首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the past 25 years, several studies have attempted to determine the site of integration of the heme and the four globin chains in vertebrate erythroid cells that is important in the formation of the hemoglobin molecule. Mitochondrion-like organelles or hemosomes were pointed out as responsible for this task. We performed several experiments to investigate this hypothesis. The intracellular distribution of hemoglobin in amphibian erythroid cells was detected by post-embedding immuno-electron microscopy, using a polyclonal anti-human hemoglobin-proteinA-gold complex. Hemoglobin mapping showed an intense labeling in the cell cytoplasm, but none in cytoplasmic structures such as endoplasmic reticulum, mitochondria, mitochondrion-like organelles, Golgi complex, ribosomes or ferruginous inclusions. The mitochondrial fraction obtained according to the protocol described for some authors, showed by ultrastructural examination that this fraction has a heterogeneous content, also composed by microvesicles rich in cytoplasmic hemoglobin, an artifact generated by mechanical action during cell fractionation. Thus, when this fraction is lysed and its content submitted to electrophoresis, hemoglobin bands would be found inevitably, causing false-positive results, erroneously attributed to hemoglobin content of mitochondrion-like organelles. Our data do not confirm the hypothesis that the final hemoglobin biosynthesis occurs inside mitochondrion-like organelles. They suggest that the hemoglobin molecule be assembled in the erythrocyte cytoplasm outside of mitochondria or hemosomes.  相似文献   

2.
《Autophagy》2013,9(7):926-928
Accumulating evidence suggests that autophagy can be selective in the clearance of organelles in yeast and in mammalian cells. We have observed that the sequestration of mitochondria by autophagosomes was defective in reticulocytes in the absence of Nix. Nix is required for the dissipation of mitochondrial membrane potential (ΔΨm) during erythroid maturation. Moreover, pharmacological agents that induce the loss of ΔΨm can restore the sequestration of mitochondria by autophagosomes and promote mitochondrial clearance in Nix-/- erythroid cells. Our data suggest that mitochondrial depolarization induces recognition and sequestration of mitochondria by autophagosomes. Elucidating the mechanisms underlying selective mitochondrial autophagy not only will help us to understand the mechanisms for erythroid maturation, but also may provide insights into mitochondrial quality control by autophagy in the protection against aging, cancer, and neurodegenerative diseases.

Addendum to: Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454:232-5.  相似文献   

3.
Chen M  Sandoval H  Wang J 《Autophagy》2008,4(7):926-928
Accumulating evidence suggests that autophagy can be selective in the clearance of organelles in yeast and in mammalian cells. We have observed that the sequestration of mitochondria by autophagosomes was defective in reticulocytes in the absence of Nix. Nix is required for the dissipation of mitochondrial membrane potential (DeltaPsim) during erythroid maturation. Moreover, pharmacological agents that induce the loss of DeltaPsim can restore the sequestration of mitochondria by autophagosomes and promote mitochondrial clearance in Nix(-/-) erythroid cells. Our data suggest that mitochondrial depolarization induces recognition and sequestration of mitochondria by autophagosomes. Elucidating the mechanisms underlying selective mitochondrial autophagy not only will help us to understand the mechanisms for erythroid maturation, but also may provide insights into mitochondrial quality control by autophagy in the protection against aging, cancer and neurodegenerative diseases.  相似文献   

4.
5.
Blastocystis is a unicellular stramenopile of controversial pathogenicity in humans. Although it is a strict anaerobe, Blastocystis has mitochondrion-like organelles with cristae, a transmembrane potential and DNA. An apparent lack of several typical mitochondrial pathways has led some to suggest that these organelles might be hydrogenosomes, anaerobic organelles related to mitochondria. We generated 12,767 expressed sequence tags (ESTs) from Blastocystis and identified 115 clusters that encode putative mitochondrial and hydrogenosomal proteins. Among these is the canonical hydrogenosomal protein iron-only [FeFe] hydrogenase that we show localizes to the organelles. The organelles also have mitochondrial characteristics, including pathways for amino acid metabolism, iron-sulfur cluster biogenesis, and an incomplete tricarboxylic acid cycle as well as a mitochondrial genome. Although complexes I and II of the electron transport chain (ETC) are present, we found no evidence for complexes III and IV or F1Fo ATPases. The Blastocystis organelles have metabolic properties of aerobic and anaerobic mitochondria and of hydrogenosomes. They are convergently similar to organelles recently described in the unrelated ciliate Nyctotherus ovalis. These findings blur the boundaries between mitochondria, hydrogenosomes, and mitosomes, as currently defined, underscoring the disparate selective forces that shape these organelles in eukaryotes.  相似文献   

6.
The outer mitochondrial membrane is particularly rich in phosphatidylinositol (PtdIns), a phospholipid found in different amounts in all eukaryotic membranes, but not synthesized in situ by all. PtdIns is therefore subjected to traffic from the synthesizing membranes to the non-synthesizing ones. The contribution of mitochondria to the cell PtdIns pool has never been the focus of a specific study in plants, whereas in yeast, the presence of the enzyme responsible for synthesis, PtdIns synthase (PIS, cytidine 5′-diphospho-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11), has clearly been demonstrated in mitochondria. As these organelles have now been shown to be responsible for the synthesis of several lipids, the present work aimed at evaluating mitochondria as a compartment for the synthesis of PtdIns in plants. The sub-cellular localization of PIS was studied in Solanum tuberosum L. by membrane fractionation, enzymatic analysis and by confocal microscopy in living cells. In potato, beside the endoplasmic reticulum, the activity of PIS was found to be tightly associated to mitochondria. Using a fluorescent reporter fusion, the enzyme was also found to be associated to these organelles. The enzyme was not present at the plasma membrane. A comparison of the localization in other cell systems suggests that the mitochondrial localization could be regulated.  相似文献   

7.
The properties were compared for maize nuclear and mitochondrial DNA topoisomerases I (topo I). Some differences in their ability to bind to single-stranded DNA were revealed. Mitochondrial topo I was active only in the presence of Mg2+, whereas the activity of the nuclear enzyme did not completely depend on Mg2+, although being essentially stimulated in the presence of Mg2+. The mitochondrial enzyme covalently bound to the 5′ DNA end, as unique to prokaryotic topo I. The nuclear enzyme, like all eukaryotic topo I, covalently bound to the 3′ DNA end. A search for homologous sequences in several databases revealed genes probably encoding mitochondrial topo I in other higher plants. Using cDNA sequencing and in silico analysis, an orthologous gene was revealed in the maize genome. The gene was strongly homologous to the genes encoding prokaryotic topo I, which could explain the differences in properties between mitochondrial and nuclear topo I from maize. The presence of prokaryotic topo I in mitochondria of higher plants is interesting and important for studying the evolution of these plant organelles and the mechanisms of mitochondrial genome expression.  相似文献   

8.
Morphological properties of the mitochondrial organelles in the asexual and sexual gametocytic stages of Plasmodium falciparum have been analyzed and found to be markedly different. From in vitro cultures of both stages in human erythrocytes, it has been demonstrated that the asexual stages contained a defined double-membrane organelle having a few tubular-like cristae. The numbers of mitochondria in the gametocytes were found to be approximately 6 organelles per parasite, and they showed a greater density of the cristae than that of the asexual stage parasite. The organelles of the gametocytes were successfully purified by differential centrifugation following Percoll density gradient separation with the results of approximately 7% yields and approximately 5 folds. The gametocytic organelles contained much more activities of mitochondrial electron transporting enzymes (i.e., cytochrome c reductase, cytochrome c oxidase) than the asexual stage organelles. Mitochondrial function as measured by oxygen consumption were found to be different between these two stages organelles. Their rates of oxygen consumption were relatively low, as compared to those of human leukocyte and mouse liver mitochondria. In contrast to the coupled mammalian mitochondria, the gametocytic organelles were in the uncoupling state between oxidation and phosphorylation reactions during their respiration. However, they were sensitive to inhibitors of the electron transport system, e.g., antimycin A, cyanide. Our results suggest that the mitochondria of the gametocytic stages are metabolically active and still underdeveloped, although their inner membranes are extensively folded. The biochemical significance of the unique structure of the mitochondria in these developing stages in host erythrocytes remains to be elucidated.  相似文献   

9.
10.
11.
Intracellular activation and trafficking of extracellular signal-regulated protein kinases (ERK) play a significant role in cell cycle progression, contributing to developmental brain activities. Additionally, mitochondria participate in cell signalling through energy-linked functions, redox metabolism and activation of pro- or anti-apoptotic proteins. The purpose of the present study was to analyze the presence of ERK1/2 in mitochondria during rat brain development. Immunoblotting, immune electron microscopy and activity assays demonstrated that ERK1/2 are present in fully active brain mitochondria at the outer membrane/intermembrane space fraction. Besides, it was observed that ERK1/2 translocation to brain mitochondria follows a developmental pattern which is maximal between E19-P2 stages and afterwards declines at P3, just before maximal translocation to nucleus, and up to adulthood. Most of mitochondrial ERK1/2 were active; upstream phospho-MAPK/ERK kinases (MEK1/2) were also detected in the brain organelles. Mitochondrial phospho-ERK1/2 increased at 1 microm hydrogen peroxide (H(2)O(2)) concentration, but it decreased at higher 50-100 microm H(2)O(2), almost disappearing after the organelles were maximally stimulated to produce H(2)O(2) with antimycin. Our results suggest that developmental mitochondrial activation of ERK1/2 cascade contributes to its nuclear translocation effects, providing information about mitochondrial energetic and redox status to the proliferating/differentiating nuclear pathways.  相似文献   

12.
The uptake of spermine into mammalian mitochondria indicated the need to identify its catabolic pathway in these organelles. Bovine liver mitochondria were therefore purified and their capacity for natural polyamine uptake was verified. A kinetic approach was then used to determine the presence of an MDL 72527-sensitive enzyme with spermine oxidase activity in the matrix of bovine liver mitochondria. Western blot analysis of mitochondrial fractions and immunogold electron microscopy observations of purified mitochondria unequivocally confirmed the presence of a protein recognized by anti-spermine oxidase antibodies in the mitochondrial matrix. Preliminary kinetic characterization showed that spermine is the preferred substrate of this enzyme; lower activity was detected with spermidine and acetylated polyamines. Catalytic efficiency comparable to that of spermine was also found for 1-aminododecane. The considerable effect of ionic strength on the Vmax/KM ratio suggested the presence of more than one negatively charged zone inside the active site cavity of this mitochondrial enzyme, which is probably involved in the docking of positively charged substrates. These findings indicate that the bovine liver mitochondrial matrix contains an enzyme belonging to the spermine oxidase class. Because H2O2 is generated by spermine oxidase activity, the possible involvement of the latter as an important signaling transducer under both physiological and pathological conditions should be considered.  相似文献   

13.
Erythrocytes are anucleated cells devoid of organelles. Expulsion of the nucleus from erythroblasts leads to the formation of reticulocytes, which still contain organelles. The mechanisms responsible for the final removal of organelles from developing erythroid cells are still being elucidated. Mitochondria are the most abundant organelles to be cleared for the completion of erythropoiesis. Macroautophagy, referred to as autophagy, is a regulated catabolic pathway consisting of the engulfment of cytoplasmic cargo by a double membraned-vesicle, the autophagosome, which typically then fuses to lysosomal compartments for the degradation of the sequestered material. Early electron microscopic observations of reticulocytes suggested the autophagic engulfment of mitochondria (mitophagy) as a possible mechanism for mitochondrial clearance in these. Recently, a number of studies have backed this hypothesis with molecular evidence. Indeed, the absence of Nix, which targets mitochondria to autophagosomes, or the deficiency of proteins in the autophagic pathway lead to impaired mitochondrial clearance from developing erythroid cells. Importantly, however, the extent to which the absence of mitophagy affects erythroid development differs depending on the model and gene investigated. This review will therefore focus on comparing the different studies of mitophagy in erythroid development and highlight some of the remaining controversial points.  相似文献   

14.
Kupffer cells in primary culture bind and endocytose rapidly added rat liver mitochondria. Using phase contrast microscopy various stages of the uptake and digestion of these organelles were documented. Activities of mitochondrial enzymes within the Kupffer cells increased during the early phase of phagocytosis; they later declined, reaching the endogenous level of the Kupffer cell mitochondria after 3 to 4 h. The uptake was enhanced in the presence of heparin or rat serum, while iodoacetate, cytochalasin B or anti-fibronectin antisera were inhibitory. The transient presence of enzymatically active hepatocyte mitochondria renders Kupffer cells capable of producing urea. This mechanism partially explains earlier observations of urea formation in non-parenchymal rat liver cells.  相似文献   

15.
In Jurkat cells Bid was cleaved upon activation of the Fas receptor with an anti-Fas antibody. The caspase-8 inhibitor benzyloxycarbonyl-Ile-Glu(OMe)-Thr-Asp(OMe)-CH(2)F (IETD) prevented the cleavage of Bid and the loss of viability. The nuclear enzyme poly(ADP-ribose)polymerase (PARP) was also cleaved upon the activation of caspases, and IETD similarly prevented PARP cleavage. The PARP inhibitor 3-aminobenzamide (3-AB) restored the cell killing in the presence of IETD, an effect that occurred without restoration of the cleavage of Bid or PARP. In the presence of 3-AB and IETD, translocation occurred of full-length Bid to the mitochondria. The induction of the mitochondrial permeability transition (MPT) was documented by the cyclosporin A (CyA) sensitivity of the release of cytochrome c, the release of malate dehydrogenase from the mitochondrial matrix, the loss of the mitochondrial membrane potential, and the pronounced swelling of these organelles, as assessed by electron microscopy. In addition to preventing all evidence of the MPT, CyA prevented the loss of cell viability, without effect on the cleavage of either Bid or PARP. The prevention of PARP cleavage by inhibition of caspase-3 resulted in a 10-fold activation of the enzyme and a resultant depletion of NAD and ATP. The PARP inhibitor 3-AB prevented the loss of NAD and ATP. Depletion of ATP by metabolic inhibitors similarly prevented the cell killing. It is concluded that the cleaving of PARP in Fas-mediated apoptosis allowed expression of an energy-dependent cell death program that included the translocation of full-length Bid to the mitochondria with induction of the MPT.  相似文献   

16.
17.
Five ribonuclease activities, separable by polyacrylamide gel electrophoresis, have been detected in erythroid bone marrow cells from anaemic rabbits. Their intracellular distribution has been investigated and compared with that of the ribonucleases in reticulocytes. Both the acid and alkaline ribonuclease activities of reticulocytes are much lower (30--50 fold) than those of bone marrow erythroid cells. The most marked decrease in enzyme activity occurs in the fractions containing ribosomes and mitochondria plus lysosomes. In these subcellular organelles there was also a qualitative change in the ribonuclease electrophoretic pattern, whereas the cytosol enzymes of marrow erythroid cells and reticulocytes remained largely unchanged. Several ribonucleases released from reticulocyte membranes with urea were similar to those present in the lysosomal plus mitochondrial fraction, as shown by detection of enzyme activity after polyacrylamide gel electrophoresis. The decline in ribonuclease activity was found to begin in the orthochromatic cells, which have a highly condensed nucleus and are no longer active in DNA and RNA synthesis, and to coincide with a decrease in acid phosphatase activity and loss of lysosomes.  相似文献   

18.
In eukaryotes, folate metabolism is compartmentalized between the cytoplasm and organelles. The folate pathways of mitochondria are adapted to serve the metabolism of the organism. In yeast, mitochondria support cytoplasmic purine synthesis through the generation of formate. This pathway is important but not essential for survival, consistent with the flexibility of yeast metabolism. In plants, the mitochondrial pathways support photorespiration by generating serine from glycine. This pathway is essential under photosynthetic conditions and the enzyme expression varies with photosynthetic activity. In mammals, the expression of the mitochondrial enzymes varies in tissues and during development. In embryos, mitochondria supply formate and glycine for purine synthesis, a process essential for survival; in adult tissues, flux through mitochondria can favor serine production. The differences in the folate pathways of mitochondria depending on species, tissues and developmental stages, profoundly alter the nature of their metabolic contribution.  相似文献   

19.
《BBA》2023,1864(1):148930
At low inner mitochondrial membrane potential (ΔΨ) oxaloacetate (OAA) accumulates in the organelles concurrently with decreased complex II-energized respiration. This is consistent with ΔΨ-dependent OAA inhibition of succinate dehydrogenase. To assess the metabolic importance of this process, we tested the hypothesis that perturbing metabolic clearance of OAA in complex II-energized mitochondria would alter O2 flux and, further, that this would occur in both ΔΨ and tissue-dependent fashion. We carried out respiratory and metabolite studies in skeletal muscle and interscapular brown adipose tissue (IBAT) directed at the effect of OAA transamination to aspartate (catalyzed by the mitochondrial form of glutamic-oxaloacetic transaminase, Got2) on complex II-energized respiration. Addition of low amounts of glutamate to succinate-energized mitochondria at low ΔΨ increased complex II (succinate)-energized respiration in muscle but had little effect in IBAT mitochondria. The transaminase inhibitor, aminooxyacetic acid, increased OAA concentrations and impaired succinate-energized respiration in muscle but not IBAT mitochondria at low but not high ΔΨ. Immunoblotting revealed that Got2 expression was far greater in muscle than IBAT mitochondria. Because we incidentally observed metabolism of OAA to pyruvate in IBAT mitochondria, more so than in muscle mitochondria, we also examined the expression of mitochondrial oxaloacetate decarboxylase (ODX). ODX was detected only in IBAT mitochondria. In summary, at low but not high ΔΨ, mitochondrial transamination clears OAA preventing loss of complex II respiration: a process far more active in muscle than IBAT mitochondria. We also provide evidence that OAA decarboxylation clears OAA to pyruvate in IBAT mitochondria.  相似文献   

20.
Summary Allerations in the localization of acid phosphatase inSaccharomyces cerevisiae during glucose repression and during autolysis have been studied. Cell morphology becomes distinctly changed after only 2 h in the presence of high glucose concentration while after 3 h of glucose repression the majority of the mitochondirial structures resemble promitochondria. Yeast cells repressed for 6 h contain almost completely degraded mitochondrial structures and numerous lipid droplets in the central vacuole and cytoplasm. Destruction of mitochondria is accompanied by the accumulation of acid phosphatase in these organelles and in the cytoplasm whereas its activity in the central vacuole is lowered, most probably because of the leakage of the enzyme into the cytoplasm.No preferential breakdown of mitochondria is observed during autolysis. On the contrary, mitochondria are apparently the last to be degraded. Digestion of cytoplasmic regions and membranous elements occurs intravacuolarly after sequestration by protrusions of the central vacuole which are formed at the initial stages of autolysis. Acid phosphatase is not released from the central vacuole, suggesting indirectly that vacuole enzymes do not migrate into the cytoplasm during autolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号