首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the question of whether inhibition of the Na(+)/H(+) exchanger (NHE) during ischemia is protective due to reduction of cytosolic Ca(2+) accumulation or enhanced acidosis in cardiomyocytes. Additionally, the role of the Na(+)-HCO(3)(-) symporter (NBS) was investigated. Adult rat cardiomyocytes were exposed to simulated ischemia and reoxygenation. Cytosolic pH [2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)], Ca(2+) (fura 2), Na(+) [sodium-binding benzolfuran isophthatlate (SBFI)], and cell length were measured. NHE was inhibited with 3 micromol/l HOE 642 or 1 micromol/l 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and NBS was inhibited with HEPES buffer. During anoxia in bicarbonate buffer, cells developed acidosis and intracellular Na and Ca (Na(i) and Ca(i), respectively) overload. During reoxygenation cells underwent hypercontracture (44.0 +/- 4.1% of the preanoxic length). During anoxia in bicarbonate buffer, inhibition of NHE had no effect on changes in intracellular pH (pH(i)), Na(i), and Ca(i), but it significantly reduced the reoxygenation-induced hypercontracture (HOE: 61.0 +/- 1.4%, EIPA: 68.2 +/- 1.8%). The sole inhibition of NBS during anoxia was not protective. We conclude that inhibition of NHE during anoxia protects cardiomyocytes against reoxygenation injury independently of cytosolic acidification and Ca(i) overload.  相似文献   

2.
The ubiquitously expressed Na(+)/H(+) exchanger isoform 1 (NHE1) functions as a major intracellular pH (pH(i)) regulatory mechanism in many cell types, and in some tissues its activity may contribute to ischemic injury. In the present study, cortical astrocyte cultures from wild-type (NHE1(+/+)) and NHE1-deficient (NHE1(-/-)) mice were used to investigate the role of NHE1 in pH(i) recovery and ischemic injury in astrocytes. In the absence of HCO(3)(-), the mean resting pH(i) levels were 6.86 +/- 0.03 in NHE1(+/+) astrocytes and 6.53 +/- 0.04 in NHE1(-/-) astrocytes. Removal of extracellular Na(+) or blocking of NHE1 activity by the potent NHE1 inhibitor HOE-642 significantly reduced the resting level of pH(i) in NHE1(+/+) astrocytes. NHE1(+/+) astrocytes exhibited a rapid pH(i) recovery (0.33 +/- 0.08 pH unit/min) after NH(4)Cl prepulse acid load. The pH(i) recovery in NHE1(+/+) astrocytes was reversibly inhibited by HOE-642 or removal of extracellular Na(+). In NHE1(-/-) astrocytes, the pH(i) recovery after acidification was impaired and not affected by either Na(+)-free conditions or HOE-642. Furthermore, 2 h of oxygen and glucose deprivation (OGD) led to an approximately 80% increase in pH(i) recovery rate in NHE1(+/+) astrocytes. OGD induced a 5-fold rise in intracellular [Na(+)] and 26% swelling in NHE1(+/+) astrocytes. HOE-642 or genetic ablation of NHE1 significantly reduced the Na(+) rise and swelling after OGD. These results suggest that NHE1 is the major pH(i) regulatory mechanism in cortical astrocytes and that ablation of NHE1 in astrocytes attenuates ischemia-induced disruption of ionic regulation and swelling.  相似文献   

3.
The aims of the current study were to 1) examine the effects of hypoxia and acidosis on cultured cortical neurons and 2) explore the role of transporters and ion channels in hypoxic injury. Cell injury was measured in cultured neurons or hippocampal slices following hypoxia (1% O(2)) or acidosis (medium pH 6.8) treatment. Inhibitors of transporters and ion channels were employed to investigate their roles in hypoxic injury. Our results showed that 1) neuronal damage was apparent at 5-7 days of hypoxia exposure, i.e., 36-41% of total lactate dehydrogenase was released to medium and 2) acidosis alone did not lead to significant injury compared with nonacidic, normoxic controls. Pharmacological studies revealed 1) no significant difference in neuronal injury between controls (no inhibitor) and inhibition of Na(+)-K(+)-ATP pump, voltage-gated Na(+) channel, ATP-sensitive K(+) channel, or reverse mode of Na(+)/Ca(2+) exchanger under hypoxia; however, 2) inhibition of NBCs with 500 microM DIDS did not cause hypoxic death in either cultured cortical neurons or hippocampal slices; 3) in contrast, inhibition of Na(+)/H(+) exchanger isoform 1 (NHE1) with either 10 microM HOE-642 or 2 microM T-162559 resulted in dramatic hypoxic injury (+95% for HOE-642 and +100% for T-162559 relative to normoxic control, P < 0.001) on treatment day 3, when no death occurred for hypoxic controls (no inhibitor). No further damage was observed by NHE1 inhibition on treatment day 5. We conclude that inhibition of NHE1 accelerates hypoxia-induced neuronal damage. In contrast, DIDS rescues neuronal death under hypoxia. Hence, DIDS-sensitive mechanism may be a potential therapeutic target.  相似文献   

4.
The Na(+)/H(+) exchanger (NHE) inhibitor cariporide has a cardioprotective effect in various animal models of myocardial ischemia-reperfusion. Recent studies have suggested that cariporide interacts with mitochondrial Ca(2+) overload and the mitochondrial permeability transition (MPT); however, the precise mechanisms remain unclear. Therefore, we examined whether cariporide affects mitochondrial Ca(2+) overload and MPT. Isolated adult rat ventricular myocytes were used to study the effects of cariporide on hypercontracture induced by ouabain or phenylarsine oxide (PAO). Mitochondrial Ca(2+) concentration ([Ca(2+)](m)) and the mitochondrial membrane potential (DeltaPsi(m)) were measured by loading myocytes with rhod-2 and JC-1, respectively. We also examined the effect of cariporide on the MPT using tetramethylrhodamine methyl ester (TMRM) and oxidative stress generated by laser illumination. Cariporide (1 microM) prevented ouabain-induced hypercontracture (from 40 +/- 2 to 24 +/- 2%, P < 0.05) and significantly attenuated ouabain-induced [Ca(2+)](m) overload (from 149 +/- 6 to 121 +/- 5% of the baseline value, P < 0.05) but did not affect DeltaPsi(m). These results indicate that cariporide attenuates the [Ca(2+)](m) overload without the accompanying depolarization of DeltaPsi(m). Moreover, cariporide increased the time taken to induce the MPT (from 79 +/- 11 to 137 +/- 20 s, P < 0.05) and also attenuated PAO-induced hypercontracture (from 59 +/- 3 to 50 +/- 4%, P < 0.05). Our data indicate that cariporide attenuates [Ca(2+)](m) overload and MPT. Thus these effects might potentially contribute to the mechanisms of cardioprotection afforded by NHE inhibitors.  相似文献   

5.
In the myocardium, the Na(+)/H(+) exchanger isoform-1 (NHE1) activity is detrimental during ischemia-reperfusion (I/R) injury, causing increased intracellular Na(+) (Na(i)(+)) accumulation that results in subsequent Ca(2+) overload. We tested the hypothesis that increased expression of NHE1 would accentuate myocardial I/R injury. Transgenic mice were created that increased the Na(+)/H(+) exchanger activity specifically in the myocardium. Intact hearts from transgenic mice at 10-15 wk of age showed no change in heart performance, resting intracellular pH (pH(i)) or phosphocreatine/ATP levels. Transgenic and wild-type (WT) hearts were subjected to 20 min of ischemia followed by 40 min of reperfusion. Surprisingly, the percent recovery of rate-pressure product (%RPP) after I/R improved in NHE1-overexpressing hearts (64 +/- 5% vs. 41 +/- 5% in WT; P < 0.05). In addition, NMR spectroscopy revealed that NHE1 overexpressor hearts contained higher ATP during early reperfusion (levels P < 0.05), and there was no difference in Na(+) accumulation during I/R between transgenic and WT hearts. HOE642 (cariporide), an NHE1 inhibitor, equivalently protected both WT and NHE1-overexpressing hearts. When hearts were perfused with bicarbonate-free HEPES buffer to eliminate the contribution of HCO(3)(-) transporters to pH(i) regulation, there was no difference in contractile recovery after reperfusion between controls and transgenics, but NHE1-overexpressing hearts showed a greater decrease in ATP during ischemia. These results indicate that the basal activity of NHE1 is not rate limiting in causing damage during I/R, therefore, increasing the level of NHE1 does not enhance injury and can have some small protective effects.  相似文献   

6.
The specific Na(+)/H(+) exchange inhibitor HOE-642 prevents ischemic and reperfusion injury in the myocardium. Although this inhibitor alters H(+) ion flux during reperfusion in vitro, this action has not been confirmed during complex conditions in situ. Myocardial intracellular pH (pH(i)) and high-energy phosphates were monitored using (31)P magnetic resonance spectroscopy in open-chest pigs supported by cardiopulmonary bypass during 10 min of ischemia and reperfusion. Intravenous HOE-642 (2 mg/kg; n = 8) administered before ischemia prevented the increases in diastolic stiffness noted in control pigs (n = 8), although it did not alter the postischemic peak-elastance or pressure-rate product measured using a distensible balloon within the left ventricle. HOE-642 induced no change in pH(i) during ischemia but caused significant delays in intracellular realkalinization during reperfusion. HOE-642 did not alter phosphocreatine depletion and repletion but did improve ATP preservation. Na(+)/H(+) exchange inhibition through HOE-642 delays intracellular alkalinization in the myocardium in situ during reperfusion in association with improved diastolic function and high-energy phosphate preservation.  相似文献   

7.
Although Na+/H+ exchange (NHE) has been implicated in myocardial reperfusion injury, participation of coronary microvascular endothelial cells (CMECs) in this pathogenesis has been poorly understood. NHE-induced intracellular Ca2+ concentration ([Ca2+]i) overload in CMECs may increase the synthesis of intercellular adhesion molecules (ICAM), which is potentially involved in myocardial reperfusion injury. The present study tested the hypothesis that NHE plays a crucial role in [Ca2+]i overload and ICAM-1 synthesis in CMECs. Primary cultures of CMECs isolated from adult rat hearts were subjected to acidic hypoxia for 30 min followed by reoxygenation. Two structurally distinct NHE inhibitors, cariporide and 5-(N-N-dimethyl)-amiloride (DMA), had no significant effect on the acidic hypoxia-induced decrease in intracellular pH (pH(i)) of CMECs but significantly retarded pH(i) recovery after reoxygenation. These NHE inhibitors abolished the hypoxia- and reoxygenation-induced increase in [Ca2+]i. Expression of ICAM-1 mRNA was markedly increased in the vehicle-treated CMECs 3 h after reoxygenation, and this was significantly inhibited by treatment with cariporide, DMA, or Ca2+-free buffer. In addition, enhanced ICAM-I protein expression on the cell surface of CMECs 8 h after reoxygenation was attenuated by treatment with cariporide, DMA, or Ca2+-free buffer. These results suggest that NHE plays a crucial role in the rise of [Ca2+]i and ICAM-1 expression during acidic hypoxia/reoxygenation in CMECs. We propose that inhibition of ICAM-1 expression in CMECs may represent a novel mechanism of action of NHE inhibitors against ischemia-reperfusion injury.  相似文献   

8.
Generation of reactive oxygen species (ROS) and intracellular Ca(2+) overload are key mechanisms involved in ischemia-reperfusion (I/R)-induced myocardial injury. The relationship between I/R injury and Ca(2+) overload has not been fully characterized. The increase in Na(+)/H(+) exchanger (NHE-1) activity observed during I/R injury is an attractive candidate to link increased ROS production with Ca(2+) overload. We have shown that low doses of H(2)O(2) increase NHE-1 activity in an extracellular signal-regulated kinase (ERK)-dependent manner. In this study, we examined the effect of low doses of H(2)O(2) on intracellular Ca(2+) in fura 2-loaded, spontaneously contracting neonatal rat ventricular myocytes. H(2)O(2) induced a time- and concentration-dependent increase in diastolic intracellular Ca(2+) concentration that was blocked by inhibition of ERK1/2 activation with 5 microM U-0126 (88%) or inhibition of NHE-1 with 5 microM HOE-642 (50%). Increased NHE activity was associated with phosphorylation of the NHE-1 carboxyl tail that was blocked by U-0126. These results suggest that H(2)O(2) induced Ca(2+) overload is partially mediated by NHE-1 activation secondary to phosphorylation of NHE-1 by the ERK1/2 MAP kinase pathway.  相似文献   

9.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   

10.
Although Zn(2+) homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn(2+) concentration ([Zn(2+) ](i)) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn(2+)](i) and intracellular Ca(2+) concentration were monitored simultaneously using FluoZin-3 and Fura-2FF, and intracellular pH (pH(i)) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na(+)-free conditions (Na(+) substituted with N-methyl-D-glucamine(+)) caused Ca(2+) influx, pH(i) drop, and Zn(2+) release from intracellular stores. Experimental maneuvers resulting in a pH(i) increase during Glu/Gly applications, such as stimulation of Na(+) -dependent pathways of H(+) efflux, forcing H(+) efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn(2+)](i) elevations. In the absence of Na(+), the rate of [Zn(2+)](i) decrease could be correlated with the rate of pH(i) increase. In the presence of Na(+), the rate of [Zn(2+) ](i) decrease was about twice as fast as expected from the rate of pH(i) elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn(2+) ](i) elevations and that Na(+) counteracts the latter by promoting pH(i)-dependent and pH(i)-independent mechanisms of cytosolic Zn(2+) clearance.  相似文献   

11.
The cardiac Na(+)/Ca(2+) exchanger (NCX) contributes to cellular injury during hypoxia, as its altered function is largely responsible for a rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)). In addition, the NCX in guinea pig ventricular myocytes undergoes profound inhibition during hypoxia and rapid reactivation during reoxygenation. The mechanisms underlying these changes in NCX activity are likely complex due to the participation of multiple inhibitory factors including altered cytosolic Na(+) concentration, pH, and ATP. Our main hypothesis is that oxidative stress is an essential trigger for rapid NCX reactivation in guinea pig ventricular myocytes and is thus a critical factor in determining the timing and magnitude of Ca(2+) overload. This hypothesis was evaluated in cardiac myocytes using fluorescent indicators to measure [Ca(2+)](i) and oxidative stress. An NCX antisense oligonucleotide was used to decrease NCX protein expression in some experiments. Our results indicate that NCX activity is profoundly inhibited in hypoxic guinea pig ventricular myocytes but is reactivated within 1-2 min of reoxygenation at a time of rising oxidative stress. We also found that several interventions to decrease oxidative stress including antioxidants and diazoxide prevented NCX reactivation and Ca(2+) overload during reoxygenation. Furthermore, application of exogenous H(2)O(2) was sufficient by itself to reactivate the NCX during sustained hypoxia and could reverse the suppression of reoxygenation-mediated NCX reactivation by diazoxide. These data suggest that elevated oxidative stress in reoxygenated guinea pig ventricular myocytes is required for rapid NCX reactivation, and thus reactivation should be viewed as an active process rather than being due to the simple decline of NCX inhibition.  相似文献   

12.
Zhou HY  Han CY  Wang XL 《生理学报》2006,58(2):136-140
心肌缺血损伤过程中,胞内Na^+、ATP及pH都出现明显变化。钠/钙交换对心肌细胞的钙平衡起重要的调节作用。本实验采用膜片钳全细胞记录豚鼠心室肌细胞钠/钙交换电流,研究温度和胞内Na^+、ATP及pH对钠/钙交换双向电流的影响。结果表明,温度从22℃升至34℃,钠/钙交换电流增大约4倍,而pH值的改变对钠/钙交换双向电流没有明显的影响。在22~24℃时,同时耗竭胞内ATP和胞内酸化对钠/钙交换双向转运功能影响程度小;而在34—37℃时,同时耗竭胞内ATP和胞内酸化能抑制钠/钙交换双向电流的外向和内向成分,且内向成分抑制程度高于外向成分抑制程度。表明同时耗竭胞内ATP和胞内酸化对钠/钙交换的作用具有温度依赖性。胞内Na^+超载能使钠/钙交换电流的外向成分增加,但不增加或减少内向电流(即正向转运)成分。因此,胞内酸化及耗竭胞内ATP损伤细胞排钙机制和胞内钠超载通过钠/钙反向交换引起钙内流是引起心肌细胞钙超载的两个独立的重要因素。  相似文献   

13.
Inhibition of Na(+)/H(+) exchanger 1 (NHE1) reduces cardiac ischemia-reperfusion (I/R) injury and also cardiac hypertrophy and failure. Although the mechanisms underlying these NHE1-mediated effects suggest delay of mitochondrial permeability transition pore (MPTP) opening, and reduction of mitochondrial-derived superoxide production, the possibility of NHE1 blockade targeting mitochondria has been incompletely explored. A short-hairpin RNA sequence mediating specific knock down of NHE1 expression was incorporated into a lentiviral vector (shRNA-NHE1) and transduced in the rat myocardium. NHE1 expression of mitochondrial lysates revealed that shRNA-NHE1 transductions reduced mitochondrial NHE1 (mNHE1) by ~60%, supporting the expression of NHE1 in mitochondria membranes. Electron microscopy studies corroborate the presence of NHE1 in heart mitochondria. Immunostaining of rat cardiomyocytes also suggests colocalization of NHE1 with the mitochondrial marker cytochrome c oxidase. To examine the functional role of mNHE1, mitochondrial suspensions were exposed to increasing concentrations of CaCl(2) to induce MPTP opening and consequently mitochondrial swelling. shRNA-NHE1 transduction reduced CaCl(2)-induced mitochondrial swelling by 64 ± 4%. Whereas the NHE1 inhibitor HOE-642 (10 μM) decreased mitochondrial Ca(2+)-induced swelling in rats transduced with nonsilencing RNAi (37 ± 6%), no additional HOE-642 effects were detected in mitochondria from rats transduced with shRNA-NHE1. We have characterized the expression and function of NHE1 in rat heart mitochondria. Because mitochondria from rats injected with shRNA-NHE1 present a high threshold for MPTP formation, the beneficial effects of NHE1 inhibition in I/R resulting from mitochondrial targeting should be considered.  相似文献   

14.
The Na(+)-Ca(2+) exchanger (NCX) links transmembrane movements of Ca(2+) ions to the reciprocal movement of Na(+) ions. It normally functions primarily as a Ca(2+) efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca(2+) influx under certain conditions. Na(+) and Ca(2+) ions exert complex regulatory effects on NCX activity. Ca(2+) binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na(+) concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca(2+) activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP?) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na(+) concentrations also induce an inactivated state of the exchanger (Na(+)-dependent inactivation) that becomes dominant when cytosolic pH and PIP? levels fall. Na(+)-dependent inactivation may provide a means of protecting cells from Ca(2+) overload due to NCX-mediated Ca(2+) influx during ischemia.  相似文献   

15.
To find a protein kinase C (PKC)-independent preconditioning mechanism, hypoxic preconditioning (HP; i.e., 10-min anoxia and 10-min reoxygenation) was applied to isolated rat hearts before 60-min global ischemia. HP led to improved recovery of developed pressure and reduced end-diastolic pressure in the left ventricle during reperfusion. Protection was unaffected by the PKC inhibitor bisindolylmaleimide (BIM; 1 micromol/l). It was abolished by the inhibitor of protein phosphatases 1 and 2A cantharidin (20 or 5 micromol/l) and partially enhanced by the inhibitor of protein phosphatase 2A okadaic acid (5 nmol/l). In adult rat cardiomyocytes treated with BIM and exposed to 60-min simulated ischemia (anoxia, extracellular pH 6.4), HP led to attenuation of anoxic Na(+)/Ca(2+) overload and of hypercontracture, which developed on reoxygenation. This protection was prevented by treatment with cantharidin but not with okadaic acid. In conclusion, HP exerts PKC-independent protection on ischemic-reperfused rat hearts and cardiomyocytes. Protein phosphatase 1 seems a mediator of this protective mechanism.  相似文献   

16.
We studied the role of the interaction of calcineurin homologous protein 1 (CHP1) with the Na(+)/H(+) exchanger 1 (NHE1), particularly its EF-hand Ca(2+) binding motifs, in the intracellular pH (pH(i))-dependent regulation of NHE1. We found that (45)Ca(2+) binds to two EF-hand motifs (EF3 and 4) of the recombinant CHP1 proteins with high affinity (apparent K(d) = approximately 90 nM). Complex formation between CHP1 and the CHP1 binding domain of NHE1 resulted in a marked increase in the Ca(2+) binding affinity (K(d) = approximately 2 nM) by promoting a conformational change of the EF-hands toward the tightly Ca(2+)-bound form. This suggests that CHP1 always contains two Ca(2+) ions when associated with NHE1 in cells. Interestingly, overexpression of GFP-tagged CHP1 with mutations in EF3 or EF4 significantly reduced the exchange activity in the neutral pH(i) range and partly impaired the activation of NHE1 in response to various stimuli, such as growth factors and osmotic stress. Furthermore, we found that, in addition to reducing the activity (V(max)), a CHP1 binding-defective NHE1 mutant had a marked reduction in pH(i) sensitivity ( approximately 0.7 pH unit acidic shift), which consequently abolished various regulatory responses of NHE1. These observations suggest that the association of NHE1 with CHP1 is crucial for maintenance of the pH(i) sensitivity of NHE1 and that tightly bound Ca(2+) ions may serve as important structural elements in the "pH(i) sensor" of NHE1.  相似文献   

17.
The effect of intracellular acidification and subsequent pH recovery in sensory neurons has not been well characterized. We have studied the mechanisms underlying Ca(2+)-induced acidification and subsequent recovery of intracellular pH (pH(i)) in rat trigeminal ganglion neurons and report their effects on neuronal excitability. Glutamate (500 μM) and capsaicin (1 μM) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) with a following decrease in pH(i). The recovery of [Ca(2+)](i) to the prestimulus level was inhibited by LaCl(3) (1 mM) and o-vanadate (10 mM), a plasma membrane Ca(2+)/ATPase (PMCA) inhibitor. Removal of extracellular Ca(2+) also completely inhibited the acidification induced by capsaicin. TRPV1 was expressed only in small and medium sized trigeminal ganglion neurons. mRNAs for Na(+)/H(+) exchanger type 1 (NHE1), pancreatic Na(+)-HCO(3)(-) cotransporter type 1 (pNBC1), NBC3, NBC4, and PMCA types 1-3 were detected by RT-PCR. pH(i) recovery was significantly inhibited by pretreatment with NHE1 or pNBC1 siRNA. We found that the frequency of action potentials (APs) was dependent on pH(i). Application of the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (5 μM) or the pNBC1 inhibitor 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid (500 μM) delayed pH(i) recovery and decreased AP frequency. Simultaneous application of 5'-(N-ethyl-N-isopropyl) amiloride and 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid almost completely inhibited APs. In summary, our results demonstrate that the rise in [Ca(2+)](i) in sensory neurons by glutamate and capsaicin causes intracellular acidification by activation of PMCA type 3, that the pH(i) recovery from acidification is mediated by membrane transporters NHE1 and pNBC1 specifically, and that the activity of these transporters has direct consequences for neuronal excitability.  相似文献   

18.
The central nervous system (CNS) pericytes play an important role in brain microcirculation. Na(+)/H(+) exchanger isoform 1 (NHE1) has been suggested to regulate the proliferation of nonvascular cells through the regulation of intracellular pH, Na(+), and cell volume; however, the relationship between NHE1 and intracellular Ca(2+), an essential signal of cell growth, is still not known. The aim of the present study was to elucidate the role of NHE1 in Ca(2+) signaling and the proliferation of human CNS pericytes. The intracellular Ca(2+) concentration was measured by fura 2 in cultured human CNS pericytes. The cells showed spontaneous Ca(2+) oscillation under quasi-physiological ionic conditions. A decrease in extracellular pH or Na(+) evoked a transient Ca(2+) rise followed by Ca(2+) oscillation, whereas an increase in pH or Na(+) did not induce the Ca(2+) responses. The Ca(2+) oscillation was inhibited by an inhibitor of NHE in a dose-dependent manner and by knockdown of NHE1 by using RNA interference. The Ca(2+) oscillation was completely abolished by thapsigargin. The proliferation of pericytes was attenuated by inhibition of NHE1. These results demonstrate that NHE1 regulates Ca(2+) signaling via the modulation of Ca(2+) release from the endoplasmic reticulum, thus contributing to the regulation of proliferation in CNS pericytes.  相似文献   

19.
The contribution of Na(+)/H(+) exchange (achieved by NHE proteins) to the regulation of beta-cell cytosolic pH(c), and the role of pH(c) changes in glucose-induced insulin secretion are disputed and were examined here. Using real-time PCR, we identified plasmalemmal NHE1 and intracellular NHE7 as the two most abundant NHE isoforms in mouse islets. We, therefore, compared insulin secretion, cytosolic free Ca(2+) ([Ca(2+)](c)) and pH(c) in islets from normal mice and mice bearing an inactivating mutation of NHE1 (Slc9A1-swe/swe). The experiments were performed in HCO(-)(3)/CO(2) or HEPES/NaOH buffers. PCR and functional approaches showed that NHE1 mutant islets do not express compensatory pH-regulating mechanisms. NHE1 played a greater role than HCO(-)(3)-dependent mechanisms in the correction of an acidification imposed by a pulse of NH(4)Cl. In contrast, basal pH(c) (in low glucose) and the alkalinization produced by high glucose were independent of NHE1. Dimethylamiloride, a classic blocker of Na(+)/H(+) exchange, did not affect pH(c) but increased insulin secretion in NHE1 mutant islets, indicating unspecific effects. In control islets, glucose similarly increased [Ca(2+)](c) and insulin secretion in HCO(-)(3) and HEPES buffer, although pH(c) changed in opposite directions. The amplification of insulin secretion that glucose produces when [Ca(2+)](c) is clamped at an elevated level by KCl was also unrelated to pH(c) and pH(c) changes. All effects of glucose on [Ca(2+)](c) and insulin secretion proved independent of NHE1. In conclusion, NHE1 protects beta-cells against strong acidification, but has no role in stimulus-secretion coupling. The changes in pH(c) produced by glucose involve HCO(-)(3)-dependent mechanisms. Variations in beta-cell pH(c) are not causally related to changes in insulin secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号