首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Simvastatin is an inhibitor of HMG-CoA reductase used in the treatment of hypercholesterolemia. In the present study simvastatin-induced contraction was observed in rat aortic thoracic rings, this effect increased when the endothelium was removed and when NO synthase was blocked by L-NOARG (3 x 10(-5) M). The contractile effect of simvastatin on intact aortic rings diminished when cyclo-oxygenase was inhibited with indomethacin (10(-5) M). Also in the presence of endothelium, pretreatment with mevalonate (1 mM), the product of HMG-CoA reductase activity, significantly inhibited the contraction. In other experiments carried out on endothelium-removed preparations and in medium containing the calcium antagonist, diltiazem (10(-5) and 10(-6) M), the contraction dose-response curves were significantly reduced and the same happened in the presence of the inhibitor of sarcoplasmic reticulum Ca-2+-ATPase, cyclopiazonic acid (CPA) (3 x 10(-6) M). The results suggest that simvastatin might increase intracellular calcium concentration. This effect could lead to an activation of NO synthase and cyclooxygenase pathways in endothelial cells and to contraction in vascular smooth muscle cells. This rise in Ca2+ concentration could be due to an inhibition of isoprenoid synthesis prevented by mevalonate.  相似文献   

2.
1. Dopamine has been reported to exist in unusually large quantities in Aplysia gill. The physiological role of this neurotransmitter in this organ was examined. 2. The addition of dopamine to a gill perfusate results in the contractions of the lateral and medial external pinnule muscles, the circular and longitudinal muscles of the afferent vessel, and the circular muscles of the efferent vessel. 3. Dopamine-induced contractions persist after chemical synaptic transmission is eliminated in the gill. This suggests that excitatory dopamine receptors are present on gill smooth muscle fibers themselves. 4. Dopamine also potentiates the gill response to action potentials in single identified gill motoneurons. Evidence presented suggests that muscle contractions and modulation of motoneuron contractions are independent phenomena. 5. While modulation may in part be mediated by increases in excitatory junction potential (EJP) amplitude, in many cases large increases in muscle contractions occur while the enhancement of EJPs is disproportionately small. 6. Dopamine's ability to produce muscle contractions suggests that there may be dopaminergic motoneuron innervation of the gill. We suggest that dopamine's modulatory actions may be mediated via modification of excitation-contraction coupling in smooth muscle fibers.  相似文献   

3.
Endothelium-derived factors modulate tone and may be involved in hyporeactivity to vasoconstrictors, such as norepinephrine or angiotensin II, as has been previously described during gestation. The endothelium produces endothelin-1, a major vasoconstrictor peptide, therefore aortic contractions to endothelin-1 (10(-10) to 3 x 10(-7) M) were used to assess the role of the endothelium in pregnant Wistar rats (at 20 days of gestation). Late pregnancy is characterized by a significantly diminished systolic blood pressure in conscious rats (-17 mmHg, P < 0.001, n = 14). In pregnant and in age-matched nonpregnant female rats, endothelin-1 induced aortic contraction was greater when endothelium was present (at least P < 0.01). Indomethacin significantly reduced this contraction in aortic rings with intact endothelium in all groups. In aortic rings that had endothelium physically removed, contraction to endothelin-1 was greater in pregnant rats than in nonpregnant ones. Indomethacin decreased contraction of aortic rings in pregnant rats only. These results suggest an enhanced synthesis of vasoconstrictors by cyclooxygenases in vascular smooth muscle during pregnancy. In vessels with intact endothelium, we did not find hyporeactivity to endothelin-1 during late pregnancy. Contraction to endothelin-1 involved ET(A) receptors because it was decreased by BQ-123, an ET(A) receptor antagonist, whereas there was no significant change when using BQ-788, an ET(B) receptor antagonist.  相似文献   

4.
The sodium/iodide symporter (NIS) is primarily responsible for iodide accumulation in the thyroid gland for the synthesis of thyroid hormones; however, it can also transport other lyotropic anions in the thyroid gland and nonthyroid tissues. Some NIS substrates have important physiological or clinical roles, and others are environmental contaminants with health-related consequences. The aim of this study was to assess the utility of a yellow fluorescent protein variant, YFP–H148Q/I152L, as a biosensor to monitor the cellular uptake of NIS substrates, including thiocyanate (SCN), nitrate (), chlorate (), perchlorate (), and perrhenate (). The fluorescence of purified YFP–H148Q/I152L was suppressed by anions with an order of potency of > = I = SCN = > ? Cl. Anions also suppressed the fluorescence of YFP–H148Q/I152L expressed in FRTL-5, a thyroid cell line with high NIS expression. Quantitation of intracellular concentrations revealed differences among anions in the affinity and maximal velocity of NIS-mediated uptake as well as in the rate constant for passive efflux. These results suggest that YFP–H148Q/I152L can serve as an intracellular biosensor of NIS-transported anions and may be useful to study the physiology of endogenous anions as well as the health-related consequences of environmental anions.  相似文献   

5.
The voltage-dependent anion channel-1 modulates apoptotic cell death   总被引:5,自引:0,他引:5  
The role of the voltage-dependent anion channel (VDAC) in cell death was investigated using the expression of native and mutated murine VDAC1 in U-937 cells and VDAC inhibitors. Glutamate 72 in VDAC1, shown previously to bind dicyclohexylcarbodiimide (DCCD), which inhibits hexokinase isoform I (HK-I) binding to mitochondria, was mutated to glutamine. Binding of HK-I to mitochondria expressing E72Q-mVDAC1, as compared to native VDAC1, was decreased by approximately 70% and rendered insensitive to DCCD. HK-I and ruthenium red (RuR) reduced the VDAC1 conductance but not that of E72Q-mVDAC1. Overexpression of native or E72Q-mVDAC1 in U-937 cells induced apoptotic cell death (80%). RuR or overexpression of HK-I prevented this apoptosis in cells expressing native but not E72Q-mVDAC1. Thus, a single amino-acid mutation in VDAC prevented HK-I- or RuR-mediated protection against apoptosis, suggesting the direct VDAC regulation of the mitochondria-mediated apoptotic pathway and that the protective effects of RuR and HK-I rely on their binding to VDAC.  相似文献   

6.
Nitrosyl ruthenium complexes have been characterized as nitric oxide (NO) donors that induce relaxation in the denuded rat aorta. There are some differences in their vascular relaxation mechanisms compared with sodium nitroprusside. This study investigates whether the endothelium could interfere with the [Ru(terpy)(bdq)NO]3+-TERPY-induced vascular relaxation, by analyzing the maximal relaxation (Emax) and potency (pD2) of TERPY. Vascular reactivity experiments showed that the endothelium negatively modulates (pD2: 6.17 ± 0.07) the TERPY relaxation in intact rat aortic rings compared with the denuded rat aorta (pD2: 6.65 ± 0.07). This effect is abolished by a non-selective NO-synthase (NOS) inhibitor L-NAME (pD2: 6.46 ± 0.10), by the superoxide anion () scavenger TIRON (pD2: 6.49 ± 0.08), and by an NOS cofactor BH4 (pD2: 6.80 ± 0.10). The selective dye for (DHE) shows that TERPY enhances concentration in isolated endothelial cells (intensity of fluorescence (IF):11258.00 ± 317.75) compared with the basal concentration (IF: 7760.67 ± 381.50), and this enhancement is blocked by L-NAME (IF: 8892.33 ± 1074.41). Similar results were observed in vascular smooth muscle cells (concentration of superoxide after TERPY: 2.63 ± 0.17% and after TERPY + L-NAME: −4.63 ± 0.14%). Considering that TERPY could induce uncoupling NOS, thus producing , we have also investigated the involvement of prostanoids in the negative modulation of the endothelium. The non-selective cyclooxygenase (COX) inhibitor indomethacin and the selective tromboxane (TXA2) receptor antagonist SQ29548 reduce the effect of the endothelium on TERPY relaxation (pD2 INDO: 6.80 ± 0.17 and SQ29548: 6.85 ± 0.15, respectively). However, a selective prostaglandin F receptor antagonist (AH6809) does not change the endothelium effect. Moreover, TERPY enhances the concentration of TXA2 stable metabolite (TXB2), but this effect is blocked by L-NAME and TIRON. The present findings indicate that TERPY induces uncoupling of eNOS, enhancing concentration. This enhancement in concentration induces COX activation, producing TXA2, which negatively modulates the rat aorta relaxation induced by the NO donor TERPY.  相似文献   

7.
The fate of the iodide liberated during carboxymethylation of Cys-46 in horse liver alcohol dehydrogenase has been determined with 125I-labeled iodoacetate. The [125I]iodoacetic acid was prepared from mesyloxyacetic acid and sodium [125I]iodide. When carboxymethylation of the enzyme is carried out in solution or in the crystalline state, no iodide is bound to the protein. The rate of iodide during the reaction of iodoacetate, determined with an iodide-specific electrode, has been found to be biphasic: the fast phase corresponds to the carboxymethylation and the slow phase to iodide liberation due to the presence of protein. With 3-iodopropionate (2.5 mM), no inactivation was detected, but in the presence of the enzyme, 10 equivalents of iodide were liberated per subunit in 1 hr. NADH does not inhibit this reaction. The electron density attributed to an iodide bound to the zinc atom of the crystalline enzyme is reinterpreted in view of these results as due to an imidazole bound to the active-site zinc. In the carboxymethylation, the reactivity of bromoacetate is higher than that of iodoacetate.  相似文献   

8.
We examined the effects of superoxide anion (O) generated by xanthine plus xanthine oxidase (X/XO) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) and muscle contractility in cultured bovine aortic smooth muscle cells (BASMC). Cells were grown on collagen-coated dish for the measurement of [Ca(2+)](i). Pretreatment with X/XO inhibited ATP-induced Ca(2+) transient and Ca(2+) release-activated Ca(2+) entry (CRAC) after thapsigargin-induced store depletion, both of which were reversed by superoxide dismutase (SOD). In contrast, Ca(2+) transients induced by high-K(+) solution and Ca(2+) ionophore A-23187 were not affected by X/XO. BASMC-embedded collagen gel lattice, which was pretreated with xanthine alone, showed contraction in response to ATP, thapsigargin, high-K(+) solution, and A-23187. Pretreatment of the gel with X/XO impaired gel contraction not only by ATP and thapsigargin, but also by high-K(+) solution and A-23187. The X/XO-treated gel showed normal contraction; however, when SOD was present during the pretreatment period. These results indicate that O(2)(-) attenuates smooth muscle contraction by impairing CRAC, ATP-induced Ca(2+) transient, and Ca(2+) sensitivity in BASMC.  相似文献   

9.
Volume-dependent ATP release andsubsequent activation of purinergic P2Y receptors have been implicatedas an autocrine mechanism triggering activation of volume-regulatedanion channels (VRACs) in hepatoma cells. In the brain ATP is releasedby both neurons and astrocytes and participates in intercellularcommunication. We explored whether ATP triggers or modulates therelease of excitatory amino acid (EAAs) via VRACs in astrocytes inprimary culture. Under basal conditions exogenous ATP (10 µM)activated a small EAA release in 70-80% of the cultures tested.In both moderately (5% reduction of medium osmolarity) andsubstantially (35% reduction of medium osmolarity) swollen astrocytes,exogenous ATP greatly potentiated EAA release. The effects of ATP weremimicked by P2Y agonists and eliminated by P2Y antagonists or the ATPscavenger apyrase. In contrast, the same pharmacological maneuvers didnot inhibit volume-dependent EAA release in the absence of exogenous ATP, ruling out a requirement of autocrine ATP release for VRAC activation. The ATP effect in nonswollen and moderately swollen cellswas eliminated by a 5-10% increase in medium osmolarity or byanion channel blockers but was insensitive to tetanus toxin pretreatment, further supporting VRAC involvement. Our data suggest that in astrocytes ATP does not trigger EAA release itself but actssynergistically with cell swelling. Moderate cell swelling and ATP mayserve as two cooperative signals in bidirectional neuron-astrocytecommunication in vivo.

  相似文献   

10.
Polarized neurites (axons and dendrites) form the functional circuitry of the nervous system. Secreted guidance cues often control the polarity of neuron migration and neurite outgrowth by regulating ion channels. Here, we show that secreted semaphorin 3A (Sema3A) induces the neurite identity of Xenopus spinal commissural interneurons (xSCINs) by activating Ca(V)2.3 channels (Ca(V)2.3). Sema3A treatment converted the identity of axons of cultured xSCINs to that of dendrites by recruiting functional Ca(V)2.3. Inhibition of Sema3A signalling prevented both the expression of Ca(V)2.3 and acquisition of the dendrite identity, and inhibition of Ca(V)2.3 function resulted in multiple axon-like neurites of xSCINs in the spinal cord. Furthermore, Sema3A-triggered cGMP production and PKG activity induced, respectively, the expression of functional Ca(V)2.3 and the dendrite identity. These results reveal a mechanism by which a guidance cue controls the identity of neurites during nervous system development.  相似文献   

11.
Although oxidative stress is a hallmark of important vascular disorders such as diabetic retinopathy, it remains unclear why the retinal microvasculature is particularly vulnerable to this pathophysiological condition. We postulated that redox-sensitive ion channels may play a role. Using H(2)O(2) to cause oxidative stress in microvascular complexes freshly isolated from the adult rat retina, we assessed ionic currents, cell viability, intracellular oxidants, and cell calcium by using perforated-patch recordings, trypan blue dye exclusion, and fura-2 fluorescence, respectively. Supporting a role for the oxidant-sensitive ATP-sensitive K (K(ATP)) channels, we found that these channels are activated during exposure of retinal microvessels to H(2)O(2). Furthermore, their inhibition by glibenclamide significantly lessened H(2)O(2)-induced microvascular cell death. Additional experiments established that by increasing the influx of calcium into microvascular cells, the K(ATP) channel-mediated hyperpolarization boosted the vulnerability of these cells to oxidative stress. In addition to the K(ATP) channel-dependent mechanism for increasing the lethality of oxidative stress, we also found that the vulnerability of cells in the capillaries, but not in the arterioles, was further boosted by a K(ATP) channel-independent mechanism, which our experiments indicated involves the oxidant-induced activation of calcium-permeable nonspecific cation channels. Taken together, our findings support a working model in which both K(ATP) channel-independent and K(ATP) channel-dependent mechanisms render the capillaries of the retina particularly vulnerable to oxidative stress. Identification of these previously unappreciated mechanisms for boosting the lethality of oxidants may provide new targets for pharmacologically limiting damage to the retinal microvasculature during periods of oxidative stress.  相似文献   

12.
Hematopoietic Stem Cells Contribute to Lymphatic Endothelium   总被引:1,自引:0,他引:1  

Background

Although the lymphatic system arises as an extension of venous vessels in the embryo, little is known about the role of circulating progenitors in the maintenance or development of lymphatic endothelium. Here, we investigated whether hematopoietic stem cells (HSCs) have the potential to give rise to lymphatic endothelial cells (LEC).

Methodology/Principal Findings

Following the transfer of marked HSCs into irradiated recipients, donor-derived LEC that co-express the lymphatic endothelial markers Lyve-1 and VEGFR-3 were identified in several tissues. HSC-derived LEC persisted for more than 12 months and contributed to ∼3–4% of lymphatic vessels. Donor-derived LECs were not detected in mice transplanted with common myeloid progenitors and granulocyte/macrophage progenitors, suggesting that myeloid lineage commitment is not a requisite step in HSC contribution to lymphatic endothelium. Analysis of parabiotic mice revealed direct evidence for the existence of functional, circulating lymphatic progenitors in the absence of acute injury. Furthermore, the transplantation of HSCs into ApcMin/+ mice resulted in the incorporation of donor-derived LEC into the lymphatic vessels of spontaneously arising intestinal tumors.

Conclusions/Significance

Our results indicate that HSCs can contribute to normal and tumor associated lymphatic endothelium. These findings suggest that the modification of HSCs may be a novel approach for targeting tumor metastasis and attenuating diseases of the lymphatic system.  相似文献   

13.
14.
Activation of volume-regulated anion current (VRAC) plays a key role in the maintenance of cellular volume homeostasis. The mechanisms, however, that regulate VRAC activity are not fully understood. We have examined whether VRAC activation is modulated by the cholesterol content of the membrane bilayer. The cholesterol content of bovine aortic endothelial cells was increased by two independent methods: (a) exposure to a methyl-beta-cyclodextrin saturated with cholesterol, or (b) exposure to cholesterol-enriched lipid dispersions. Enrichment of bovine aortic endothelial cells with cholesterol resulted in a suppression of VRAC activation in response to a mild osmotic gradient, but not to a strong osmotic gradient. Depletion of membrane cholesterol by exposing the cells to methyl-beta-cyclodextrin not complexed with cholesterol resulted in an enhancement of VRAC activation when the cells were challenged with a mild osmotic gradient. VRAC activity in cells challenged with a strong osmotic gradient were unaffected by depletion of membrane cholesterol. These observations show that changes in membrane cholesterol content shift VRAC sensitivity to osmotic gradients. Changes in VRAC activation were not accompanied by changes in anion permeability ratios, indicating that channel selectivity was not affected by the changes in membrane cholesterol. This suggests that membrane cholesterol content affects the equilibrium between the closed and open states of VRAC channel rather than the basic pore properties of the channel. We hypothesize that changes in membrane cholesterol modulate VRAC activity by affecting the membrane deformation energy associated with channel opening.  相似文献   

15.
16.
17.
Increased protein glycation has been mechanistically linked to accelerated vascular pathobiology in diabetes. To test the influence of protein modified by Amadori glucose adducts on vascular cell biology, we examined the effect of glycated albumin on replicative capacity and basement membrane collagen production by aortic endothelial cells in culture. Relative to carbohydrate-free albumin, which supported cell proliferation and Type IV collagen synthesis, glycated albumin significantly inhibited3H-thymidine incorporation and Type IV collagen production. The glycated albumin-induced effects were prevented by monoclonal antibodies (A717) that specifically react with Amadori-modified albumin, but not by IgG that was unreactive with glycated albumin. A717 had no effect on thymidine incorporation or collagen synthesis by cells cultured in the presence of nonglycated albumin. The findings indicate that the interaction of glycated albumin with endothelial cells, which have been shown to display dose-responsive, saturable receptors, limits cell replication and triggers maladaptive biosynthetic programs, which may contribute to degenerative macrovascular disease in diabetes.  相似文献   

18.
19.
The source of Ca2+ involved in transducing an oxidative-burst defense signal was examined in aequorin-transformed tobacco (Nicotiana tabacum L.) cells using modulators of Ca2+ entry. Treatments that either increased or decreased the influx of Ca2+ from external stores were found to have little effect on the magnitude or kinetics of an osmotically stimulated oxidative burst. In contrast, treatments that reduced the discharge of Ca2+ from internal stores inhibited dilution-activated H2O2 production. Curiously, most of the modulators commonly employed in animal studies as internal Ca(2+)-release inhibitors were neither effective in blocking discharge of intracellular Ca2+ nor in preventing the oxidative burst. When three different biochemical elicitors of the oxidative burst were similarly examined, both the H2O2 production and Ca2+ fluxes stimulated were found to be sensitive to modulators of internal Ca2+ release, but neither was impacted by alterations in externally derived Ca2+ influx. We hypothesize, therefore, that the oxidative burst does not depend on the influx of external Ca2+, but instead may generally be mediated by the release of internal Ca2+ in a manner that depends on the proper function of kinases and anion channels. These Ca2+ pulses trigger downstream signaling events that include the activation of Ca(2+)-regulated protein kinases, which are required for stimulation of the oxidative burst.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号