned to the subtelomeric region of band 21q22.3 by in situ hybridization of a rat cDNA probe to structurally rearranged chromosomes 21. The homologous locus in the mouse (Cbs) was mapped to the proximal half of mouse chromosome 17 by Southern analysis of Chinese hamster X mouse somatic cell hybrid DNA. Thus, CBS/Cbs and the gene for alpha A-crystalline (CRYA1/Crya-1 or Acry-1) form a conserved linkage group on human (HSA) chromosome region 21q22.3 and mouse (MMU) chromosome 17 region A-C. Features of Down syndrome (DS) caused by three copies of these genes should not be present in mice trisomic for MMU 16 that have been proposed as animal models for DS. Mice partially trisomic for MMU 16 or MMU 17 should allow gene-specific dissection of the trisomy 21 phenotype.  相似文献   

3.
Analysis of the functional nature of mutations can be based on their manifestation in organisms with a deletion or a duplication of a particular chromosome segment. With the use of reciprocal translocation T(16;17)43H it is feasible to produce mice with tertiary trisomy for proximal region of chromosome 17. The mutations on chromosome 17 we tested included brachyury (T), hairpin tail (Thp), kinky (Fuki), quaking (qk), tufted (tf), as well as tct (t-complex tail interaction) and tcl (t complex lethal), that are specific for t haplotypes. The set of dominant and recessive mutations was assigned to two groups, one obligatory manifesting itself in the phenotype independently of the number of normal alleles in di- and trisomics, and the other facultative, phenotypically manifesting itself, depending upon the dosage of mutant alleles. A model was derived from analysis of the interaction of the T and Thp mutations with t haplotypes which is to explain the morphogenetic effects of the mutations observed in mice of different genotypes. The tir gene is postulated to reside on chromosome 17 within its framework. It is suggested that the gene dosage ratio at the tir and tct loci determines tail length.  相似文献   

4.
5.
The Down syndrome critical region 1 (DSCR1) gene is present in the region of human chromosome 21 and the syntenic region of mouse chromosome 16, trisomy of which is associated with congenital heart defects observed in Down syndrome. DSCR1 encodes a regulatory protein in the calcineurin/NFAT signal transduction pathway. During valvuloseptal development in the heart, DSCR1 is expressed in the endocardium of the developing atrioventricular and semilunar valves, the muscular interventricular septum, and the ventricular myocardium. Human DSCR1 contains an NFAT-rich calcineurin-responsive element adjacent to exon 4. Transgenic mice generated with a homologous regulatory region of the mouse DSCR1 gene linked to lacZ (DSCR1(e4)/lacZ) show gene activation in the endocardium of the developing valves and aorticopulmonary septum of the heart, recapitulating a specific subdomain of endogenous DSCR1 cardiac expression. DSCR1(e4)/lacZ expression in the developing valve endocardium colocalizes with NFATc1 and, endocardial DSCR1(e4)/lacZ, is notably reduced or absent in NFATc1(-/-) embryos. Furthermore, expression of the endogenous DSCR1(e4) isoform is decreased in the outflow tract of NFATc1(-/-) hearts, and the DSCR1(e4) intragenic element is trans-activated by NFATc1 in cell culture. In trisomy 16 (Ts16) mice, expression of endogenous DSCR1 and DSCR1(e4)/lacZ colocalizes with anomalous valvuloseptal development, and transgenic Ts16 hearts have increased beta-galactosidase activity. DSCR1 and DSCR1(e4)/lacZ also are expressed in other organ systems affected by trisomy 16 in mice or trisomy 21 in humans including the brain, eye, ear, face, and limbs. Together, these results show that DSCR1(e4) expression in the developing valve endocardium is dependent on NFATc1 and support a role for DSCR1 in normal cardiac valvuloseptal formation as well as the abnormal development of several organ systems affected in individuals with Down syndrome.  相似文献   

6.
7.
8.
Kang M  Cho JW  Kim JK  Kim E  Kim JY  Cho KH  Song CW  Yoon SK 《BMB reports》2008,41(9):651-656
A mouse with cataract, Kec, was generated from N-ethyl-N-nitrosourea (ENU) mutagenesis. Cataract in the Kec mouse was observable at about 5 weeks after birth and this gradually progressed to become completely opaque by 12 weeks. Dissection microscopy revealed that vacuoles with a radial or irregular shape were located primarily in the cortex of the posterior and equatorial regions of the lens. At the late stage, the lens structure was distorted, but not ruptured. This cataract phenotype was inherited in an autosomal recessive manner. We performed a genetic linkage analysis using 133 mutant and 67 normal mice produced by mating Kec mutant (BALB/c) and F1 (C57BL/6 x Kec) mice. The Kec locus was mapped to the 3 cM region encompassed by D14Mit34 and D14Mit69. In addition we excluded coding sequences of 9 genes including Rcbtb2, P2ry5, Itm2b, Med4, Nudt15, Esd, Lcp1, Slc25a30, and 2810032E02Rik as the candidate gene that causes cataract in the Kec mouse.  相似文献   

9.
In many mammals, the concentration of myo-inositol in the fluid of the seminiferous tubules is dramatically higher than levels found in serum. Two enzymes involved in myo-inositol synthesis: myo-inositol-1-phosphate synthase (ISYNA1) and myo-inositol monophosphatase-1 (IMPA1), are known to have high activity in the testes. ISYNA1 is an isomerase that catalyzes the conversion of glucose-6-phoshate to myo-inositol-1-phosphate. IMPA1 then hydrolyzes the phosphate group to produce myo-inositol. Although no physiological role for the high concentration of myo-inositol has yet to be elucidated, it has been suggested that it could be involved in osmoregulation. Previous research on these enzymes in the testis has focused on enzyme activity. The objective of this study was to evaluate the expression of these genes and the myo-inositol transporter, Slc5a3, within the testis. Using Northern blot analyses, we found that all three genes, Impa1, Isyna1, and Slc5a3 are expressed in Sertoli cells. Isyna1 is highly expressed in two types of germ cells, pachytene spermatocytes and round spermatids. IMPA1 was expressed in round spermatids. Slc5a3 expression is upregulated when Sertoli cells are treated with 0.1 mM dibutyryl cAMP. When Sertoli cells were cultured in a hypertonic medium, there was an increase in the expression of Isyna1 and Slc5a3. We postulate that this upregulation is a result of the capability of the Sertoli cell to sense and then react to a change in osmolarity by increasing the transport and production of the osmolyte myo-inositol.  相似文献   

10.
Distal mouse chromosome 16 (MMU16) shares conserved linkage with human chromosome 21 (HSA21), trisomy for which causes Down syndrome (DS). A 4.5-Mb physical map extending from Cbr1 to Tmprss2 on MMU16 provides a minimal tiling path of P1 artificial chromosomes (PACs) for comparative mapping and genomic sequencing. Thirty-four expressed sequences were positioned on the mouse map, including 19 that were not physically mapped previously. This region of the mouse:human comparative map shows a high degree of evolutionary conservation of gene order and content, which differs only by insertion of one gene (in mouse) and a small inversion involving two adjacent genes. "Low-pass" (2.2x) mouse sequence from a portion of the contig was ordered and oriented along 510 kb of finished HSA21 sequence. In combination with 68 kb of unique PAC end sequence, the comparison provided confirmation of genes predicted by comparative mapping, indicated gene predictions that are likely to be incorrect, and identified three candidate genes in mouse and human that were not observed in the initial HSA21 sequence annotation. This comparative map and sequence derived from it are powerful tools for identifying genes and regulatory regions, information that will in turn provide insights into the genetic mechanisms by which trisomy 21 results in DS.  相似文献   

11.
Summary Chorionic villi chromosome analysis was performed on 1,186 cases of induced abortion between the 5th and 11th week of gestation. The total incidence of major chromosome abnormalitites, including numerical and structural chromosomal changes as well as mosaics and polyploids, was 4.5% (53 cases). The most common abnormalities were trisomy 21 (5 cases), trisomy 16 (4 cases), and monosomy X (4 cases). The incidence of chromosome abnormalities increased with the advancing age of the mother.  相似文献   

12.
The mouse gene coding for ribosomal protein L23 (Rpl23) has been fully sequenced, including 580 bp of the 5' upstream region. The 5-kb gene comprises 5 exons and contains an unusually long (3,153 bp) third intron. The gene was mapped to the distal region of mouse chromosome 11, homologous to human chromosome 17q21-->q22.  相似文献   

13.
14.
The human 8.5 H probe was isolated from a human cerebellum cDNA library with a probe corresponding to the coding region of the murine 8.5 M cDNA. This cDNA isolated from a murine cDNA library constructed from newborn cerebral hemispheres was selected because of its strong expression in embryonic neurons. Consequently the corresponding human gene could be a candidate for hereditary neurodegenerative diseases. The human 8.5 H gene was assigned by somatic hybrid analysis to chromosome 5; this chromosome contains the gene(s) for spinal muscular atrophy (SMA), a group of heritable degenerative diseases that selectively affect the anterior horn motor neuron of the spinal cord. The localization by in situ hybridation of 8.5 H on 5q35 excluded the possibility that this gene is identical to SMA. The SMA gene(s) was (were) known, from linkage analysis, to be in a region (5q11.2-q13.3) very distant from 5q35.  相似文献   

15.
Mitotic metaphase chromosomes of Athalia rosae (Hymenoptera) haploid males were subjected to fluorescence in situ hybridization (FISH) analysis using an rDNA probe and two vitellogenin (Vg) cDNA probes (one representing the 5' half and the other the 3' half of the gene, each about 3 kb long, and together covering the entire coding region). The rDNA probe produced signals in four chromosomes, all in pericentromeric regions (haploid chromosome number = 8), and the Vg probes, either the combined probes or the 3' region alone, produced a twin signal in the middle of a chromosome arm of a single chromosome. Arch.  相似文献   

16.
It has been reported that fructose force-feeding rapidly induced jejunal Slc2a5 gene expression in rodents. We demonstrate in this study that acetylation at lysine (K) 9 of histone H3 and acetylation at K5 and K16 of histone H4 were more enhanced in the promoter/enhancer to transcribed regions of the Slc2a5 gene in fructose force-fed mice than in glucose force-fed mice. However, fructose force-feeding did not induce acetylation at K14 of histone H3, or at K8 and K12 of histone H4 around the Slc2a5 gene. These results suggest that fructose force-feeding induced selective histone acetylation, particularly of H3 and H4, around the jejunal Slc2a5 gene in mice.  相似文献   

17.
The locations of the genes for fibronectin (FN) on chromosomes of human germ line and somatic cells were determined by in situ molecular hybridization with two 3H-labeled DNA probes, one for the region encoding the cell attachment domain of human FN, the other for the 3' noncoding and part of the coding region. Pachytene chromosomes of two males and lymphocyte chromosomes of one of these males and a female were used. Two regions of hybridization on pachytene and somatic chromosome 2 (p14----p16 and q34----q36) were found, but not in all individuals. A third region of hybridization was found at 11q12.1----q13.5 in meiotic, but not with significant frequency in somatic chromosomes. It is not clear if these differences between meiotic and somatic chromosomes, and the large differences between individuals at some of the other hybridization sites, resulted solely from technical factors. The differences between the findings in meiotic and somatic preparations might be due to the presence of four strands in pachytene chromosomes versus only one per somatic chromatid. Individual differences in DNA sequences in the chromosome segment containing the gene, differences in gene locations among individuals, or between meiotic and mitotic chromosomes might account for the other findings. The results confirm some of the earlier studies with cell hybrids that mapped FN genes to chromosomes 2 or 11. The combined findings suggest that some of these loci may be coding for the plasma form of FN and others for the cellular form. The expression of the different FN types by differentiated cells might then depend on the loci that are activated.  相似文献   

18.
19.
Ts65Dn is a mouse model of Down syndrome: a syndrome that results from chromosome (Chr) 21 trisomy and is associated with congenital defects, cognitive impairment, and ultimately Alzheimer's disease. Ts65Dn mice have segmental trisomy for distal mouse Chr 16, a region sharing conserved synteny with human Chr 21. As a result, this strain harbors three copies of over half of the human Chr 21 orthologs. The trisomic segment of Chr 16 is present as a translocation chromosome (Mmu17(16)), with breakpoints that have not been defined previously. To molecularly characterize the Chrs 16 and 17 breakpoints on the translocation chromosome in Ts65Dn mice, we used a selective enrichment and high-throughput paired-end sequencing approach. Analysis of paired-end reads flanking the Chr 16, Chr 17 junction on Mmu17(16) and de novo assembly of the reads directly spanning the junction provided the precise locations of the Chrs 16 and 17 breakpoints at 84,351,351 and 9,426,822?bp, respectively. These data provide the basis for low-cost, highly efficient genotyping of Ts65Dn mice. More importantly, these data provide, for the first time, complete characterization of gene dosage in Ts65Dn mice.  相似文献   

20.
The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号