首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨胃癌围手术期能量及营养物质的代谢特点,研究强化胰岛素治疗对围手术营养代谢的影响.方法:选取胃中、下部癌病理诊断明确并且外科病房ICU住院时间不少于24h的患者64例,取得知情同意后随机分到强化胰岛素治疗(IIT)血糖控制在4.4~6.1 mmol/L.和传统治疗(CIT)组血糖控制在10mmol/L以下;应用CCM营养代谢监测系统测定围手术期静息能量消耗(REE),呼吸商(RQ),每公斤体重静息能量消耗(REE/kg)和脂肪氧化比率,应用多频人体生物电阻抗分析仪测定围手术期人体组分的变化及应用稳态模式评估法计算胰岛素抵抗指数(HOMA-IR).结果:64例病人入选,每组32例,手术创伤引起术后第1、3天REE水平增加约22%和12%,呼吸商降低至0.759和0.791,REE/kg增加28 kcal/kg和26 kcal/kg,脂肪氧化比率增加至78%和65%,Ln-HOMA-IR明显增加(P<0.05);IIT治疗能降低术后第1、3天Ln-HOMA-IR和REE/kg水平;术后人体指标如细胞内液、脂肪组织、蛋白组织、肌肉组织、瘦体组织和体质量较术前水平明显降低(P<0.05);IIT能明显减少脂肪组织、蛋白组织和细胞内液的消耗量(P=0.009,t=0.026).结论:IIT能够有效降低胃癌围手术期胰岛素抵抗程度、降低静息能量消耗的水平和减少脂肪及蛋白质的消耗.  相似文献   

2.
Resting and maximal heart rates (HR) in ectothermic vertebrates are generally lower than those in endotherms and vary by more than an order of magnitude interspecifically. Variation of HR transcends phylogeny and is influenced by numerous factors including temperature, activity, gas exchange, intracardiac shunts, pH, posture, and reflexogenic regulation of blood pressure. The characteristic resting HR is rarely the intrinsic rate of the pacemaker, which is primarily modulated by cholinergic inhibition and adrenergic excitation in most species. Neuropeptides also appear to be involved in cardiac regulation, although their role is not well understood. The principal determinants of resting HR include temperature, metabolic rate and hemodynamic requirements. Maximal HRs generally do not exceed 120 b min-1, but notable exceptions include the heterothermic tuna and small reptiles having HRs in excess of 300 b min-1 at higher body temperatures. Temperature affects the intrinsic pacemaker rate as well as the relative influence of adrenergic and cholinergic modulation. It also influences the evolved capability to increase HR, with maximal cardiac responses matched to preferred body temperatures in some species. Additional factors either facilitate or limit the maximal level of HR, including: (1) characteristics of the pacemaker potential; (2) development of sarcoplasmic reticulum as a calcium store in excitation-contraction coupling; (3) low-resistance coupling of myocardial cells; (4) limitations of force development imposed by rate changes; (5) efficacy of sympathetic modulation; and (6) development of coronary circulation to enhance oxygen delivery to myocardium. In evolutionary terms, both hemodynamic and oxygen requirements appear to have been key selection pressures for rapid cardiac rates.  相似文献   

3.
This study analyzed the contribution of neuronal nitric oxide synthase (nNOS) to the hemodynamic manifestations of hyperthyroidism. The effects on hyperthyroid rats of the chronic administration of 7-nitroindazole (7-NI), an inhibitor of nNOS, were studied. Six groups of male Wistar rats were used: control, 7-NI (30 mg.kg-1.day-1 by gavage), T(4)50, T(4)75 (50 or 75 microg thyroxine.rat-1.day-1, respectively), T(4)50+7-NI, and T(4)75+7-NI. All treatments were maintained for 4 wk. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, SBP, pulse pressure (PP), and HR were measured in conscious rats, and morphological, metabolic, plasma, and renal variables were determined. Expression of nNOS in the hypothalamus of T(4)75 and control rats was analyzed by Western blot analysis. The response of mean arterial pressure (MAP) to pentolinium (10 mg/kg iv) was used to evaluate the sympathetic contribution to BP in T(4)75 and T(4)75+7-NI rats. T(4) produced an increased hypothalamic nNOS expression and dose-related increases in blood pressure (BP), HR, and PP vs. control rats. 7-NI did not modify BP or any other hemodynamic variable in normal rats. However, 7-NI produced a marked reduction in BP, HR, PP, and food and water intake in both hyperthyroid groups and improved creatinine clearance in the T(4)75 group. Pentolinium produced a greater MAP decrease in the T(4)75+7-NI than in the T(4)75 group. In conclusion, administration of 7-NI attenuates the hemodynamic and metabolic manifestations of hyperthyroidism, suggesting that nNOS contributes to the hyperdynamic circulation of this endocrine disease by modulating sympathetic activity.  相似文献   

4.
Genes influencing resting energy expenditure (REE) and respiratory quotient (RQ) represent candidate genes for obesity and the metabolic syndrome because of the involvement of these traits in energy balance and substrate oxidation. We aim to explore the molecular basis for individual variation in REE and fuel partitioning as reflected by RQ. We performed microarray studies in human vastus lateralis muscle biopsies from 40 healthy subjects with measured REE and RQ values. We identified 2,392 and 1,115 genes significantly correlated with REE and RQ, respectively. Genes correlated with REE and RQ encompass a broad array of functions, including carbohydrate and lipid metabolism, gene expression, mitochondrial processes, and membrane transport. Microarray pathway analysis revealed that REE was positively correlated with upregulation of G protein-coupled receptor signaling (meet criteria/total genes: 65 of 283) involved in autonomic nervous system functions, including those receptors mediating adrenergic, dopamine, γ-aminobutyric acid (GABA), neuropeptide Y (NPY), and serotonin action (meet criteria/total genes: 46 of 176). Reduced REE was associated with an increase in genes participating in ubiquitin-proteasome-dependent proteolytic pathways (58 of 232). Serine-type peptidase activity (9 of 76) was positively correlated with RQ, while genes involved in the protein phosphatase type 2A complex (4 of 9), mitochondrial function and cellular respiration (38 of 315), and unfolded protein binding (19 of 97) were associated with reduced RQ values and a preference for lipid fuel metabolism. Individual variations in whole body REE and RQ are regulated by differential expressions of specific genes and pathways intrinsic to skeletal muscle.  相似文献   

5.
Our aim was to test the hypothesis that apnea-induced hemodynamic responses during dynamic exercise in humans differ between those who show strong bradycardia and those who show only mild bradycardia. After apnea-induced changes in heart rate (HR) were evaluated during dynamic exercise, 23 healthy subjects were selected and divided into a large response group (L group; n = 11) and a small response group (S group; n = 12). While subjects performed a two-legged dynamic knee extension exercise at a work load that increased HR by 30 beats/min, apnea-induced changes in HR, cardiac output (CO), mean arterial pressure (MAP), arterial O(2) saturation (Sa(O(2))), forearm blood flow (FBF), and leg blood flow (LBF) were measured. During apnea, HR in the L group (54 ± 2 beats/min) was lower than in the S group (92 ± 3 beats/min, P < 0.05). CO, Sa(O(2)), FBF, LBF, forearm vascular conductance (FVC), leg vascular conductance (LVC), and total vascular conductance (TVC) were all reduced, and MAP was increased in both groups, although the changes in CO, TVC, LBF, LVC, and MAP were larger in the L group than in the S group (P < 0.05). Moreover, there were significant positive linear relationships between the reduction in HR and the reductions in TVC, LVC, and FVC. We conclude that individuals who show greater apnea-induced bradycardia during exercise also show greater vasoconstriction in both active and inactive muscle regions.  相似文献   

6.
目的:观察中期(4周)尾部悬吊大鼠在立位应激下的心血管反应。方法:采用本实验室改进的尾部悬吊方法,利用头高位倾斜和下体负压模拟立位应激,通过股动脉插管和心电图记录检测大鼠血压和心率改变。结果:与对照组相比,4周尾部悬吊(SUS)大鼠体重下降及后肢承重骨骼肌萎缩;其静息血压和心率与对照组(CON)相比无明显差别(P0.05);在两组大鼠中,头高位倾斜和下体负压均可导致血压降低和心率加快,但SUS大鼠平均动脉压下降幅度与CON大鼠相比显著增大(P0.05),而两组的心率增快幅度并无明显差别(P0.05)。结论:4周尾部悬吊大鼠在立位应激下维持血压稳定的能力减弱,可用于中期失重/模拟失重后立位耐力不良机理的研究。  相似文献   

7.
Although a multitude of factors that influence skeletal muscle blood flow have been extensively investigated, the influence of muscle length on limb blood flow has received little attention. Thus the purpose of this investigation was to determine if cyclic changes in muscle length influence resting blood flow. Nine healthy men (28 ± 4 yr of age) underwent a passive knee extension protocol during which the subjects' knee joint was passively extended and flexed through 100-180° knee joint angle at a rate of 1 cycle per 30 s. Femoral blood flow, cardiac output (CO), heart rate (HR), stroke volume (SV), and mean arterial pressure (MAP) were continuously recorded during the entire protocol. These measurements revealed that slow passive changes in knee joint angle did not have a significant influence on HR, SV, MAP, or CO; however, net femoral blood flow demonstrated a curvilinear increase with knee joint angle (r(2) = 0.98) such that blood flow increased by ~90% (125 ml/min) across the 80° range of motion. This net change in blood flow was due to a constant antegrade blood flow across knee joint angle and negative relationship between retrograde blood flow and knee joint angle (r(2) = 0.98). Thus, despite the absence of central hemodynamic changes and local metabolic factors, blood flow to the leg was altered by changes in muscle length. Therefore, when designing research protocols, researchers need to be cognizant of the fact that joint angle, and ultimately muscle length, influence limb blood flow.  相似文献   

8.
Resting energy expenditure (REE) and components of fat-free mass (FFM) were assessed in 26 healthy nonobese adults (13 males, 13 females). Detailed body composition analyses were performed by the combined use of dual-energy X-ray absorptiometry (DEXA), magnetic resonance imaging (MRI), bioelectrical impedance analysis (BIA), and anthropometrics. We found close correlations between REE and FFM(BIA) (r = 0.92), muscle mass(DEXA) (r = 0.89), and sum of internal organs(MRI) (r = 0.90). In a multiple stepwise regression analysis, FFM(BIA) alone explained 85% of the variance in REE (standard error of the estimate 423 kJ/day). Including the sum of internal organs(MRI) into the model increased the r(2) to 0.89 with a standard error of 381 kJ/day. With respect to individual organs, only skeletal muscle(DEXA) and liver mass(MRI) significantly contributed to REE. Prediction of REE based on 1) individual organ masses and 2) a constant metabolic rate per kilogram organ mass was very close to the measured REE, with a mean prediction error of 96 kJ/day. The very close agreement between measured and predicted REE argues against significant variations in specific REEs of individual organs. In conclusion, the mass of internal organs contributes significantly to the variance in REE.  相似文献   

9.
These studies were done to examine the effects of body composition, resting energy expenditure (REE), sex, and fitness on basal and insulin-regulated FFA and glucose metabolism. We performed 137 experiments in 101 nondiabetic, premenopausal women and men, ranging from low normal weight to class III obese (BMI 18.0-40.5 kg/m2). Glucose flux was measured using [6-(2)H2]glucose and FFA kinetics with [9,10-(3)H]oleate under either basal (74 experiments) or euglycemic hyperinsulinemic (1.0 mU.kg FFM(-1).min(-1)) clamp conditions (63 experiments). Consistent with our previous findings, REE and sex independently predicted basal FFA flux, whereas fat-free mass was the best predictor of basal glucose flux; in addition, percent body fat was independently and positively associated with basal glucose flux (total r2 = 0.52, P < 0.0001). Insulin-suppressed lipolysis remained significantly associated with REE (r = 0.25, P < 0.05), but percent body fat also contributed (total adjusted r2 = 0.36, P < 0.0001), whereas sex was not significantly related to insulin-suppressed FFA flux. Glucose disposal during hyperinsulinemia was independently associated with peak VO2, percent body fat, and FFA concentrations (total r2 = 0.63, P < 0.0001) but not with sex. We conclude that basal glucose production is independently related to both FFM and body fatness. In addition, hyperinsulinemia obscures the sex differences in FFA release relative to REE, but brings out the effects of fatness on lipolysis.  相似文献   

10.
刺激家兔肾内感受器和肾传入神经的血流动力学效应   总被引:2,自引:1,他引:1  
马戈  何瑞荣 《生理学报》1990,42(3):262-268
在39只麻醉家兔观察刺激肾脏机械和化学感受器以及电刺激肾传入神经的血流动力学效应。增加输尿管压8—22mmHg 及经输尿管向肾盂内逆向灌注 NaCl(1.0 mol/L)及 KCl(0.15mol/L)溶液时,引起平均动脉压(MAP)和心率(HR)下降;切断双侧缓冲神经后,MAP 降低更为显著。电刺激肾传入神经时,HR 减慢,MAP、肠系膜动脉和后肢动脉灌流压降低,左心室收缩压及其微分值下降,心输出量(CO)和总外周阻力(TPR)减小;切断双侧窦神经和减压神经后,除 HK、CO 和 TPR 外,其余各血流动力学指标的减弱更为显著。由此提示,动脉压力感受器反射对肾传入神经激活的心血管效应有缓冲作用。  相似文献   

11.
目的:探讨胃癌围手术期能量及营养物质的代谢特点,研究强化胰岛素治疗对围手术营养代谢的影响。方法:选取胃中、下部癌病理诊断明确并且外科病房ICU住院时间不少于24h的患者64例,取得知情同意后随机分到强化胰岛素治疗(IIT)组血糖控制在4.4~6.1mmol/L,和传统治疗(CIT)组血糖控制在10mmol/L以下;应用CCM营养代谢监测系统测定围手术期静息能量消耗(REE),呼吸商(RQ),每公斤体重静息能量消耗(REE/kg)和脂肪氧化比率,应用多频人体生物电阻抗分析仪测定围手术期人体组分的变化及应用稳态模式评估法计算胰岛素抵抗指数(HOMA-IR)。结果:64例病人入选,每组32例,手术创伤引起术后第1、3天REE水平增加约22%和12%,呼吸商降低至0.759和0.791,REE/kg增加28kcal/kg和26kcal/kg,脂肪氧化比率增加至78%和65%,Ln-HOMA-IR明显增加(P〈0.05);IIT治疗能降低术后第1、3天Ln-HOMA-IR和REE/kg水平;术后人体指标如细胞内液、脂肪组织、蛋白组织、肌肉组织、瘦体组织和体质量较术前水平明显降低(P〈0.05);IIT能明显减少脂肪组织、蛋白组织和细胞内液的消耗量(P=0.009,t=0.026)。结论:IIT能够有效降低胃癌围手术期胰岛素抵抗程度、降低静息能量消耗的水平和减少脂肪及蛋白质的消耗。  相似文献   

12.
贮脂类动物在冬眠前大量积累脂肪来准备冬眠,并在入眠时迅速降低体温和代谢率。为探究入眠准备期达乌尔黄鼠体温、代谢率、呼吸商及能量代谢的变化,将其入眠准备期分为育肥期、体重高峰期、育肥后期和冬眠前的试降期,使用植入式半导体温度记录元件iButton、开放式代谢仪和改进的代谢笼,监测其体温、代谢率及呼吸商和能量摄入的变化。结果显示:(1)达乌尔黄鼠体温在冬眠前13 - 34 d 开始下降,远早于冬眠但晚于体重高峰期;体重高峰期体温有降低的趋势,持续时间为1 - 3 d;育肥后期体温显著下降,体温日波动幅度增加。(2)体重高峰期的静止代谢率高于育肥期,育肥后期有降低的趋势,试降期最低。(3)呼吸商在体重高峰期先升高,之后迅速衰减;入眠准备期的能量摄入在体重达高峰期前达到最大值。结果表明,达乌尔黄鼠在入眠准备期,其体温和代谢率已开始降低,能源物质已开始转变;体重高峰期可能是达乌尔黄鼠入眠的一个转折点或启动入眠的开关。  相似文献   

13.
Resting energy expenditure (REE) is the largest component of total daily energy expenditure. Objectives of this study were to examine whether differences in REE exist after obesity develops in a group of children and adolescents, and to determine the effects of body composition, gender, age, pubertal development and parental obesity on REE. In 116 Caucasian children and adolescents (57 obese and 59 non-obese), aged 7.8 to 16.6 years, REE was assessed by open-circuit indirect calorimetry and different anthropometric variables and bioelectrical impedance were obtained (weight, height, skinfold thicknesses, waist and hip circumferences). Anthropometric indices and body compartments were calculated: the body mass index, surface area (SA), fat-free mass (FFM), fat-mass (FM) and percentage of FM. Differences between obese and non-obese subjects were tested and stepwise multiple regression analysis was performed with REE as dependent variable. Results show that REE was significantly higher in obese than in non-obese children and adolescents but REE/FFM ratio was not significantly different between these groups. In the non-obese group, FFM explained 73.1% of the variability in REE and gender, age and SA added 3.8%, 2.6%, and 2.6% to it, respectively. In the obese group, FFM was also the most powerful predictor of REE with 72.3%, followed by waist circumference and age with 2.5% and 2.1%, respectively. These results show that REE differences between obese and lean children do not seem to justify the maintenance of obesity. The main determinant of REE is FFM in both groups. No significant contribution of FM, pubertal development or parental obesity in REE was found in children and adolescents.  相似文献   

14.
RUSHING, PA, SE WINDERS, SL WATSON, RC KLESGES. Acute administration of phenylpropanolamine fails to affect resting energy expenditure in men of normal weight. Studies have consistently found that dieters using over-the-counter weight control products containing phenylpropanolamine (PPA) are more successful at losing weight than those who do not. To explore the possibility that drug-induced metabolic changes contribute to weight loss associated with this compound, this study investigated the effects of PPA on resting metabolic rate in 20 healthy men of normal weight between the ages of 18 and 29. After the arrival of the subjects to the laboratory, blood pressure was taken and resting energy expenditure (REE) and respiratory quotient (RQ) were assessed for 20 minutes (Baseline) via indirect calorimetry. Half of the subjects were then given 75 mg of immediate-release PPA (administered orally via a gelatin capsule), while the other half received placebo. Immediately after drug administration, metabolic rate was measured for an additional 95 minutes (During Drug). After this assessment, blood pressure was again measured. Although significant increases in both systolic and diastolic blood pressure were observed after PPA administration, the drug had no effect on REE or RQ. These results, consistent with that previously reported in mildly overweight women, further establish that it is unlikely that drug-induced metabolic changes contribute to PPA-induced weight loss in humans.  相似文献   

15.
Recent data suggest that the increase in ventilation during hypoxia may be related to the release of the excitatory amino acid neurotransmitter glutamate centrally. To further investigate this, we studied the effects of MK-801, a selective noncompetitive N-methyl-D-aspartate receptor antagonist, on the hypoxic ventilatory response in lightly anesthetized spontaneously breathing intact dogs. The cardiopulmonary effects of sequential ventriculocisternal perfusion (VCP) at the rate of 1 ml/min with mock cerebrospinal fluid (CSF, control) and MK-801 (2 mM) were compared during normoxia and 8 min of hypoxic challenge with 12% O2. Minute ventilation (VE), tidal volume (VT), and respiratory frequency (f) were recorded continuously, and hemodynamic parameters [heart rate (HR), blood pressure (MAP), cardiac output (CO), pulmonary arterial pressure, and pulmonary capillary wedge pressure] were measured periodically. Each dog served as its own baseline control before and after each period of sequential VCP under the two different O2 conditions. During 15 min of normoxia, there were no significant changes in the cardiopulmonary parameters with mock CSF VCP, whereas with MK-801 VCP for 15 min, VE decreased by approximately 27%, both by reductions in VT and f (17 and 9.5%, respectively). HR, MAP, and CO were unchanged. During 8 min of hypoxia with mock CSF VCP, VE increased by 171% associated with increased VT and f (25 and 125%, respectively). HR, MAP, and CO were likewise augmented. In contrast, the hypoxic response during MK-801 VCP was characterized by an increased VE of 84%, mainly by a rise in f by 83%, whereas the VT response was abolished. The cardiovascular excitation was also inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Previous studies from this laboratory have shown that rats with experimental cirrhosis of the liver induced by the combined administration of oral phenobarbital and inhaled carbon tetrachloride show an hyperdynamic status with enhanced cardiac output (CO), and decreased mean arterial pressure (MAP) and peripheral vascular resistance (PVR). Cirrhotic rats also showed an increased vascular permeability. All these phenomena are similar to some of the known effects of the systemic infusion of low doses of synthetic platelet-activating factor into the systemic circulation of normal rats. The measurement of the levels of platelet-activating factor in samples of blood demonstrated significantly higher levels in cirrhotic (2.65 +/- 0.39; n = 10) than in control rats (1.50 +/- 0.57 ng/ml; n = 10; p less than 0.05). The hemodynamic changes induced by the intravenous injection of the platelet-activating factor receptor antagonist BN 52021 (5 mg/kg body weight) have been measured in 10 control and 10 cirrhotic male Wistar rats, using a radioactive microsphere technique. BN 52021 induced no significant hemodynamic changes in control animals. However, in cirrhotic animals it induced a significant decrease in CO with increase in PVR. MAP increased slightly but not significantly. From these data it can be deduced that platelet-activating factor plays a role in the hemodynamic derangement shown by cirrhotic rats and that these derangement can be reversed by BN 52021, a highly selective antagonist of the platelet-activating factor receptor.  相似文献   

17.
Resting energy expenditure (REE)-power relationships result from multiple underlying factors including weight and height. In addition, detailed body composition, including fat free mass (FFM) and its components, skeletal muscle mass and internal organs with high metabolic rates (i.e. brain, heart, liver, kidneys), are major determinants of REE. Since the mass of individual organs scales to height as well as to weight (and, thus, to constitution), the variance in these associations may also add to the variance in REE. Here we address body composition (measured by magnetic resonance imaging) and REE (assessed by indirect calorimetry) in a group of 330 healthy volunteers differing with respect to age (17-78 years), sex (61% female) and BMI (15.9-47.8 kg/m(2)). Using three dimensional data interpolation we found that the inter-individual variance related to scaling of organ mass to height and weight and, thus, the constitution-related variances in either FFM (model 1) or kidneys, muscle, brain and liver (model 2) explained up to 43% of the inter-individual variance in REE. These data are the first evidence that constitution adds to the complexity of REE. Since organs scale differently as weight as well as height the "fit" of organ masses within constitution should be considered as a further trait.  相似文献   

18.
Exercise training (ExTr) has been associated with alterations in neural control of the circulation, including effects on arterial baroreflex function. The nucleus tractus solitarius (NTS) is the primary termination site of cardiovascular afferents and critical in the regulation of baroreflex-mediated changes in heart rate (HR) and sympathetic nervous system outflow. The purpose of the present study was to determine whether ExTr is associated with alterations in neurotransmitter regulation of neurons involved in control of cardiovascular function at the level of the NTS. We hypothesized that ExTr would increase glutamatergic and reduce GABAergic transmission in the NTS and that, collectively, these changes would result in a greater overall sympathoinhibitory drive from the NTS in ExTr animals. To test these hypotheses, male Sprague-Dawley rats were treadmill trained or maintained under sedentary conditions for 8-10 wk. NTS microinjections were performed in Inactin-anesthetized animals instrumented to record mean arterial pressure (MAP), HR, and lumbar sympathetic nerve activity (LSNA). Generalized activation of the NTS with unilateral microinjections of glutamate (1-10 mM, 30 nl) produced dose-dependent decreases in MAP, HR, and LSNA that were unaffected by ExTr. Bilateral inhibition of NTS with the GABAA agonist muscimol (1 mM, 90 nl) produced increases in MAP and LSNA that were blunted by ExTr. In contrast, pressor and sympathoexcitatory responses to bilateral microinjections of the ionotropic glutamate receptor antagonist, kynurenate (40 mM, 90 nl), were similar between groups. Bradycardic responses to bilateral microinjections of the GABAA antagonist bicuculline (0.1 mM, 90 nl) were attenuated by ExTr. These data indicate that alterations in neurotransmission at the level of the NTS contribute importantly to regulation of HR and LSNA in ExTr animals. In addition to alterations at NTS, these experiments suggest indirectly that changes in other cardiovascular nuclei contribute to the observed alterations in neural control of the circulation following ExTr.  相似文献   

19.
This study evaluates the effects of anesthesia and fluid support on hemodynamic parameters of the mechanically ventilated mouse of four different strains. All experiments were performed at a similar surgical level of anesthesia, as indicated by the probing of the pedal withdrawal reflex. Three anesthetic regimens [fentanyl-fluanisone-midazolam (FFM), ketamine-medetomidine-atropine (KMA), and isoflurane (ISO)], four commonly used mouse strains (Swiss, CD-1, BalbC, and C57Bl6), and three different fluid support strategies (no fluid, 0.2 ml x h(-1) x 10 g(-1) of 6% polystarch solution, and 0.5 ml x h(-1) x 10 g(-1) saline) were studied. Mean arterial pressure (MAP) or heart rate (HR) was similar among the four strains of mice except a trend toward lower HR for the BalbC mice. In terms of MAP, KMA is the preferred anesthetic for the Swiss and CD-1 mice, whereas KMA or ISO are recommended for BalbC or C57Bl6 mice. In terms of HR, ISO is the preferred anesthetic for the Swiss, CD-1, and C57Bl6 strains. No differences in HR for the three anesthetics were observed for the BalbC strain. Compared with administration of no fluid, both saline and polystarch administration similarly increased MAP by 7 +/- 2, 10 +/- 2, and 11 +/- 2 mmHg at t = 1, 2, and 3 h, respectively, whereas fluid administration was without effect on HR. Saline supplementation resulted in an increased dry-to-wet ratio of the heart and both fluid regimens decreased total hemoglobin in the blood from 12.6 +/- 0.5 to 10.4 +/- 0.5 g/100 ml. Saline administration was associated with blood acidosis (pH 7.20 +/- 0.03) compared with the Haes (pH 7.29 +/- 0.02) or no-fluid group (pH 7.34 +/- 0.03), whereas PCO(2) was approximately 30 mmHg for all groups. We conclude that at similar surgical levels of anesthesia, the preferable type of anesthesia (ISO or KMA, but never FFM) depends on the strain used and whether MAP or HR is the focus of study. Additional fluid support is beneficial in terms of raising arterial blood pressure, although this is at the cost of changes in organ water content and increased anemia.  相似文献   

20.
Challenges to energy homeostasis, such as cold exposure, can have consequences for both metabolic and cardiovascular functioning. We hypothesized that 1-wk cold exposure (4 degrees C) would produce concurrent increases in metabolic rate (VO(2); indirect calorimetry), heart rate (HR), and mean arterial blood pressure (MAP) measured by telemetry. In the initial hours of change in ambient temperature (T(a)), both spontaneously hypertensive rats (SHRs) and normotensive Sprague-Dawley rats showed rapid increases (in cold) or decreases (in rewarming) of VO(2), HR, and MAP, although the initial changes in MAP and HR were more exaggerated in SHRs. Throughout cold exposure, HR, VO(2), food intake, and locomotor activity remained elevated but MAP decreased in both strains, particularly in the SHR. During rewarming, all measures normalized quickly in both strains except MAP, which fell below baseline (hypotension) for the first few days. The results indicate that variations of T(a) produce rapid changes in a suite of cardiovascular and behavioral responses that have many similarities in hypertensive and normotensive strains of rats. The findings are consistent with the general concept that the cardiovascular responses to cold exposure in rats are closely related to and perhaps a secondary consequence of the mechanisms responsible for increasing heat production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号