首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of approximately 9 A, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli, the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.  相似文献   

2.
GTP hydrolysis by elongation factor Tu (EF-Tu) on the ribosome is induced by codon recognition. The mechanism by which a signal is transmitted from the site of codon-anticodon interaction in the decoding center of the 30S ribosomal subunit to the site of EF-Tu binding on the 50S subunit is not known. Here we examine the role of the tRNA in this process. We have used two RNA fragments, one which contains the anticodon and D hairpin domains (ACD oligomer) derived from tRNA(Phe) and the second which comprises the acceptor stem and T hairpin domains derived from tRNA(Ala) (AST oligomer) that aminoacylates with alanine and forms a ternary complex with EF-Tu. GTP. While the ACD oligomer and the ternary complex containing the Ala-AST oligomer interact with the 30S and 50S A site, respectively, no rapid GTP hydrolysis was observed when both were bound simultaneously. The presence of paromomycin, an aminoglycoside antibiotic that binds to the decoding site and stabilizes codon-anticodon interaction in unfavorable coding situations, did not increase the rate of GTP hydrolysis. These results suggest that codon recognition as such is not sufficient for GTPase activation and that an intact tRNA molecule is required for transmitting the signal created by codon recognition to EF-Tu.  相似文献   

3.
During the elongation cycle of protein biosynthesis, the specific amino acid coded for by the mRNA is delivered by a complex that is comprised of the cognate aminoacyl-tRNA, elongation factor Tu and GTP. As this ternary complex binds to the ribosome, the anticodon end of the tRNA reaches the decoding center in the 30S subunit. Here we present the cryo- electron microscopy (EM) study of an Escherichia coli 70S ribosome-bound ternary complex stalled with an antibiotic, kirromycin. In the cryo-EM map the anticodon arm of the tRNA presents a new conformation that appears to facilitate the initial codon-anticodon interaction. Furthermore, the elbow region of the tRNA is seen to contact the GTPase-associated center on the 50S subunit of the ribosome, suggesting an active role of the tRNA in the transmission of the signal prompting the GTP hydrolysis upon codon recognition.  相似文献   

4.
The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 A resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.  相似文献   

5.
Aminoacyl-tRNA (aa-tRNA) is delivered to the ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. The stepwise movement of aa-tRNA from EF-Tu into the ribosomal A site entails a number of intermediates. The ribosome recognizes aa-tRNA through shape discrimination of the codon-anticodon duplex and regulates the rates of GTP hydrolysis by EF-Tu and aa-tRNA accommodation in the A site by an induced fit mechanism. Recent results of kinetic measurements, ribosome crystallography, single molecule FRET measurements, and cryo-electron microscopy suggest the mechanism of tRNA recognition and selection.  相似文献   

6.
T Pape  W Wintermeyer    M Rodnina 《The EMBO journal》1999,18(13):3800-3807
The fidelity of aminoacyl-tRNA (aa-tRNA) selection by the bacterial ribosome is determined by initial selection before and proofreading after GTP hydrolysis by elongation factor Tu. Here we report the rate constants of A-site binding of a near-cognate aa-tRNA. The comparison with the data for cognate aa-tRNA reveals an additional, important contribution to aa-tRNA discrimination of conformational coupling by induced fit. It is found that two rearrangement steps that limit the chemical reactions of A-site binding, i.e. GTPase activation (preceding GTP hydrolysis) and A-site accommodation (preceding peptide bond formation), are substantially faster for cognate than for near-cognate aa-tRNA. This suggests an induced-fit mechanism of aa-tRNA discrimination on the ribosome that operates in both initial selection and proofreading. It is proposed that the cognate codon-anticodon interaction, more efficiently than the near-cognate one, induces a particular conformation of the decoding center of 16S rRNA, which in turn promotes GTPase activation and A-site accommodation of aa-tRNA, thereby accelerating the chemical steps. As kinetically favored incorporation of the correct substrate has also been suggested for DNA and RNA polymerases, the present findings indicate that induced fit may contribute to the fidelity of template-programed systems in general.  相似文献   

7.
Ogle JM  Murphy FV  Tarry MJ  Ramakrishnan V 《Cell》2002,111(5):721-732
A structural and mechanistic explanation for the selection of tRNAs by the ribosome has been elusive. Here, we report crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at the decoding center and compare affinities of equivalent complexes in solution. In ribosomal interactions with near-cognate tRNA, deviation from Watson-Crick geometry results in uncompensated desolvation of hydrogen-bonding partners at the codon-anticodon minor groove. As a result, the transition to a closed form of the 30S induced by cognate tRNA is unfavorable for near-cognate tRNA unless paromomycin induces part of the rearrangement. We conclude that stabilization of a closed 30S conformation is required for tRNA selection, and thereby structurally rationalize much previous data on translational fidelity.  相似文献   

8.
Ribosome-stimulated hydrolysis of guanosine-5'-triphosphate (GTP) by guanosine triphosphatase (GTPase) translation factors drives protein synthesis by the ribosome. Allosteric coupling of GTP hydrolysis by elongation factor Tu (EF-Tu) at the ribosomal GTPase center to messenger RNA (mRNA) codon:aminoacyl-transfer RNA (aa-tRNA) anticodon recognition at the ribosomal decoding site is essential for accurate and rapid aa-tRNA selection. Here we use single-molecule methods to investigate the mechanism of action of the antibiotic thiostrepton and show that the GTPase center of the ribosome has at least two discrete functions during aa-tRNA selection: binding of EF-Tu(GTP) and stimulation of GTP hydrolysis by the factor. We separate these two functions of the GTPase center and assign each to distinct, conserved structural regions of the ribosome. The data provide a specific model for the coupling between the decoding site and the GTPase center during aa-tRNA selection as well as a general mechanistic model for ribosome-stimulated GTP hydrolysis by GTPase translation factors.  相似文献   

9.
Aminoacyl-tRNAs (aa-tRNAs) are selected by the ribosome through a kinetically controlled induced fit mechanism. Cognate codon recognition induces a conformational change in the decoding center and a domain closure of the 30S subunit. We studied how these global structural rearrangements are related to tRNA discrimination by using streptomycin to restrict the conformational flexibility of the 30S subunit. The antibiotic stabilized aa-tRNA on the ribosome both with a cognate and with a near-cognate codon in the A site. Streptomycin altered the rates of GTP hydrolysis by elongation factor Tu (EF-Tu) on cognate and near-cognate codons, resulting in almost identical rates of GTP hydrolysis and virtually complete loss of selectivity. These results indicate that movements within the 30S subunit at the streptomycin-binding site are essential for the coupling between base pair recognition and GTP hydrolysis, thus modulating the fidelity of aa-tRNA selection.  相似文献   

10.
The presence or absence of deacylated tRNA at the E site sharply influences the activation energy required for binding of a ternary complex to the ribosomal A site indicating the different conformations that the E-tRNA imparts on the ribosome. Here we address two questions: (i) whether or not peptidyltransferase—the essential catalytic activity of the large ribosomal subunit—also depends on the occupancy state of the E site and (ii) at what stage the E-tRNA is released during an elongation cycle. Kinetics of the puromycin reaction on various functional states of the ribosome indicate that the A-site substrate of the peptidyltransferase center, puromycin, requires the same activation energy for peptide-bond formation under all conditions tested. We further demonstrate that deacylated tRNA is released from the E site by binding a ternary complex aminoacyl-tRNA•EF-Tu•GDPNP to the A site. This observation indicates that the E-tRNA is released after the decoding step but before both GTP hydrolysis by EF-Tu and accommodation of the A-tRNA. Collectively these results reveal that the reciprocal linkage between the E and A sites affects the decoding center on the 30S subunit, but does not influence the rate of peptide-bond formation at the active center of the 50S subunit.  相似文献   

11.
Aminoglycosides are one of the most widely used and clinically important classes of antibiotics that target the ribosome. Hygromycin B is an atypical aminoglycoside antibiotic with unique structural and functional properties. Here we describe the structure of the intact Escherichia coli 70S ribosome in complex with hygromycin B. The antibiotic binds to the mRNA decoding center in the small (30S) ribosomal subunit of the 70S ribosome and induces a localized conformational change, in contrast to its effects observed in the structure of the isolated 30S ribosomal subunit in complex with the drug. The conformational change in the ribosome caused by hygromycin B binding differs from that induced by other aminoglycosides. Also, in contrast to other aminoglycosides, hygromycin B potently inhibits spontaneous reverse translocation of tRNAs and mRNA on the ribosome in vitro. These structural and biochemical results help to explain the unique mode of translation inhibition by hygromycin B.  相似文献   

12.
Role of yeast elongation factor 3 in the elongation cycle   总被引:7,自引:0,他引:7  
Investigation of the role of the polypeptide chain elongation factor 3 (EF-3) of yeast indicates that EF-3 participates in the elongation cycle by stimulating the function of EF-1 alpha in binding aminoacyl-tRNA (aa-tRNA) to the ribosome. In the yeast system, the binding of the ternary complex of EF-1 alpha.GTP.aa-tRNA to the ribosome is stoichiometric to the amount of EF-1 alpha. In the presence of EF-3, EF-1 alpha functions catalytically in the above mentioned reaction. The EF-3 effect is manifest in the presence of ATP, GTP, or ITP. A nonhydrolyzable analog of ATP does not replace ATP in this reaction, indicating a role of ATP hydrolysis in EF-3 function. The stimulatory effect of EF-3 is, in many respects, distinct from that of EF-1 beta. Factor 3 does not stimulate the formation of a binary complex between EF-1 alpha and GTP, nor does it stimulate the exchange of EF-1 alpha-bound GDP with free GTP. The formation of a ternary complex between EF-1 alpha.GTP.aa-tRNA is also not affected by EF-3. It appears that the only reaction of the elongation cycle that is stimulated by EF-3 is EF-1 alpha-dependent binding of aa-tRNA to the ribosome. Purified elongation factor 3, isolated from a temperature-sensitive mutant, failed to stimulate this reaction after exposure to a nonpermissive temperature. A heterologous combination of ribosomal subunits from yeast and wheat germ manifest the requirement for EF-3, dependent upon the source of the "40 S" ribosomal subunit. A combination of 40 S subunits from yeast and "60 S" from wheat germ showed the stimulatory effect of EF-3 in polyphenylalanine synthesis (Chakraburtty, K., and Kamath, A. (1988) Int. J. Biochem. 20, 581-590). However, we failed to demonstrate the effect of EF-3 in binding aa-tRNA to such a heterologous combination of the ribosomal subunits.  相似文献   

13.
R C Marsh  A Parmeggiani 《Biochemistry》1977,16(7):1278-1283
The role of the 30S ribosomal subunit in the formation of the complex ribosome-guanine nucleotide-elongation factor G (EF-G) has been examined in a great variety of experimental conditions. Our results show that at a large molar excess of EF-G or high concentrations of GTP or GDP, 50S ribosomal subunits are as active alone as with 30S subunits in the formation of the complex, while at lower concentrations of nucleotide or lower amounts of EF-G, addition of the 30S subunit stimulates greatly the reaction. The presence of the 30S ribosomal subunit can also moderate the inhibition of the 50S subunit activity that occurs by increasing moderately the concentrations of K+ and NH4+, and extends upward the concentration range of these monovalent cations in which complex formation is at maximum. The Mg2+ requirement for complex formation with the 50S subunit appears to be slightly less than that needed for association of the 30S and 50S ribosomal subunits. Measurement of the reaction rate constants of the complex formation shows that the 30S ribosomal subunit has only little effect on the initial association of EF-G and guanine nucleotide with the 50S subunit; but once this complex is formed, the 30S subunit increases its stability from 10- to 18-fold. It is concluded that stabilization of the interaction between EF-G and ribosome is a major function of the 30S subunit in the ribosome-EF-G GTPase reaction.  相似文献   

14.
During protein synthesis, aminoacyl-tRNA (aa-tRNA) and release factors 1 and 2 (RF1 and RF2) have to bind at the catalytic center of the ribosome on the 50S subunit where they take part in peptide bond formation or peptidyl-tRNA hydrolysis, respectively. Computer simulations of aa-tRNA movement into the catalytic site (accommodation) suggested that three nucleotides of 23S rRNA, U2492, C2556, and C2573, form a “gate” at which aa-tRNA movement into the A site is retarded. Here we examined the role of nucleotides C2573 of 23S rRNA, a part of the putative accommodation gate, and of the neighboring A2572 for aa-tRNA binding followed by peptide bond formation and for the RF2-dependent peptide release. Mutations at the two positions did not affect aa-tRNA accommodation, peptide bond formation, or the fidelity of aa-tRNA selection, but impaired RF2-catalyzed peptide release. The data suggest that the ribosome is a robust machine that allows rapid aa-tRNA accommodation despite the defects at the accommodation gate. In comparison, peptide release by RF2 appears more sensitive to these mutations, due to slower accommodation of the factor or effects on RF2 positioning in the A site.  相似文献   

15.
C Gualerzi  G Risuleo  C L Pon 《Biochemistry》1977,16(8):1684-1689
Initial rate kinetics of the formation of ternary complexes of Escherichia coli 30S ribosomal subunits, poly(uridylic acid), and N-acetylphenylalanyl transfer ribonucleic acid in the presence and in the absence of IF-3 are consistent with the hypothesis that the ternary complex is formed through a random order of addition of polynucleotide and aminoacyl-tRNA to separate and independent binding sites on the 30S ribosomes. The transformation of an intermediate into a stable ternary complex which probably entails a rearrangement of the ribosome structure leading to a codon-anticodon interaction represents the rate-limiting step in the formation of the ternary complex. The rate constant of this transformation, as well as the association constants for the formation of the 30S-poly(U) and 30S-N-AcPhe-tRNA binary complexes, are enhanced by the presence of IF-3 which acts as a kinetic effector on reactions which are intrinsic properties of the 30S ribosome. The IF-3-induced modification of these kinetic parameters of the 30S ribosomal subunit can per se explain the effect of IF-3 on protein synthesis without invoking a specific action at the level of the mRNA-ribosome interaction. This seems to be confirmed by the finding that IF-3 can stimulate several-fold the formation of a ternary complex even if one by-passes the ribosome-template binding step by starting with a covalent 30S-polynucleotide binary complex. Furthermore, the above-mentioned changes induced by IF-3 appear to be compatible with the previously proposed idea that the binding of the factor modifies the conformation of the 30S subunit. The random order of addition of substrates determined for the 30S-N-AcPhe-tRNA-poly(U) model system was found to be valid also for the more physiological 30S initiation complex containing poly(A,U.G) and (fMet-tRNA formed at low Mg2+ concentration in the presence of GTP and all three initiation factors.  相似文献   

16.
Noller HF 《Biochimie》2006,88(8):935-941
Prior to the emergence of crystal structures of the ribosome, different ribosomal functions were identified with specific regions of ribosomal RNA by biochemical and genetic approaches. In particular, three universally conserved bases of 16S rRNA, G530, A1492 and A1493, were implicated in the interaction of the incoming aminoacyl-tRNA with the 30S subunit and mRNA. The conserved region surrounding A1492 and A1493 was called the "decoding site", based on the results of chemical probing experiments and antibiotic resistance mutations. Crystallographic studies from the Ramakrishnan laboratory have now shown that G530 loop, A1492 and A1493 undergo localized conformational changes to form an RNA structure that positions these three bases to inspect the accuracy of the codon-anticodon match with high stereochemical precision, using A-minor interactions. Some results from the pre-X-ray era may provide clues to further aspects of the decoding process.  相似文献   

17.
Two tRNA molecules at the ribosomal A- and P-sites, with a relatively small angle between the planes of the L-shaped molecules, can be arranged in two mutually exclusive orientations. In one (the 'R'-configuration), the T-loop of the A-site tRNA faces the D-loop of the P-site tRNA, whereas in the other (the 'S'-configuration) the D-loop of the A-site tRNA faces the T-loop of the P-site tRNA. A number of stereochemical arguments, based on the crystal structure of 'free' tRNA, favour the R-configuration. In the ribosome, the CCA-ends of the tRNA molecules are 'fixed' at the base of the central protuberance (the peptidyl transferase centre) of the 50S subunit, and the anticodon loops lie in the neck region (the decoding site) of the 30S subunit. The translocation step is essentially a rotational movement of the tRNA from the A- to the P-site, and there is convincing evidence that the A-site must be located nearest to the L7/L12 protuberance of the 50S subunit. The mRNA in the two codon-anticodon duplexes lies on the 'inside' of the 'elbows' of the tRNA molecules (in both the S-type and R-type configurations), and runs up between the two molecules from the A- to the P-site in the 3' to 5'-direction. These considerations have the consequence that in the S-configuration the mRNA in the codon-anticodon duplexes is directed towards the 50S subunit, whereas in the R-configuration it is directed towards the 30S subunit. The results of site-directed cross-linking experiments, in particular cross-links to mRNA at positions within or very close to the codons interacting with A- or P-site tRNA, favour the latter situation. This conclusion is in direct contradiction to other current models for the arrangement of mRNA and tRNA on the ribosome.  相似文献   

18.
A working model of the mRNA path through the ribosome is proposed. According to the model, the template goes around the small ribosomal subunit along the region where its 'head' is separated from other parts of the subunit. The 5'-end of the mRNA fragment covered by the ribosome is located near the 3'-terminus of 16S rRNA, whereas the 3'-terminal residues of the fragment are situated on the outer surface of the subunit, opposite its 'side ledge'. When associated with the 50S subunit, the 30S subunit is oriented in such a manner that the decoding center faces the L7/L12 stalk. Implications of the proposed working model of the mRNA topography for the function of the ribosome are discussed.  相似文献   

19.
Ribosomal protein S12 plays a pivotal role in decoding functions on the ribosome. X-ray crystallographic analyses of ribosomal complexes have revealed that S12 is involved in the inspection of codon-anticodon pairings in the ribosomal A site, as well as in the succeeding domain rearrangements of the 30S subunit that are essential for accommodation of aminoacyl-tRNA. A role for S12 in tRNA selection is also well supported by classical genetic analyses; mutations affecting S12 are readily isolated in bacteria and organelles, since specific alterations in S12 confer resistance to the error-inducing antibiotic streptomycin, and the ribosomes from many such streptomycin-resistant S12 mutants display decreased levels of miscoding. However, substitutions that confer resistance to streptomycin likely represent a very distinct class of all possible S12 mutants. Until recently, the technical difficulties in generating random, unselectable mutations in essential genes in complex operons have generally precluded the analysis of other classes of S12 alterations. Using a recombineering approach, we have targeted the Escherichia coli rpsL gene, encoding S12, for random mutagenesis and screened the resulting mutants for effects on decoding fidelity. We have recovered over 40 different substitutions located throughout the S12 protein that alter the accuracy of translation without substantially affecting the sensitivity to streptomycin. Moreover, this collection includes mutants that promote miscoding, as well as those that restrict decoding errors. These results affirm the importance of S12 in decoding processes and indicate that alterations in this essential protein can have diverse effects on the accuracy of decoding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号