首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human alpha-thrombin and histamine each stimulates protein phosphorylation in human umbilical vein endothelial cells (HUVEC). We have identified the most prominent of these phosphoproteins by immunoprecipitation as the human homolog of the widely distributed myristoylated alanine-rich C-kinase substrate (MARCKS). Stimulation by 0.1-10 U/ml of alpha-thrombin produces a time-dependent, sustained (plateau 3-5 min) level of MARCKS phosphorylation. MARCKS phosphorylation requires thrombin catalytic activity but not receptor binding and is also seen in response to stimulation by a peptide, TR (42-55), that duplicates a portion of the thrombin receptor tethered ligand created by thrombin proteolytic activity. One micromolar histamine, like alpha-thrombin, produces sustained phosphorylation of MARCKS (plateau 3-5 min). In contrast, 100 microM histamine results in rapid but transient MARCKS phosphorylation (peak 1-3 min). HUVEC treated with 100 microM histamine for 5 min can be restimulated by alpha-thrombin but not fresh histamine, suggesting that the histamine receptor was desensitized. MARCKS phosphorylation can also be induced by several exogenous protein kinase C (PKC) activators and both alpha-thrombin- and histamine-induced MARCKS phosphorylation are inhibited by the PKC antagonist staurosporine. However, while prolonged PMA pretreatment ablates histamine-induced MARCKS phosphorylation, the ability of thrombin to induce MARCKS phosphorylation is retained. These findings provide evidence for agonist-specific pathways of protein kinase activation in response to thrombin and histamine in HUVEC.  相似文献   

2.
We measured angiotensin I-converting enzyme (ACE) activity in a human endothelial cell to characterize the intracellular signal pathways of Klotho. COS-1 cells transfected with naked mouse membrane-form klotho plasmid DNA (pCAGGS-klotho) translated proper Klotho protein. This translated Klotho protein was secreted into the culture medium. Furthermore, ACE activity in human umbilical vein endothelial cells (HUVEC) was upregulated when HUVEC were co-cultured with COS-1 cells that were pre-transfected with pCAGGS-klotho. The conditioned medium from COS-1 cells pre-transfected with pCAGGS-klotho also dose-dependently upregulated ACE in HUVEC. In addition, the conditioned medium induced time- and dose-dependent enhancement of cAMP production in HUVEC. Rp-cAMP, an inhibitor of cAMP-dependent protein kinase A (PKA), inhibited the upregulation of ACE by Klotho protein. Our results suggest that mouse membrane-form Klotho protein acts as a humoral factor to increase ACE activity in HUVEC via a cAMP-PKA-dependent pathway. These findings may provide a new insight into the mechanism of Klotho protein.  相似文献   

3.
Thrombin-induced expression of endothelial adhesivity toward neutrophils (PMN) was studied using human umbilical vein endothelial cells (HUVEC). HUVEC were challenged with human alpha-thrombin for varying durations up to 120 min, after which the cells were fixed with 1% paraformaldehyde and 51Cr-labeled human PMN were added to determine PMN adhesion. Endothelial adhesivity increased within 15 min after alpha-thrombin exposure, and the response persisted up to 120 min. Expression of endothelial adhesion proteins, P-selectin (GMP-140, PADGEM, CD62), and intercellular adhesion molecule-1 (ICAM-1; CD54) on the endothelial surface was quantitated by increase in the specific binding of anti-P-selectin mAb G1 and anti-ICAM-1 mAb RR1/1 labeled with 125I. P-selectin expression was maximal at 5-15 min alpha-thrombin exposure and decayed to basal levels within 90 min. In contrast, ICAM-1 activity increased at 30 min and remained elevated for 120 min after alpha-thrombin challenge. The initial endothelial adhesivity was dependent on P-selectin expression since PMN adhesion occurring within the first 30 min after alpha-thrombin challenge was inhibited by mAb G1. The later prolonged PMN adhesion was ICAM-1 dependent since this response was inhibited by mAb RR1/1 and to the same degree by the anti-CD18 mAb IB4. Anti-ELAM-1 mAb BB11 had no effect on adhesion of PMN to the alpha-thrombin-challenged cells. The initial P-selectin expression and PMN adhesion responses were reproduced by the 14-amino peptide (SFLLRNPNDKYEPF) (thrombin-receptor activity peptide; TRP-14) which comprised the NH2 terminus created by thrombin's proteolytic action on its receptors. However, TRP-14-induced PMN adhesion was transient, and TRP-14 did not cause ICAM-1 expression. The ICAM-1-dependent PMN adhesion mediated by alpha-thrombin was protein synthesis independent since ICAM-1 expression and PMN adhesion were not inhibited by cycloheximide pretreatment of HUVEC. Moreover, Northern blot analysis indicated absence of ICAM-1 mRNA signal up to 180 min after alpha-thrombin challenge. In conclusion, thrombin-induced endothelial adhesivity involves early- and late-phase responses. The initial reversible PMN adhesion is mediated by rapid P-selectin expression via TRP-14 generation. Thrombin-induced PMN adhesion is stabilized by a protein synthesis-independent upregulation of the constitutive ICAM-1 activity which enables the interaction of ICAM-1 with the CD18 beta 2 integrin on PMN.  相似文献   

4.
We examined the effects of various cytokines on alpha-thrombin-stimulated prostaglandin (PG) I2 production, von Willebrand factor (vWF) secretion, and platelet-activating factor (PAF) synthesis in cultured human umbilical vein endothelial cells (HUVEC). A 24-h pretreatment with IL-1 beta doubled the low level of constitutive PGI2 production. In contrast, alpha-thrombin increased PGI2 production fivefold in untreated HUVEC. The most striking increase in PGI2 production was observed in IL-1 beta-treated HUVEC that were subsequently stimulated with thrombin. PGI2 production was two to three times greater than in untreated, thrombin-stimulated HUVEC and nearly eightfold greater than in IL-1 beta-treated but unstimulated HUVEC. Enhanced thrombin-stimulated PGI2 production was also observed in HUVEC pretreated with the related cytokines IL-1 alpha, TNF, or lymphotoxin. This cytokine effect was selective for PGI2 production because none of these cytokines altered either constitutive or thrombin-stimulated vWF secretion or PAF biosynthesis. IL-1 beta enhancement of thrombin-stimulated PGI2 production was concentration and time dependent and required protein synthesis. IL-1 beta pretreatment also enhanced PGI2 production in response to another agonist, histamine, and to exogenously added substrates, arachidonic acid or PGH2. Our results indicate that activation by IL-1 and related cytokines selectively primes endothelial cells for enhanced PGI2 production, but not vWF secretion or PAF synthesis, in response to thrombin and histamine. The evidence suggests that this effect is mediated through specific induction of biosynthetic enzymes for PGI2.  相似文献   

5.
6.
Cigarette smoking is ranked among the leading risk factors in the etiology of atherosclerotic vascular disease. The mechanisms, however, that link cigarette smoking to increased incidence of atherosclerosis are not understood. The adherence of circulating monocytes to the endothelium, migration into the subendothelium, and subsequent formation of foam cells are principal initial events in the development of atherosclerosis. We therefore determined whether cigarette smoke caused increased adherence of monocytes to endothelial cells and the cellular mechanism of this increased adherence. Cigrette smoke condensate (CSC), the particulate fraction of cigarette smoke derived from 2R1 standard research cigarettes, at a concentration of 25–30 μg/ml (average yield of CSC is 26.1 mg/cigarette), augmented (70–90%) basal adherence of human peripheral blood monocytes to a cultured monolayer of endothelial cells derived from bovine aorta (BAEC) and human umbilical vein (HUVEC). There was a concomitant increase in the expression of CD11b ligand on the surface of monocytes as determined by flow cytometry, utilizing FITC conjugated Mab MO-1 (CD11b). However, nicotine (1–15 μg/ml) and cadmium sulfate (10 μg/ml), constituents of CSC, individually or in combination had no effect either on CD11b expression or adherence of monocytes to endothelial cells. Treatment of HUVEC with CSC for 60 min also resulted in an increased expression of ICAM-1 and ELAM-1 as determined by mean fluorescence intensity of ICAM-1 and ELAM-1 labeled cells in flow cytometric analysis. The CSC induced expression of CD11b in monocytes was optimal at 25–30 min and was inhibited by protein kinase C inhibitors, staurosporine and H-7, and also by baicalein, a lipoxygenase inhibitor. Similarly, CSC induced ICAM-1 and ELAM-1 expression in HUVEC was inhibited by protein kinase C inhibitors. CSC stimulated the adherence of human monocytes but not the monocytic cell lines HL-60, U937, and THP-1 to endothelial cells. The CSC stimulated adherence of human monocytes was inhibited (80%) by MAb to CD11b and 50% by Mab to ICAM-1 and ELAM-1. These results suggest that cigarettee smoke particulate constituents activate protein kinase C, leading to increased surface expression of adhesive ligand CD11b on peripheral blood monocytes and counter receptor(s) ICAM-1 and ELAM-1 in endothelial cells. The expression of ligand and counter receptor leads to potentiated adherence of monocytes to endothelial cells, an initial event in the pathogenesis of cigarette smoke induced inflammatory response in the vessel wall. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Adhesion of leukocytes to the endothelium is an essential event in inflammatory cell emigration from intravascular to extravascular compartment. While many mediators (e.g. cytokines) enhance cell adhesion through expression of adhesion molecules on endothelial cells the mechanism of this phenomenon is not known. In this study we examined the role of cAMP in mediation of the adhesion of monocytic cell line, U937 to human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with cholera toxin (10-500 ng/ml) for 4 hrs greatly enhanced the adhesiveness of HUVEC for U937 cells. The magnitude of adhesion stimulation produced by cholera toxin was comparable to that produced by the cytokines TNF alpha or IL-1 (2-3 folds). Upregulation of U937 cells adhesion to HUVEC was also achieved by short incubation (less than 1 hr) of HUVEC with cAMP elevating agents such as forskolin (10 microM), isoproterenol (0.3-30 microM), epinephrine (10-100 microM), norepinephrine (100 microM) as well as by endogenously added dibutyryl cAMP (0.05-2.0 mM). Dibutyryl cyclic GMP (0.05-2.0 mM) was ineffective in promoting adhesion. These data suggest that cAMP might be an important intracellular modulator of leukocyte adhesion to endothelium and therefore promoter of pro-inflammatory processes.  相似文献   

8.
We investigated the effect of agents which raise intracellular levels of cyclic AMP (cAMP) on the secretion of tissue-type plasminogen activator (t-PA) and type 1 plasminogen activator inhibitor (PAI-1) by cultured human umbilical-vein endothelial cells. Significant inhibition of baseline (unstimulated) t-PA and PAI-1 secretion was observed in response to several agents which, when added exogenously, cause increased intracellular cAMP: cholera toxin, 1-methyl-3-isobutylxanthine (MIX), dibutyryl-cAMP, and prostaglandin E1. These agents also significantly reduced or abolished the previously reported stimulatory effects of thrombin and histamine on t-PA secretion, and, with the exception of MIX, significantly reduced the previously reported stimulatory effect of thrombin on PAI-1 secretion. MIX at a concentration (10 microM) below that required to inhibit t-PA and PAI-1 secretion when tested alone, significantly increased the inhibitory effects of cholera toxin, dibutyryl-cAMP, and prostaglandin E1 on both t-PA and PAI-1 secretion. The data suggest that elevated intracellular levels of cAMP inhibit both spontaneous endothelial secretion of t-PA and PAI-1, and secretion induced by agents (thrombin and histamine) which stimulate endothelial phosphoinositide metabolism, consistent with bidirectional regulation of endothelial fibrinolytic protein secretion by the adenylate cyclase and phosphoinositide signal transduction pathways. The inhibitory effects of cAMP do not appear to be specific for t-PA and PAI-1, since cholera toxin and MIX also inhibited endothelial secretion of the adhesive protein, fibronectin. Significant inhibition of baseline endothelial t-PA and PAI-1 secretion was also caused by the stable prostacyclin analogue iloprost (ZK 36 374) and by arachidonic acid, which is converted by endothelial cells to prostacyclin, suggesting that prostacyclin produced endogenously by endothelial cells may inhibit secretion of fibrinolytic proteins by increasing intracellular cAMP.  相似文献   

9.
Adhesion and migration of leukocytes into the surrounding tissues is a crucial step in inflammation, immunity, and atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. Butyrate, a natural short-chain fatty acid produced by bacterial fermentation of dietary fiber, has been attributed with anti-inflammatory activity in inflammatory bowel disease. Butyrate in vitro is active in colonocytes and several other cell types. We have studied the effect of butyrate on expression of endothelial leukocyte adhesion molecules by cytokine-stimulated human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with butyrate-inhibited tumor necrosis factor-alpha (TNFalpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) in a time and concentration-dependent manner. Butyrate at 10 mM/L inhibited interleukin-1 (IL-1)-stimulated VCAM-1 and ICAM-1 expression. The effect of butyrate on cytokine-stimulated VCAM-1 expression was more pronounced than in the case of ICAM-1. Butyrate decreased TNFalpha-induced expression of mRNA for VCAM-1 and ICAM-1. Suppressed expression of VCAM-1 and ICAM-1 was associated with reduced adherence of monocytes and lymphocytes to cytokine-stimulated HUVEC. Butyrate inhibited TNFalpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVEC. Finally, butyrate enhanced peroxisome proliferator-activated receptor-alpha (PPARalpha) expression in HUVEC. These results demonstrate that butyrate may have anti-inflammatory properties not only in colonocytes but also in endothelial cells. The anti-inflammatory and (perhaps) antiatherogenic properties of butyrate may partly be attributed to an effect on activation of NF-kappaB and PPARalpha and to the associated expression of VCAM-1 and ICAM-1. The present findings support further investigations on the therapeutic benefits of butyrate in several pathological events involving leukocyte recruitment.  相似文献   

10.
Eicosapentaenoic acid (EPA) may protect against atherosclerotic disease, and modulation of endothelium function is one possible mechanism. Hypoxia/reoxygenation (H/R) is a potential risk factor for the pathogenesis of atherosclerosis, and it causes endothelial dysfunction. To evaluate whether EPA may improve the endothelial dysfunction under the condition of H/R, we examined endothelial gap junctional intercellular communication (GJIC), which is said to be important for the endothelium to maintain its normal function. The results indicate that H/R induced a temporal reduction in GJIC after 2 h of reoxygenation in cultured human umbilical vein endothelial cells (HUVEC). This reduction in GJIC was not observed in cells pretreated with 3 microg/ml EPA for 2 days. The results of immunofluorescence show that 2 h reoxygenation caused an increased production of tyrosine-phosphorylated proteins, which was inhibited by EPA pretreatment. Immunoprecipitation demonstrated that tyrosine residues of connexin 43 (Cx43), an important gap junctional protein in HUVEC, were phosphorylated by H/R. However, pretreatment with EPA significantly suppressed this increased phosphorylation. The protective effect of EPA on the reduction in GJIC was also observed in cells treated with 1.5 mM vanadate, a tyrosine phosphatase inhibitor. These data suggest that EPA may ameliorate the H/R-induced GJIC abnormality via inhibition of the tyrosine kinase activation.  相似文献   

11.
Chen A  Dong L  Leffler NR  Asch AS  Witte ON  Yang LV 《PloS one》2011,6(11):e27586
Endothelium-leukocyte interaction is critical for inflammatory responses. Whereas the tissue microenvironments are often acidic at inflammatory sites, the mechanisms by which cells respond to acidosis are not well understood. Using molecular, cellular and biochemical approaches, we demonstrate that activation of GPR4, a proton-sensing G protein-coupled receptor, by isocapnic acidosis increases the adhesiveness of human umbilical vein endothelial cells (HUVECs) that express GPR4 endogenously. Acidosis in combination with GPR4 overexpression further augments HUVEC adhesion with U937 monocytes. In contrast, overexpression of a G protein signaling-defective DRY motif mutant (R115A) of GPR4 does not elicit any increase of HUVEC adhesion, indicating the requirement of G protein signaling. Downregulation of GPR4 expression by RNA interference reduces the acidosis-induced HUVEC adhesion. To delineate downstream pathways, we show that inhibition of adenylate cyclase by inhibitors, 2',5'-dideoxyadenosine (DDA) or SQ 22536, attenuates acidosis/GPR4-induced HUVEC adhesion. Consistently, treatment with a cAMP analog or a G(i) signaling inhibitor increases HUVEC adhesiveness, suggesting a role of the G(s)/cAMP signaling in this process. We further show that the cAMP downstream effector Epac is important for acidosis/GPR4-induced cell adhesion. Moreover, activation of GPR4 by acidosis increases the expression of vascular adhesion molecules E-selectin, VCAM-1 and ICAM-1, which are functionally involved in acidosis/GPR4-mediated HUVEC adhesion. Similarly, hypercapnic acidosis can also activate GPR4 to stimulate HUVEC adhesion molecule expression and adhesiveness. These results suggest that acidosis/GPR4 signaling regulates endothelial cell adhesion mainly through the G(s)/cAMP/Epac pathway and may play a role in the inflammatory response of vascular endothelial cells.  相似文献   

12.
Transforming growth factor-beta1 (TGF-beta1) is reported to exert both pro- and anti-inflammatory effects on the chronic activation of endothelial cells (ECs) in vitro by cytokines such as tumour necrosis factor-alpha (TNF-alpha). However, the effects of TGF-beta1 on acute inflammatory responses of ECs in vitro (e.g. to thrombin) have not been characterised. Pretreatment with TGF-beta1 (10 ng/mL) effectively inhibited all the thrombin-stimulated responses in rat aortic endothelial cells (RAECs) examined: adhesion and migration of polymorphonuclear leukocytes, adhesion of platelets and lymphocytes. Substantial inhibition of thrombin stimulation occurred after 30 min of pretreatment with TGF-beta1 and maximal inhibition was obtained after 1-20 h of pretreatment. Inhibition by TGF-beta1 pretreatment for 30 min was not affected by cycloheximide and was therefore independent of protein synthesis. Treatment with TGF-beta1 for 20 h did not affect the total levels of P-selectin and von Willebrand factor (vWF) in RAECs, but reduced thrombin-stimulated recruitment of P-selectin and vWF to the cell surface. The data demonstrate that TGF-beta1 exerts a potent anti-thrombin effect on ECs, effective after long and short pretreatment times.  相似文献   

13.
Recombinant preparations of human anti-inflammatory cytokines: IL-4, IL-13 and IL-10, inhibited LPS-induced synthesis of TNFalpha and IL-6 in the whole human blood tested in vitro. These cytokines also inhibited LPS-induced IL-6 and TNF mRNA accumulation in isolated human blood monocytes/macrophages. On the other hand, similar concentrations of IL-4 and IL-13 (but not IL-10) enhanced synthesis of IL-6 in cultured human umbilical vein endothelial cells (HUVEC). In human hepatoma HepG2 cells IL-4 and IL-13 (but not IL-10) inhibited IL-6-induced synthesis of haptoglobin. These differential responses to the tested anti-inflammatory cytokines were observed at mRNA and protein levels and may reflect cell specificities in signalling pathways and gene expression. When HUVEC and HepG2 cells were cultured together and stimulated with LPS the addition of IL-4 or IL-13 resulted in the reduction of LPS-induced and IL-6-mediated haptoglobin synthesis. Thus in co-culture the inhibitory effects of IL-4 or IL-13 on HepG2 cells prevail over stimulation of IL-6 synthesis in HUVEC.  相似文献   

14.
Prostaglandins (PGs) have numerous cardiovascular and inflammatory effects. Cyclooxygenase (COX), which exists as COX-1 and COX-2 isoforms, is the first enzyme in the pathway in which arachidonic acid is converted to PGs. Prostaglandin E2 (PGE2) exerts a variety of biological activities for the maintenance of local homeostasis in the body. Elucidation of PGE2 involvement in the signalling molecules such as COX could lead to potential therapeutic interventions. Here, we have investigated the effects of PGE2 on the induction of COX-2 in human umbilical vein endothelial cells (HUVEC) treated with interleukin-1beta (IL-1beta 1 ng/ml). COX activity was measured by the production of 6-keto-PGF1alpha, PGE2, PGF2alpha and thromboxane B2 (TXB2) in the presence of exogenous arachidonic acids (10 microM for 10 min) using enzyme immunoassay (EIA). COX-1 and COX-2 protein was measured by immunoblotting using specific antibody. Untreated HUVEC contained only COX-1 protein while IL-1beta treated HUVEC contained COX-1 and COX-2 protein. PGE2 (3 microM for 24h) did not affect on COX activity and protein in untreated HUVEC. Interestingly, PGE2 (3 microM for 24h) can inhibit COX-2 protein, but not COX-1 protein, expressed in HUVEC treated with IL-1beta. This inhibition was reversed by coincubation with forskolin (100 microM). The increased COX activity in HUVEC treated with IL-1beta was also inhibited by PGE2 (0.03, 0.3 and 3 microM for 24h) in a dose-dependent manner. Similarly, forskolin (10, 50 or 100 microM) can also reverse the inhibition of PGE2 on increased COX activity in IL-1beta treated HUVEC. The results suggested that (i) PGE2 can initiate negative feedback regulation in the induction of COX-2 elicited by IL-1beta in endothelial cells, (ii) the inhibition of PGE2 on COX-2 protein and activity in IL-1beta treated HUVEC is mediated by cAMP and (iii) the therapeutic use of PGE2 in the condition which COX-2 has been involved may have different roles.  相似文献   

15.
Regulated secretion of EC (endothelial cell) vWF (von Willebrand factor) is part of the haemostatic response. It occurs in response to secretagogues that raise intracellular calcium or cAMP. Statins are cholesterol-lowering drugs used for the treatment of cardiovascular disease. We studied the effect of fluvastatin on regulated secretion of vWF from HUVEC (human umbilical-vein ECs). Secretion in response to thrombin, a protease-activated receptor-1 agonist peptide, histamine, forskolin and adrenaline (epinephrine) was inhibited. This inhibition was reversed by mevalonate or geranylgeranyl pyrophosphate, and mimicked by a geranylgeranyl transferase inhibitor, demonstrating that the inhibitory mechanism includes inhibition of protein geranylgeranylation. To investigate this mechanism further, calcium handling and NO (nitric oxide) regulation were studied in fluvastatin-treated HUVEC. Intracellular calcium mobilization did not correlate with vWF secretion. Fluvastatin increased eNOS [endothelial NOS (NO synthase)] expression, but NOS inhibitors failed to reverse the effect of fluvastatin on vWF secretion. Exogenous NO did not inhibit thrombin-induced vWF secretion. Many small GTPases are geranylgeranylated and some are activated by secretagogues. We overexpressed DN (dominant negative) Rho GTPases, RhoA, Rac1 and Cdc42 (cell division cycle 42), in HUVEC. DNCdc42 conferred inhibition of thrombin- and forskolin-induced vWF secretion. We conclude that, via inhibition of protein geranylgeranylation, fluvastatin is a broadspectrum inhibitor of regulated vWF secretion. Geranylgeranylated small GTPases with functional roles in regulated secretion, such as Cdc42, are potential targets for the inhibitory activity of fluvastatin.  相似文献   

16.
TNF-alpha impairs endothelial cell growth and angiogenesis. The anti-angiogenic effects of TNF-alpha have mainly been explained by its modulating vascular endothelial growth factor (VEGF)-specific angiogenic pathway. Hepatocyte growth factor (HGF) also promotes the growth of vascular endothelial cells and the development of new blood vessels through interaction with its specific receptor, c-met. However, it is little known whether TNF-alpha interacts with the HGF system or not. In this study, we examined the effect of TNF-alpha on HGF receptor function. In human umbilical venous endothelial cells (HUVEC), TNF-alpha acutely inhibited the phosphorylation and activation of c-met induced by HGF. The ability of TNF-alpha to inhibit HGF-induced c-met activity was impaired by sodium orthovanadate, suggesting that the inhibitory effect of TNF-alpha was mediated by a protein-tyrosine phosphatase. Treatment of HUVEC with TNF-alpha impairs the ability of HGF to activate MAPK and Akt, and this effect was blocked by SOV. HGF-induced c-met responses specifically associated with endothelial cell proliferation and mitogen-activated protein kinase activation were also inhibited by TNF-alpha, and these were reversed by sodium orthovanadate. HGF-induced SHP-1 (a cytoplasmic protein-tyrosine phosphatase) and pretreatment of HUVEC with TNF-alpha prior to HGF treatment resulted in substantial increase in the amount of SHP-1. These data suggest that TNF-alpha employs a protein-tyrosine phosphatase and may exert its anti-angiogenic function in part by modulating the HGF-specific angiogenic pathway in pathological settings.  相似文献   

17.
18.
Adrenomedullin (AM) and corticotrophin (ACTH) are both vasoactive peptides produced by a variety of cell types, including endothelial cells. Although AM and ACTH are considered to be important in the control of blood pressure and the response to stress, respectively, their role in inflammation and the immune response has not been clarified. This study shows, with the use of a cell-based ELISA, that AM and ACTH induce cell surface expression of the adhesion molecules E-selectin, VCAM-1, and ICAM-1 on human umbilical vein endothelial cells (HUVEC). Furthermore, this effect appears to be mediated in part via elevation of cAMP, given that both peptides elevate cAMP, the cell-permeable cAMP analog dibutyryl cAMP is able to mimic induction of all three cell adhesion molecules and the effect of AM and ACTH is inhibited by the adenylyl cyclase inhibitor SQ-22536. These findings demonstrate a role for AM and ACTH in the regulation of the immune and inflammatory response. E-selectin; intercellular adhesion molecule-1; vascular cell adhesion molecule-1; adrenomedullin; adrenocorticotropic hormone; human umbilical vein endothelial cells  相似文献   

19.
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N‐sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N‐sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2‐mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM‐induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N‐sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2‐mediated cell–cell communication.  相似文献   

20.
The regulation of prostacyclin (PGI2) synthesis by cultured human umbilical vein endothelium (HUVEC) was investigated. HUVEC monolayer generation of PGI2 was monitored by RIA of 6-keto PGF1 alpha and dose-dependent increases observed with human alpha- and gamma-thrombins, histamine, or arachidonate. Alpha thrombin (10 nM) produced levels of 6-keto PGF1 alpha approximating responses with 1 microM gamma-thrombin, 5 microM arachidonate, or 10 microM histamine. Diisopropyl phosphorofluoridate-inactivated alpha-thrombin did not stimulate PGI2 release, demonstrating that catalytic activity was required for thrombin-stimulated PGI2 release. Sodium fluoride (NaF), at concentrations known to activate guanine nucleotide regulatory proteins (G proteins), directly stimulated HUVEC PGI2 synthesis in a dose-dependent and time-dependent manner (20 mM NaF, 4.4 +/- 0.5-fold increase at 10 min, 11.9 +/- 1.5-fold increase at 30 min). Neither alpha-thrombin nor NaF-stimulated PGI2 release was dependent upon the availability of extracellular Ca++). The hypothesis that G proteins are involved in agonist-stimulated PGI2 synthesis was further supported by studies using digitonin-permeabilized HUVEC monolayers challenged with another G protein activator, guanosine 5'-0-3-thiotrisphosphate (GTP gamma S), which effected significant dose-dependent increases in PGI2 synthesis compared with control levels of 6-keto PGF1 alpha. In contrast, the G-protein inhibitor GDP beta S, (guanosine 5'-0-2-thiodiphosphate), attenuated alpha-thrombin-mediated prostaglandin generation. Treatment of HUVEC monolayers with pertussis toxin (1 microgram/ml) did not inhibit the PGI2 synthesis stimulated by either alpha-thrombin, NaF, or histamine but catalyzed the ADP ribosylation of a 40 kDa membrane protein which cross-reacted with antisera against a synthetic peptide corresponding to an amino acid sequence common to the alpha-subunit of other G-proteins. Preincubation of HUVEC microsomal membranes with alpha-thrombin diminished pertussis toxin-catalyzed ADP ribosylation in a time-dependent manner. These data suggest that thrombin stimulation of PGI2 synthesis by HUVEC monolayers requires the catalytically functional enzyme and further suggests that the thrombin-occupied receptor is coupled to phospholipase activities by a pertussis toxin-insensitive guanine nucleotide regulatory protein in human endothelial cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号