首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Stereoselective glycosylation of 2,5,6-trichlorobenzimidazole (1b), 2-bromo-5,6-dichlorobenzimidazole (1c), 5,6-dichlorobenzimidazole (1d), 5,6-dichlorobenzimidazole-2-thione (1e), 5,6-dichloro-2-(methylthio)benzimidazole (1f), 2-(benzylthio)-5,6-dichlorobenzimidazole (1g), and 2-chloro-5,6-dimethylbenzimidazole (1h) with 2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl chloride was achieved to give the desired β nucleosides 2b-h. Subsequent deprotection afforded the corresponding free β-D-2-deoxyribosides 3b-h. The 2-methoxy derivative 3i was synthesized by the treatment of 2b with methanolic sodium methoxide. Displacement of the 2-chloro group of 2b with lithium azide followed by a removal of the protective groups gave the 2-azido-5,6-dichlorobenzimidazole derivative (5). The 2-amino derivative (6) was obtained by hydrogenolysis of 5 over Raney nickel. 5,6-Dichloro-2-isopropylamino-1-(2-deoxy-β-D-erythro-pentofuranosyl)benzimidazole (10) was prepared using 2′-deoxyuridine (7), N-deoxyribofuranosyl transferase and 1d followed by functionalization of the C2 position. Antiviral evaluation of target compounds established that compounds 3b and 3c were active against human cytomegalovirus (HCMV) at non-cytotoxic concentrations. The activity of these 2-deoxy ribosides, however, was less than the activity of the parent riboside, 2,5,6-trichloro-1-β-D-ribofuranosylbenzimidazole (TCRB). Compared to TCRB, 3b and 3c were somewhat more cytotoxic and active against herpes simplex virus type 1. Compounds 3d-i with other substituents in the 2-position were inactive against both viruses and non-cytotoxic. In contrast, compounds with amine substituents in the 2-position (5, 6, 10) were active against HCMV albeit less so than TCRB. These results establish that 2-deoxy-D-ribosyl benzimidazoles are less active against the DNA virus HCMV than are the corresponding D-ribosides.  相似文献   

2.

2,5,6-Trichloro-1-(β-D-ribofuranosyl)benzimidazole (TCRB), 2-bromo-5,6-dichloro-1-(β-D-ribofuranosyl)benzimidazole (BDCRB) and 2-benzylthio-5,6-dichloro-1-(β-D-ribofuranosyl)benzimidazole (BTDCRB) are benzimidazole nucleosides that exhibit strong and selective anti-HCMV activity. Polyhalogenated indole C-nucleosides were prepared as 1-deaza analogs of the benzimidazole nucleosides TCRB and BDCRB. A mild Knoevenagel coupling reaction between an indol-2-thione and a ribofuranose derivative was developed for the synthesis of 2-benzylthio-5,6-dichloro-3-(β-D-ribofuranosyl)indole (12). 3-(β-D-ribofuranosyl)-2,5,6-trichloroindole (16) was prepared from 12 in 4 steps. A Lewis acid-mediated glycosylation method was then developed to prepare the targeted 2-haloindole C-nucleoside 16 stereoselectively in four steps from the corresponding 2-haloindole aglycons. Only 12 was active against HCMV but it also was somewhat cytotoxic.  相似文献   

3.
2,5, 6-Trichloro-1-(beta-D-ribofuranosyl)benzimidazole (TCRB), 2-bromo-5, 6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (BDCRB) and 2-benzylthio-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (BTDCRB) are benzimidazole nucleosides that exhibit strong and selective anti-HCMV activity. Polyhalogenated indole C-nucleosides were prepared as 1-deaza analogs of the benzimidazole nucleosides TCRB and BDCRB. A mild Knoevenagel coupling reaction between an indol-2-thione and a ribofuranose derivative was developed for the synthesis of 2-benzylthio-5, 6-dichloro-3-(beta-D-ribofuranosyl)indole (12). 3-(beta-D-ribofuranosyl)-2,5,6-trichloroindole (16) was prepared from 12 in 4 steps. A Lewis acid-mediated glycosylation method was then developed to prepare the targeted 2-haloindole C-nucleoside 16 stereoselectively in four steps from the corresponding 2-haloindole aglycons. Only 12 was active against HCMV but it also was somewhat cytotoxic.  相似文献   

4.
Abstract

A number of 2-substituted-5,6-dichloro-l-(α-L-arabinofuranosyl)benzimidazoles have been prepared by condensation of 2-bromo-5,6-dichlorobenzimidazole or 2,5,6-trichlorobenzimidazole with tetra-O-acetyl-L-arabinofuranose. 2-Alkylamino derivatives were prepared by a substitution of the 2-chloro group with the appropriate amines. All target compounds were evaluated for activity against HCMV and HSV-1. The 2-chloro and 2-bromo derivatives showed moderate activity against HCMV at non-cytotoxic concentrations.  相似文献   

5.
1-(beta-D-Ribofuranosyl)-2,5,6-trichlorobenzimidazole (TCRB) and its 2-bromo analog, BDCRB, are potent and selective inhibitors of human cytomegalovirus (HCMV) DNA processing and packaging. Since they are readily metabolized in vivo, analogs were synthesized to improve biostability. One of these, 1-(beta-L-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (1263W94; maribavir), inhibits viral DNA synthesis and nuclear egress. Resistance to maribavir was mapped to UL97, and this viral kinase was shown to be a direct target of maribavir. In the present study, an HCMV strain resistant to TCRB and BDCRB was passaged in increasing concentrations of maribavir, and resistant virus was isolated. This strain (G2) grew at the same rate as the wild-type virus and was resistant to both BDCRB and maribavir. Resistance to BDCRB was expected, because the parent strain from which G2 was isolated was resistant due to known mutations in UL56 and UL89. However, no mutations were found in UL97 or other relevant open reading frames that could explain resistance to maribavir. Because sequencing of selected HCMV genes did not identify the resistance mutation, a cosmid library was made from G2, and a series of recombinant G2 wild-type viruses were constructed. Testing the recombinants for sensitivity to maribavir narrowed the locus of resistance to genes UL26 to UL32. Sequencing identified a single coding mutation in ORF UL27 (Leu335Pro) as the one responsible for resistance to maribavir. These results establish that UL27 is either directly or indirectly involved in the mechanism of action of maribavir. They also suggest that UL27 could play a role in HCMV DNA synthesis or egress of HCMV particles from the nucleus.  相似文献   

6.
The potent activity of 2,5,6-trichloro-1-(beta-D-ribofuranosyl)benzimidazole (TCRB) against Human Cytomegalovirus with the concomitant low cellular toxicity at concentrations that inhibit viral growth prompted considerable interest in this research area. This interest was moderated by the pharmacokinetic studies of TCRB in rats and monkeys that revealed the instability of TCRB in vivo. These studies suggested that the instability was due to a cleavage of the glycosidic bond in vivo which released the heterocycle (2,5,6-trichlorobenzimidazole) into the bloodstream. This prompted us to initiate synthetic studies designed to increase the stability of the glycosidic bond of TCRB and BDCRB. Several synthetic approaches to address this and other problems are presented.  相似文献   

7.
2,5,6-Trihalogenated benzimidazole-beta-D-ribofuranosyl nucleosides and 2-substituted amino-5,6-dichlorobenzimidazole-beta-L-ribofuranosyl nucleosides are potent and selective inhibitors of human cytomegalovirus (HCMV). The D-ribofuranosyl analogs are metabolized rapidly in vivo rendering them unsuitable as drug candidates. The primary source of instability is thought to be the anomeric bond. The synthesis of a series of chemically stable benzimidazole-2'-isonucleosides is presented. The synthetic schemes employed are based on nucleophilic displacements of a 2'-tosylate from carbohydrate intermediates with 2-bromo-5,6-dichlorobenzidazole. 2-Bromo and 2-isopropyl amino analogs with 3'- and 5'-oxo and deoxy substitutions were prepared. The benzimidazole-2-'isonucleosides presented here demonstrated reduced activity against HCMV when compared to other D-ribofuranosyl benzimidazole analogs. In addition, they were not found to be inhibitors of HIV.  相似文献   

8.
9.
The halogenated benzimidazoles BDCRB (2-bromo-5,6-dichloro-1-beta-D-riborfuranosyl benzimidazole riboside) and TCRB (2,5,6-trichloro-1-beta-D-riborfuranosyl benzimidazole riboside) were the first compounds shown to inhibit cleavage and packaging of herpesvirus genomes. Both inhibit the formation of unit length human cytomegalovirus (HCMV) genomes by a poorly understood mechanism (M. R. Underwood et al., J. Virol. 72:717-715, 1998; P. M. Krosky et al., J. Virol. 72:4721-4728, 1998). Because the simple genome structure of guinea pig cytomegalovirus (GPCMV) provides a useful model for the study of herpesvirus DNA packaging, we investigated the effects of BDCRB on GPCMV. GPCMV proved to be sensitive to BDCRB (50% inhibitory concentration = 4.7 microM), although somewhat less so than HCMV. In striking contrast to HCMV, however, a dose of BDCRB sufficient to reduce GPCMV titers by 3 logs (50 microM) had no effect on the quantity of GPCMV genomic DNA that was formed in infected cells. Electron microscopy revealed that this DNA was in fact packaged within intranuclear capsids, but these capsids failed to egress from the nucleus and failed to protect the DNA from nuclease digestion. The terminal structure of genomes formed in the presence of BDCRB was also altered. Genomes with ends lacking a terminal repeat at the right end, which normally exist in an equimolar ratio with those having one copy of the repeat at the right end, were selectively eliminated by BDCRB treatment. At the left end, BDCRB treatment appeared to induce heterogeneous truncations such that 2.7 to 4.9 kb of left-end-terminal sequences were missing. These findings suggest that BDCRB induces premature cleavage events that result in truncated genomes packaged within capsids that are permeable to nuclease. Based on these and other observations, we propose a model for duplication of herpesvirus terminal repeats during the cleavage and packaging process that is similar to one proposed for bacteriophage T7 (Y. B. Chung, C. Nardone, and D. C. Hinkle, J. Mol. Biol. 216:939-948, 1990).  相似文献   

10.
Abstract

The potent activity of 2,5,6-trichloro-1-(ß-D-ribofuranosyl)benzimidazole (TCRB) against Human Cytomegalovirus with the concomitant low cellular toxicity at concentrations that inhibit viral growth prompted considerable interest in this research area. This interest was moderated by the pharmacokinetic studies of TCRB in rats and monkeys that revealed the instability of TCRB in vivo. These studies suggested that the instability was due to a cleavage of the glycosidic bond in vivo which released the heterocycle (2,5,6-trichlorobenzimidazole) into the bloodstream. This prompted us to initiate synthetic studies designed to increase the stability of the glycosidic bond of TCRB and BDCRB. Several synthetic approaches to address this and other problems are presented.  相似文献   

11.
Halogeno benzimidazole and benzimidazole nucleoside analogues have been screened for inhibitory activity vs. purified plant (maize seedling) casein kinases I, IIA and IIB, and the results compared with those previously reported for some of the compounds as inhibitors of the corresponding mammalian CK-1 and CK-2 (Meggio et al. (1990) Eur. J. Biochem. 187, 89-94). One new analogue, the riboside of 5,7-dibromobenzimidazole, which is sterically constrained to the anti conformation about the glycosidic bond, and is a good inhibitor, exhibited appreciable (5-7-fold) discrimination between the type I and type II enzymes. An increase in the number of halogen substituents on the benzene ring of benzimidazole from two to three led to marked enhancement of inhibitory activity, particularly against the type II enzymes, with a decrease in Ki from 24 to 4 microM. The 2-aza analogue of 5,6-dichlorobenzimidazole, i.e. 5,6-dichlorobenzotriazole, as the free base, even more effectively discriminated between the two types of plant casein kinases, with Ki approximately 100 microM for CK-I, and Ki approximately 9 microM for CK-IIA and CK-IIB. Inhibition in all instances was competitive with respect to ATP (for CK-I), and ATP and GTP (for CK-IIA and CK-IIB). The results are compared with those for halogenated isoquinolinesulfonamide inhibitors reported by Chijiwa et al. (J. Biol. Chem. (1989) 264, 4924-4927), leading to proposals for the synthesis of potentially more effective and more discriminating inhibitors. Attention is drawn to the significant role of the halogen substituents in the mechanism(s) of action of the structurally related benzimidazole, benzotriazole and naphthalene and isoquinoline, inhibitors of protein kinases.  相似文献   

12.
Abstract

2,5,6-Trihalogenated benzimidazole-β-D-ribofuranosyl nucleosides and 2-substituted amino-5,6-dichlorobenzimidazole-β-L-ribofuranosyl nucleosides are potent and selective inhibitors of human cytomegalovirus (HCMV). The D-ribofuranosyl analogs are metabolized rapidly in vivo rendering them unsuitable as drug candidates. The primary source of instability is thought to be the anomeric bond. The synthesis of a series of chemically stable benzimidazole-2′-isonucleosides is presented. The synthetic schemes employed are based on nucleophilic displacements of a 2′-tosylate from carbohydrate intermediates with 2-bromo-5,6-dichlorobenzidazole. 2-Bromo and 2-isopropyl amino analogs with 3′- and 5′-oxo and deoxy substitutions were prepared. The benzimidazole-2′-isonucleosides presented here demonstrated reduced activity against HCMV when compared to other D-ribofuranosyl benzimidazole analogs. In addition, they were not found to be inhibitors of HIV.  相似文献   

13.
DNA packaging is the key step in viral maturation and involves binding and cleavage of viral DNA containing specific DNA-packaging motifs. This process is mediated by a group of specific enzymes called terminases. We previously demonstrated that the human cytomegalovirus (HCMV) terminase is composed of the large subunit pUL56 and the small subunit pUL89. While the large subunit mediates sequence-specific DNA binding and ATP hydrolysis, pUL89 is required only for duplex nicking. An excellent inhibitor targeting HCMV terminase is 2-bromo-5,6-dichloro-1-(beta-d-ribofuranosyl)benzimidazole (BDCRB), but it was not developed as an antiviral drug due to its metabolic cleavage in experimental animals. We now have tested several new benzimidazole d-ribonucleosides in order to determine whether these compounds represent new, potent inhibitors. Analysis by bioluminometric ATPase activity assays identified two of the new compounds with a high inhibitory effect, 2-bromo-4,5,6-trichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) benzimidazole (BTCRB) and 2,4,5,6-tetrachloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl benzimidazole (Cl(4)RB). By using viral plaque formation, viral yield, and viral growth kinetics, we demonstrated that the two compounds BTCRB and Cl(4)RB had antiviral activities similar to that of BDCRB. Interestingly, BTCRB retained its inhibitory activity after preincubation with HFF cells. By use of electron microscopy, we observed an increase of B capsids and a lack of cytoplasmic capsids in the presence of the compounds that correlated with the virus yield. Furthermore, cleavage of concatenated DNA was inhibited by both compounds, and inhibition by BTCRB was shown to be dose dependent. These results demonstrate that the new compounds are highly active against HCMV and act by mechanisms similar but not identical to those of BDCRB.  相似文献   

14.
In analogy with maribavir [1-(beta-L-ribofuranosyl)-isopropylamino-5,6-dichlorobenzimidazole], a nucleoside analogue that acts against human cytomegalovirus (HCMV) by a non-nucleoside mechanism, here I present three other examples of classes of nucleoside analogues (i.e. bicyclic furo[2,3-d]pyrimidine as well as HEPT and TSAO derivatives) that act against either HCMV or human immunodeficiency virus (HIV) through a non-nucleoside mode of action.  相似文献   

15.
Abstract

A number of 6-substituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine and 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3-d]pyrimidine derivatives related to the nucleoside antibiotics toyocamycin and sangivamycin were prepared and tested for their biological activity. Treatment of 2-amino-5-bromo-3,4-dicyanopyrrole (2) with triethylorthoformate, followed by alkylation via the sodium salt method with either 2-(acetoxyethoxy)methyl bromide or (1,3-diacetoxy-2-propoxy)methyl bromide, furnished the corresponding N-substituted pyrroles 3a and 3b. These compounds were then smoothly converted to the requisite deprotected 4-amino-6-bromopyrrolo[2,3-d]-pyrimidine-5-carbonitriles 5a and 5b (toyocamycin analogs) by methanolic ammonia. The 6-amino-derivatives were obtained by a displacement of the bromo group with liquid ammonia. Conventional functional group transformations involving the 5-cyano group furnished the 5-carboxamide (sangivamycin) and 5-thioamide analogs. Compounds substituted at the 7-position with a ribosyl moiety were active against human cytomegalovirus (HCMV) at micromolar concentrations, but the apparent activity was not selective. The 7-ribosyl compounds also had no activity against human immunodeficiency virus (HIV), though they were all cytotoxic. The new compounds were also evaluated against HCMV, herpes simplex virus type I (HSV-1), HIV, and also for their ability to inhibit the growth of L1210 murine leukemic cells in vitro. None of these compounds with (2-hydroxyethoxy)methyl substituents or 7-(1,3-dihydroxy-2-propoxy)methyl substituent at N-7 showed significant cytotoxicity toward L1210, or toward uninfected human foreskin fibroblasts (HFF cells), and KB cells. Nor were they cytotoxic in human lines CEM or MT2. Only compound 4a was found to be active against HCMV, having an IC50 of 32 μM.  相似文献   

16.
A series of 2'-deoxy analogues of the antiviral agent 5,6-dichloro-2-isopropylamino-1-(beta-L-ribofuranosyl)-1H-benzimidazole (1263W94) were synthesized and evaluated for activity against human cytomegalovirus (HCMV) and for cytotoxicity. The 2-substituents in the benzimidazole moiety correspond to those that were used in the 1263W94 series. In general, as was found in the 1263W94 series, cyclic and branched alkylamino groups were needed for potent activity against HCMV. Three analogues 3a, 3b and 3d were as potent as 1263W94. Further evaluation of two analogues, 3a and 3b, suggested that these 2'-deoxy analogues may act via a novel mechanism of action similar to that of 1263W94. These 2'-deoxy analogues generally lacked cytotoxicity in vitro. Pharmacokinetic parameters in mice and protein binding properties of 3a were quite similar to 1263W94. However, the oral bioavailability of 3a was only half of that observed for 1263W94.  相似文献   

17.
The relaxant activity of 2-(o, p-substituted phenyl)-1H-benzimidazole derivatives with various 5- and 6-position substituents (-H, -CH3, -NO2, -CF3), namely 1-7, was recorded using the in vitro rat aorta ring test. Compounds 3 and 6 [2-(5-nitro-1H-benzimidazol-2-yl)phenol and 2-(4-methoxyphenyl)-5-nitro-1H-benzimidazole] were prepared using a short route, and were the most potent compounds of the series, showing IC50 value of 0.95 and 1.41 (with endothelium) and 2.01 and 3.61 microM (without endothelium), respectively. Studying further structure-activity relationships through the use of bioisosteric substitution in these benzimidazole derivatives should provide novel vasorelaxant leads and possibly against hypertensive diseases.  相似文献   

18.
The benzimidazole D-ribonucleosides TCRB and BDCRB are potent and selective inhibitors of human cytomegalovirus (HCMV) replication. Two HCMV strains resistant to these compounds were selected and had resistance mutations in genes UL89 and UL56. Proteins encoded by these two genes are the two subunits of the HCMV "terminase" and are necessary for cleavage and packaging of viral genomic DNA, a process inhibited by TCRB and BDCRB. We now report that both strains also have a previously unidentified mutation in UL104, the HCMV portal protein. This mutation, which results in L21F substitution, was introduced into the genome of wild-type HCMV by utilizing a recently cloned genome of HCMV as a bacterial artificial chromosome. The virus with this mutation alone was not resistant to BDCRB, suggesting that this site is not involved in binding benzimidazole nucleosides. As in previous proposals for mutations in UL104 of murine cytomegalovirus and HCMV strains resistant to BAY 38-4766, we hypothesize that this mutation could compensate for conformational changes in mutant UL89 and UL56 proteins, since the HCMV terminase is likely to interact with the portal protein during cleavage and packaging of genomic DNA.  相似文献   

19.
Syntheses and structure-activity relationships of a novel class of 2-[3-oxospiro[isobenzofuran-1(3H),1'-cyclohexan]-4'-yl]benzimidazole NPY Y5 receptor antagonists are described. Optimization of the lead compound 2a by incorporating substituents into the 5-position or into both the 5- and 6-positions of the benzimidazole core part led to the identification of 5-(5-methyl-1,2,4-oxadiazol-2-yl)benzimidazole (2r: IC(50)=3.3 nM) and 5-(2-methyltetrazol-5-yl)benzimidazole (2u: IC(50)=5.9 nM), both of which are potent, selective, and orally bioavailable Y5 receptor antagonists.  相似文献   

20.
In the search of new compounds with antineoplastic activity, we have analysed the effect of several structural modifications on the nucleus 6-benzo[b]thiophenesulphonamide 1,1-dioxide on its cytotoxic activity on tumour cells. Lipophilic substituents on the sulphonamide group significantly increased the cytotoxic activity measured using a panel of human tumour cell lines. Only slight variations on cytotoxicity were obtained when the sulphonamide group occupied the position 5 of the system. The most active compound was the N-4-methoxyphenyl derivative 15, which showed GI(50) values of 1-9 nM against HT-29, CCRF-CEM, K-562 and MEL-AC cells and of 200 nM against HTB-54 cells. Free access to the 3-position of the heterocyclic system seems to be required to obtain cytotoxic derivatives. Derivative 15 was also active at the same level of commercial Doxorubicine against cultured normal human lung fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号