首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Legume iso/flavonoids have been implicated in the nodulation process, but questions remain as to their specific role(s), and no unequivocal evidence exists showing that these compounds are essential for nodulation. Two hypotheses suggest that the primary role of iso/flavonoids is their ability to induce rhizobial nod gene expression and/or their ability to modulate internal root auxin concentrations. The present work provides direct, genetic evidence that isoflavones are essential for nodulation of soybean roots because of their ability to induce the nodulation genes of Bradyrhizobium japonicum. Expression of isoflavone synthase (IFS), a key enzyme in the biosynthesis of isoflavones, is specifically induced by B. japonicum. When IFS was silenced using RNA interference in soybean hairy root composite plants, these plants had severely reduced nodulation. Surprisingly, pre-treatment of B. japonicum or exogenous application to the root system of either of the major soybean isoflavones, daidzein or genistein, failed to restore normal nodulation. Silencing of chalcone reductase led to very low levels of daidzein and increased levels of genistein, but did not affect nodulation, suggesting that the endogenous production of genistein was sufficient to support nodulation. Consistent with a role for isoflavones as endogenous regulators of auxin transport in soybean roots, silencing of IFS resulted in altered auxin-inducible gene expression and auxin transport. However, use of a genistein-hypersensitive B. japonicum strain or purified B. japonicum Nod signals rescued normal nodulation in IFS-silenced roots, indicating that the ability of isoflavones to modulate auxin transport is not essential to nodulation.  相似文献   

3.
Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

4.
Lactofen, the active ingredient of the soybean disease resistance-inducing herbicide, Cobra, induces large accumulations of isoflavone conjugates and aglycones in soybean tissues. The predominant isoflavones induced in cotyledon tissues are daidzein (and its conjugates) and formononetin and glycitein aglycones. The latter two isoflavones are usually present only at very low levels in soybean seedling tissues. In leaves, the predominant lactofen-induced isoflavones are daidzein and formononetin aglycones and the malonyl-glucosyl conjugate of genistein. Isoflavone induction also occurs in cells distal to the point of treatment, but is only weakly systemic. Lactofen also induces elicitation competency, the capacity of soybean cells to accumulate the pterocarpan phytoalexin glyceollin in response to glucan elicitors from the cell wall of the pathogen Phytophthora sojae. Comparison of the activity of a series of diphenyl ether herbicides demonstrated that while all diphenyl ethers tested induced some degree of elicitation competency, only certain ones induced isoflavone accumulation in the absence of glucan elicitor. As a group the diphenyl ethers are thought to inhibit protoporhyrinogen oxidase, eventually leading to singlet oxygen generation. Another singlet oxygen generator, rose bengal, also induced elicitation competency, but little isoflavone accumulation. It is hypothesized that diphenyl ether-induced activated oxygen species mimic some aspects of hypersensitive cell death, which leads to elicitation competency in infected tissues.  相似文献   

5.
利用高效液相色谱法和实时定量PCR方法,分别测定了2个异黄酮含量显著差异的大豆品种鲁黑豆2号(LHD2)和南汇早黑豆(NHZ)在子粒发育过程中的异黄酮含量变化以及异黄酮合成相关酶基因的表达模式变化,试图分析异黄酮积累与各基因表达量变化的相关关系。结果表明在大豆子粒发育过程中,异黄酮含量逐渐升高,而不同异黄酮合成相关酶基因的表达趋势不同,CHS7、CHS8、CHR、CHI1A和IFS2的表达趋势与异黄酮积累模式基本一致,而IFS1和CHI1B1的表达趋势与异黄酮积累模式相反。IFR的表达模式在2个大豆品种中存在相反的趋势,在LHD2中与异黄酮组分积累趋势相反,而在NHZ中与异黄酮组分积累趋势相同。结果还表明,同一基因家族中不同基因在子粒发育过程中的表达量也存在差异。查尔酮合酶基因家族中CHS7和CHS8以及查尔酮异构酶基因家族的CHI1A的表达水平相对其他成员较高,异黄酮合酶基因家族中IFS2的表达量显著高于IFS1的表达量,预示这些基因家族在大豆子粒异黄酮积累过程中存在功能分化。此外,各基因表达模式与异黄酮积累的相关分析结果表明,不同基因表达模式与异黄酮积累的相关性在2个品种中也不尽相同。LHD2中CHS7、CHS8和IFS2在子粒发育过程中的表达量变化与不同异黄酮组分呈显著正相关,CHI1B1基因的表达量变化与不同异黄酮组分呈显著负相关。而在NHZ中,IFR在子粒发育过程中的表达量变化与多个异黄酮组分呈显著正相关。这预示了不同大豆品种异黄酮含量差异的潜在遗传基础。各异黄酮合成相关酶基因表达量变化的相关分析表明,在2个品种中,苯丙氨酸水解酶PAL1与4CL,4CL与CHS2以及CHS1与IFS2基因的表达量均呈现显著正相关。表明这些基因可能通过协同作用共同调控异黄酮的合成与积累。这些结果为今后利用基因工程提高大豆异黄酮含量奠定了基础。  相似文献   

6.
7.
8.
The zoospores of Phytophthora sojae are chemotactically attracted to the isoflavones genistein and daidzein that are released by soybean roots. In this study we have examined the response of P. sojae zoospores to a wide range of compounds having some structural similarity to genistein and daidzein, including isoflavones, flavones, chalcones, stilbenes, benzoins, benzoates, benzophenones, acetophenones, and coumarins. Of 59 compounds examined, 43 elicited some response. A comparison of the chemotactic responses elicited by the various compounds revealed a primary role for the phenolic 4(prm1)- and 7-hydroxyl groups on the isoflavone structure. A few compounds acted as repellents, notably methylated flavones with a hydrophobic B ring. The chemotactic response to many of the analogs was markedly different among different strains of P. sojae.  相似文献   

9.
Hua C  Wang Y  Zheng X  Dou D  Zhang Z  Govers F  Wang Y 《Eukaryotic cell》2008,7(12):2133-2140
For the soybean pathogen Phytophthora sojae, chemotaxis of zoospores to isoflavones is believed to be critical for recognition of the host and for initiating infection. However, the molecular mechanisms underlying this chemotaxis are largely unknown. To investigate the role of G-protein and calcium signaling in chemotaxis, we analyzed the expression of several genes known to be involved in these pathways and selected one that was specifically expressed in sporangia and zoospores but not in mycelium. This gene, named PsGPA1, is a single-copy gene in P. sojae and encodes a G-protein alpha subunit that shares 96% identity in amino acid sequence with that of Phytophthora infestans. To elucidate the function, expression of PsGPA1 was silenced by introducing antisense constructs into P. sojae. PsGPA1 silencing did not disturb hyphal growth or sporulation but severely affected zoospore behavior, including chemotaxis to the soybean isoflavone daidzein. Zoospore encystment and cyst germination were also altered, resulting in the inability of the PsGPA1-silenced mutants to infect soybean. In addition, the expressions of a calmodulin gene, PsCAM1, and two calcium- and calmodulin-dependent protein kinase genes, PsCMK3 and PsCMK4, were increased in the mutant zoospores, suggesting that PsGPA1 negatively regulates the calcium signaling pathways that are likely involved in zoospore chemotaxis.  相似文献   

10.
以不同耐旱性的2个大豆品种(高耐旱JP-6、低耐旱JP-16)为研究材料,采用高效液相色谱和实时荧光定量PCR技术,分析不同时间持续干旱胁迫下,大豆叶片和根系中异黄酮的积累变化及关键酶基因的表达情况.结果表明:大豆根部异黄酮含量显著高于叶部,而异黄酮关键酶基因的表达量则在叶片中更高,耐旱品种JP-6根部的异黄酮积累量更大.随着干旱胁迫持续时间的增加,不同耐旱品种的异黄酮合成与积累变化规律存在显著差异:强耐旱品种JP-6的根和叶中,异黄酮积累量均呈现先下降后升高的趋势;而弱耐旱品种JP-16则相反,异黄酮积累量在不同部位中均呈现先上升后降低的趋势;除JP-6叶中C4H4CLIFS2等异黄酮合成上游基因外,其他不同品种、不同部位的关键酶基因表达量均随着干旱胁迫持续时间的增加,呈现先下降后上升的趋势.大豆叶片是异黄酮的主要合成部位,大豆根部也存在少量的异黄酮合成.弱耐旱大豆根部的异黄酮合成和最终积累量均较低,强耐旱品种则较高.根部异黄酮积累量高的大豆品种,其耐旱性更强.  相似文献   

11.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

12.
光照对大豆幼苗组织中异黄酮含量和分布的影响   总被引:13,自引:0,他引:13  
利用高效液相色谱(HPLC)测定了不同光照处理的大豆(Glycinemax(L.)Merri.)幼苗不同组织的异黄酮类含量。子叶中最高,叶片和根部相对较少。子叶的异黄酮以大豆甙和染料木甙及其丙二酰基结合体为主,且在光照条件下,异黄酮含量随光照时间的增加而显著升高;相反,黑暗中的异黄酮含量随苗龄的增加呈下降趋势;当子叶由黑暗转为光照处理以后,异黄酮含量同样随光照时间的增加而升高。在叶片和根部异黄酮含量和种类也因光照条件的不同而有很大差异。光照条件下,叶片中以染料木甙及其丙二酰结合体和黄酮芦丁为主,且随时间增加呈上升趋势;黑暗中的黄化叶片,则以大豆甙和丙二酰结合体为主,但随时间的变化不明显。在幼苗根部,黑暗条件下几乎检测不出异黄酮的存在;光照条件下,则可检测到5种异黄酮,其中以大豆甙元及其衍生物占主要部分。实验证实了光照对大豆异黄酮的积累有明显的促进作用  相似文献   

13.
The contents of isoflavones in the developing soybean seedling tissues under different light conditions were examined by high-performance liquid chromatography (HPLC). The results indicated that the total contents of isoflavones in soybean seedling tissues were remarkably different, being the highest in the cotyledons and lower in the leaves and roots. In the cotyledons, the isoflavones like daidzin, genistin and their malonyl conjugates were the major metabolites and were increased markedly with the time of light exposure. In contrast, there was a decrease in the content of isoflavones in the dark. When the dark grown seedlings were tranferred to the light, an increase of the isoflavone content was observed. In the leaves and roots, there was also a marked difference in the contents and types of isoflavones due to various light conditions. Leaves contained mainly the isoflavones such as genistin, malonyl gensistin and flavones rutin, which were increased gradually under light condition, but in the dark, daidzin and malonyl daidzin were the major metabolites and did not change markedly with time. In the roots, no isoflavone was detected in the dark, while five isoflavones were found in the light-grown seedlings, and all root sections were predominated by daidzein and its conjugates. These results provided the evidence that light strongly stimulates the accumulation of isoflavones in soybean seedling tissues.  相似文献   

14.
Hairy root cultures of a model legume, Lotus japonicus, were established to characterize two heterologous cDNAs encoding enzymes involved in isoflavone biosynthesis, i.e. licorice 2-hydroxyisoflavanone synthase (IFS) and soybean 2-hydroxyisoflavanone dehydratase (HID) catalyzing sequential reactions to yield isoflavones. While the control and the IFS overexpressor did not accumulate detectable isoflavones, the HID overexpressors did accumulate daidzein and genistein, showing that HID is a critical determinant of isoflavone productivity. Production of coumestrol in all the genotypes and isoliquiritigenin/liquiritigenin in IFS + HID-overexpressing lines was also noted. These results provide insight into the regulatory mechanism that controls isoflavonoid biosynthesis.  相似文献   

15.
Intact soybean (Glycine max L. [Merr.]) tissues show distinct proximal and distal cell responses to the Phytophthora sojae (Kauf. and Gerde.) wall glucan elicitor. Proximal cells respond with accumulations of glyceollin and phenolic polymers, whereas distal cells respond with an increase of isoflavone conjugates. Comparison of the activities of the P. sojae glucan in the classical cut cotyledon and a cotyledon infiltration assay suggests that the proximal, but not the distal, responses to elicitor require tissue wounding. Washing the surface of cut cotyledons prior to elicitor treatment also greatly diminishes the proximal responses, which can be restored in a dose-dependent manner by prior treatment of the washed cells with wound exudate from cut "donor" cotyledons. Thus, discrete wound-associated factors, which we term elicitation competency factors, are required for the proximal cell response to the glucan elicitor. The wound factors induce a competent state that is transient in nature. Maximal elicitor response is seen 2 to 3 h after wounding, and cells become elicitor nonresponsive after 4 h. Competency is markedly affected by the age of tissues; cotyledons become more inherently competent as they approach senescence. The time course of attainment of the competent state and its duration are strongly affected by light and temperature. Since the wound-associated competency factors can also be obtained from washings of hypersensitive lesions, we hypothesize that similar competency factors may be released from hypersensitively dying cells in incompatible infections. This event may program the immediately surrounding cells to make them competent for the proximal defense responses.  相似文献   

16.
Plant secondary metabolites have always been a focus of study due to their important roles in human medicine and nutrition. We transferred the isoflavone synthase (IFS) gene into soybean [Glycine max (L.) Merr.] using the Agrobacterium-mediated transformation method in an attempt to produce transformed soybean plants which produced increased levels of the secondary metabolite, isoflavone. Although the trial to produce transgenic plant failed due to unestablished hygromycin selection, transformed callus cell lines were obtained. The induction rate and degree of callus were similar among the three cultivars tested, but light illumination positively influenced the frequency of callus formation, resulting in a callus induction rate of 74% for Kwangan, 67% for Sojin, and 73% for Duyou. Following seven to eight subcultures on selection media, the isoflavone content of the transformed callus lines were analyzed by high-performance liquid chromatography. The total amount of isoflavone in the transformed callus cell lines was three- to sixfold higher than that in control callus or seeds. Given the many positive effects of isoflavone on human health, it may be possible to adapt our transformed callus lines for industrialization through an alternative cell culture system to produce high concentrations of isoflavones.  相似文献   

17.
异黄酮是一类具有C-6/C-3/C-6骨架的二次代谢产物,具有抗氧化和抗肿瘤活性。异黄酮与黄酮类物质具有相似的苯丙烷生物合成途径。天然的绝大部分异黄酮分布在豆科植物中,目前在大豆中已经发现了超过12个异黄酮(苷)。大豆异黄酮的生物合成主要涉及三个关键的酶查尔酮合酶(CHS)、查尔酮异构酶(CHI)和异黄酮合酶(IFS)。总结了大豆异黄酮的提取分离方法和生物合成途径,着重综述了CHI、CHS、IFS生物学特征和功能及异黄酮的代谢工程研究。  相似文献   

18.
He X  Blount JW  Ge S  Tang Y  Dixon RA 《Planta》2011,233(4):843-855
Roots of kudzu (Pueraria lobata) are a rich source of isoflavone O- and C-glycosides. Although O-glycosylation of (iso)flavonoids has been well characterized at the molecular level, no plant isoflavonoid C-glycosyltransferase genes have yet been isolated. To address the biosynthesis of kudzu isoflavonoids, we generated 6,365 high-quality expressed sequence tags (ESTs) from a subtraction cDNA library constructed using RNA from roots that differentially accumulate puerarin. The ESTs were clustered into 722 TCs and 3,913 singletons, from which 15 family I glycosyltransferases (UGTs) were identified. Hierarchical clustering analysis of the expression patterns of these UGTs with isoflavone synthase (IFS) in a range of tissues identified UGTs with potential functions in isoflavone glycosylation. The open reading frames of these UGTs were expressed in E. coli for functional analysis, and one was shown to preferentially glycosylate isoflavones at the 7-O-position. In addition, ESTs corresponding to chalcone synthase, chalcone reductase, chalcone isomerase (CHI) and 2-hydroxyisoflavanone dehydratase were identified. Recombinant CHI proteins had high activities with both 6′-deoxy- and 6′-hydroxy chalcones, typical of Type II CHIs. Establishment of this EST database and identification of genes associated with kudzu isoflavone biosynthesis and glycosylation provide a new resource for metabolic engineering of bioactive kudzu isoflavones.  相似文献   

19.
Graham MY 《Plant physiology》2005,139(4):1784-1794
Lactofen belongs to the diphenylether class of herbicides, which targets protoporphyrinogen oxidase, which in turn causes singlet oxygen generation. In tolerant plants like soybean (Glycine max), the chemical nonetheless causes necrotic patches called "bronzing" in contact areas. Here it is shown that such bronzing is accompanied by cell death, which was quantified from digital microscopic images using Assess Software. Cellular autofluorescence accompanied cell death, and a homolog of the cell death marker gene, Hsr203j, was induced by lactofen in treated soybean tissues. Thus, this form of chemically induced cell death shares some hallmarks of certain types of programmed cell death. In addition to the cell death phenotype, lactofen caused enhanced expressions of chalcone synthase and chalcone reductase genes, mainly in the exposed and immediately adjacent (proximal) cells. Furthermore, isoflavone synthase genes, which are wound inducible in soybean, were up-regulated by lactofen in both proximal and distal cell zones in minimally wounded cotyledons and further enhanced in wounded tissues. Moreover, if the wall glucan elicitor from Phytophthora sojae was present during lactofen treatment, the induction of isoflavone synthase was even more rapid. These results are consistent with the fact that lactofen triggers massive isoflavone accumulations and activates the capacity for glyceollin elicitation competency. In addition, lactofen induces late expression of a selective set of pathogenesis-related (PR) protein genes, including PR-1a, PR-5, and PR-10, mainly in treated proximal tissues. These various results are discussed in the context of singlet oxygen-induced responses and lactofen's potential as a disease resistance-inducing agent.  相似文献   

20.
To modify the level and composition of isoflavones, the important bioactive constituents of soybean seeds, soybean was transformed via co-bombardment of embryogenic cultures with three DNA cassettes containing the CHS6-chalcone synthase and IFS2-isoflavone synthase genes, and a fragment of PAL5-phenylalanine ammonia-lyase gene, all in sense orientation under the lectin promoter mixed with the selectable marker gene, HPT (hygromycin phosphotransferase) under the 35S promoter. Four of six fertile lines produced integrated all four genes.Isoflavone levels were lower in T1 mature seeds of 5 of the 6 lines compared to the control. Transgene segregation was found in one selected line, with formation of additional sublines with different transgene composition found also in the homozygous plants. Decreased isoflavone concentrations (by about 70%) were found in T4 homozygous seeds of the two lines studied in detail here. The embryo axes accumulated most of the glycitein and contained a higher isoflavone concentration than the cotyledons. Expression of transgenes driven by the lectin promoter reduced the isoflavone concentration only in the cotyledons and not in embryo axes, indicating that this promoter is preferably active in cotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号