首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E May  J M Jeltsch    F Gannon 《Nucleic acids research》1981,9(16):4111-4128
It has been reported that SV40-transformed V 11 F 1 clone 1 subclone 7 rat cells (subclone 7) produce a super T antigen of 115,000 M. This super T antigen is entirely SV40 coded and is synthesized by translation of an elongated form of SV40 early mRNA (May, E., Kress, M. Daya-Grosjean, L., Monier, R. and May, P. (1981) J. Virol., 37, 24-35). The results reported here show that there is only one independent insertion of viral DNA in the cellular genome of subclone 7 cells. When DNA from subclone 7 cells was cleaved with Bam HI endonuclease two distinct SV40 sequence containing fragments were generated with sizes of 5 Kb and 10 Kb, respectively. Two recombinant cosmids were constructed by insertion of the 5 Kb and 10 Kb fragments, respectively, into cosmid pHC 79. Using restriction map analysis and nucleotide sequencing, we showed that the 5 Kb fragment actually contained the complete sequence of a gene encoding super T antigen. As compared to the normal SV40 early gene, the sequence of super T gene showed the following rearrangements: (i) The segment between nucleotides 4116 - 3544 was duplicated in a direct order and (ii) these two copies of 573 nucleotide sequence were separated by a 93 nucleotide tract which was a nearly perfect inverted repeat of the segment located between nucleotides 4868 and 4776 (nucleotide numbering used here = Weissmann number +17).  相似文献   

2.
We have compared the ATPase, DNA-binding, and helicase activities of free simian virus 40 (SV40) large T antigen (To) and T antigen complexed with cellular p53 (T+p53). Each activity is essential for productive viral infection. The T+p53 and To fractions were prepared by sequential immunosorption of infected monkey cells with monoclonal antibodies specific for p53 and T antigen. The immune-complexed T fractions were then assayed in parallel. For ATP hydrolysis, the Vmax for T+p53 was 143 nmol of ADP per min per mg of protein, or 18-fold greater than for To. ATP had no effect on the stability of the T+p53 complex. The T+p53 complex was significantly more active than To in hydrolyzing dATP, dGTP, GTP, and UTP. Of the nucleotide substrates tested, the greatest relative increase (T+p53/To) was in hydrolyzing dGTP and GTP. In DNase footprinting assays performed under replication conditions, the T+p53 complex protected regions I, II, and III of origin DNA while equivalent amounts of To protected only regions I and II. Region III is known to contribute to the efficiency of DNA replication and contains the SP1-binding sites of the early viral promoter. The T+p53 fraction was also a more efficient helicase than To, especially with a GC-rich primer and template. Thus, the T+p53 complex has enhanced ATPase, GTPase, DNA-binding, and helicase activities. These findings imply that complex formation between cellular monkey p53 and SV40 T antigen modulates a number of essential activities of T in SV40 productive infection.  相似文献   

3.
E H Wang  P N Friedman  C Prives 《Cell》1989,57(3):379-392
We have characterized the effect of murine p53 on SV40 DNA replication in vitro. Purified wild-type murine p53 dramatically inhibited the ability of SV40 T antigen to mediate the replication of a plasmid bearing the viral origin (ori-DNA) in vitro. In contrast, polyoma ori-DNA replication in vitro was unaffected by p53. Surprisingly, both unbound p53 and SV40 T antigen-bound p53 were equally detrimental to SV40 ori-DNA replication. Thus, p53 interferes with interactions between T antigen molecules that are required for DNA synthesis. p53 inhibited the binding to and subsequent unwinding of the SV40 origin by T antigen and thus selectively blocked the initial stages of ori-DNA replication. In contrast to the nononcogenic wild-type murine p53, high concentrations of a mutant transforming p53 failed to block SV40 ori-DNA replication in vitro. These observations may provide insight into a possible role for p53 in the cell.  相似文献   

4.
Primate's p53 inhibits SV40 DNA replication in vitro   总被引:1,自引:0,他引:1  
Previous reports indicated that rodent p53 inhibits simian virus 40 (SV40) DNA replication in vitro as well as in vivo while that from primate cells does not (1-4). Here we report the evidence that p53 of primate origin also inhibits SV40 DNA replication in vitro. p53-SV40 large tumor antigen (T antigen) complex purified from SV40 infected COS-1 cells had little replication activity and inhibited SV40 DNA replication in vitro. These results suggest that inhibition of SV40 DNA replication by p53 should be regarded as general property of the protein and does not determine the mode of species specific replication of SV40 DNA.  相似文献   

5.
6.
To analyze the proposed growth-inhibitory function of wild-type p53, we compared simian virus 40 (SV40) DNA replication in primary rhesus monkey kidney (PRK) cells, which express wild-type p53, and in the established rhesus monkey kidney cell line LLC-MK2, which expresses a mutated p53 that does not complex with large T antigen. SV40 DNA replication proceeded identically in both cell types during the course of infection. Endogenously expressed wild-type p53 thus does not negatively modulate SV40 DNA replication in vivo. We suggest that inhibition of SV40 DNA replication by wild-type p53 in in vitro replication assays is due to grossly elevated ratios of p53 to large T antigen, thus depleting the replication-competent free large T antigen in the assay mixtures by complex formation. In contrast, the ratio of p53 to large T antigen in in vivo replication is low, leaving the majority of large T antigen in a free, replication-competent state.  相似文献   

7.
Interactions between SV40 T antigen and DNA polymerase alpha   总被引:16,自引:0,他引:16  
Simian virus 40 large T antigen is the only viral protein required for SV40 DNA synthesis in vivo and in vitro. This complex protein recruits the cellular DNA replication apparatus to the SV40 origin and provides a good model for the initiation of cellular DNA replication. The interaction between SV40 large T antigen (TAg) and DNA polymerase alpha has been shown previously to be inhibited by murine p53, the nuclear protein product of a cellular anti-oncogene. The murine p53 protein will inhibit SV40 replication both in vivo and in vitro. Using monoclonal antibodies to TAg, p53, and polymerase alpha, we developed immunoassays to measure the complexes formed between TAg and polymerase alpha and between TAg and p53. The assays allowed us to detect the TAg-polymerase alpha and TAg-p53 complexes in lytically infected and transformed cells. The amount of TAg complexed to p53 was far lower in infected cells than in transformed cells. We used a large range of monoclonal antibodies to different sites on T antigen and found that antibodies that inhibited the formation of the TAg-polymerase alpha complex also inhibited the formation of the TAg-p53 complex. Finally, we found that the tsA58 and 5080 point mutations in TAg, previously shown to inhibit the binding of TAg to p53, also inhibit its binding to polymerase alpha. Together these results emphasize the specificity and functional importance of the TAg-polymerase alpha complex. The disruption of this interaction by the cellular anti-oncogene p53 provides an interesting model for the normal action of p53 and the effects of its removal on the regulation of cellular DNA synthesis.  相似文献   

8.
pSV2Neo, a plasmid that contains the wild-type simian virus 40 (SV40) origin of replication (ori), is widely used in mammalian cell transfection experiments. We observed that pSV2Neo transforms two nontumorigenic SV40-immortalized human uroepithelial cell lines (SV-HUC and CK/SV-HUC2) to G418 resistance (G418r) at a frequency lower than that at which it transforms SV-HUC tumorigenic derivatives (T-SV-HUC). Transient expression studies with the chloramphenicol transferase assay showed that these differences could not be explained by differences in Neo gene expression. However, when we replaced the SV40 ori in pSV2Neo with a replication-defective ori to generate G13.1Neo and G13.1'Neo, the G418r transformation frequency of the SV40-immortalized cell lines was elevated. Because SV40 T antigen stimulates replication at its ori, we tested plasmid replication in these transfected cell lines. The immortalized cell lines that showed low G418r transformation frequencies after transfection with pSV2Neo showed high levels of plasmid replication, while the T-SV-HUC that showed high G418r transformation frequencies failed to replicate pSV2Neo. To determine whether differences in the status of the T-antigen gene contributed to the phenomenon, we characterized the T-antigen gene in these cell lines. The results showed that the T-SV-HUC had sustained mutations in the T-antigen gene that would interfere with the ability of the T antigen to stimulate replication at its ori. Most T-SV-HUC contained a super-T-antigen replication-defective ori that apparently resulted from the partial duplication of SV40 early genes, but one T-SV-HUC had a point mutation in the ori DNA-binding domain of the T-antigen gene. These results correlate with the high G418r transformation frequencies with pSV2Neo in T-SV-HUC compared with SV-HUC and CK/SV-HUC2. Furthermore, these results suggest that alterations in SV40 T antigen may be important in stabilizing human cells immortalized by SV40 genes that contain the wild-type SV40 ori, thus contributing to tumorigenic transformation. This is the first report of a super T antigen occurring in human SV40-transformed cells.  相似文献   

9.
DNA rearrangements in the form of deletions and duplications are found within and near integrated simian virus 40 (SV40) DNA in nonpermissive cell lines. We have found that rearrangements also occur frequently with integrated pSV2neo plasmid DNA. pSV2neo contains the entire SV40 control region, including the origin of replication, both promoters, and the enhancer sequences. Linearized plasmid DNA was electroporated into X1, an SV40-transformed mouse cell line that expresses SV40 large T antigen (T Ag) and shows very frequent rearrangements at the SV40 locus, and into LMtk-, a spontaneously transformed mouse cell line that contains no SV40 DNA. Stability was analyzed by subcloning G-418-resistant clones and examining specific DNA fragments for alterations in size. Five independent X1 clones containing pSV2neo DNA were unstable at both the neo locus and the T Ag locus. By contrast, four X1 clones containing mutants of pSV2neo with small deletions in the SV40 core origin and three X1 clones containing a different neo plasmid lacking SV40 sequences were stable at the neo locus, although they were still unstable at the T Ag locus. Surprisingly, five independent LMtk- clones containing pSV2neo DNA were unstable at the neo locus. LMtk- clones containing origin deletion mutants were more stable but were not as stable as the X1 clones containing the same plasmid DNA. We conclude that the SV40 origin of replication and early control region are sufficient viral components for the genomic instability at sites of SV40 integration and that SV40 T Ag is not required.  相似文献   

10.
It is known that large T antigen, the regulatory protein encoded by Simian virus 40 (SV40), forms tight complexes with the cellular p53 protein in SV40-transformed rodent cells. Using immunoaffinity procedures we have purified large T antigen and, in separate experiments, the cellular p53 protein. The two proteins formed complexes in vitro which bound well to double-stranded DNA fragments although in a sequence-unspecific manner. Free, uncomplexed T antigen readily converted double-stranded DNA into a single-stranded form whereas in-vitro-formed p53-T-antigen complexes were inactive in this reaction. We conclude that one function of p53 in SV40-transformed mouse cells could be the inhibition of the replication initiating activity of T antigen.  相似文献   

11.
Lymphocytes have a finite and predictable proliferative life span in culture similar to that observed in fibroblasts. In general, the senescence of human fibroblasts is inevitable and irreversible, but their proliferative life span can be extended by certain DNA tumor virus oncogenes, such as the large T antigen of the SV40 virus. Here, we show that human T lymphocytes (HTL) can be stably transfected with SV40 large T and that expression of T antigen extended the life span of T cell cultures. PHA-stimulated HTL were transfected with pSV3neo, an expression vector containing the SV40 early region and the neomycin resistance gene. Transfectants were selected for neomycin (G418) resistance. Control HTL, either mock transfected or transfected with pSV2neo (containing the neomycin resistance gene only), ceased proliferation after about 17 population doublings. In contrast, HTL transfected with pSV3neo underwent more than 170 doublings. pSV3neo-transfected cells expressed SV40 large T RNA, detectable by in situ hybridization, and SV40 T antigen, detectable by immunofluorescence. Greater than 95% of the transfected cells were CD4 positive. These results clearly show that SV40 large T enables HTL to escape senescence. Transfection with SV40 large T may be a valuable method for obtaining long term human T cell lines for studies of both aging and immunology.  相似文献   

12.
We have previously cloned the gene encoding a 115,000-Mr super T antigen (115K super T antigen), an elongated form of the Simian virus 40 large T antigen, originating from the rat cell line V 11 F1 clone 1, subclone 7 (May et al., J. Virol. 45:901-913, 1983). DNA sequence analysis has shown that the 115K super T antigen gene contains notably an in-phase duplication of a sequence located in the region of tsA mutations. We have also shown that the 115K super T antigen gene is able to induce the formation of transformed foci in transfected rat cells. After rat cell cultures were transfected with the cloned gene encoding 115K super T antigen, we obtained a large number of transformants as reported in this paper. In these transformants, we detected a very high frequency of new T antigen variants, as shown by immunoprecipitation of the cell extracts with anti-simian virus 40 tumor serum followed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Based on these results and all of the data presently available, it appears likely that the input plasmid or cosmid DNAs containing the cloned gene were first subjected to recombination events that yield new variant T antigen genes before these recombinant genes become integrated. The new variant T antigens observed in the transformants were predominantly those comigrating with normal-size large T antigen. In fact, these latter variants appeared to be indistinguishable from wild-type large T antigen as judged by restriction mapping by Southern blotting of the total genomic DNA of the transformants. Models of intermolecular or intramolecular homologous recombination occurring between or within the input plasmid or input cosmid DNA molecules are proposed to account for the formation of such revertants.  相似文献   

13.
The replication of DNA containing either the polyoma or SV40 origin has been done in vitro. Each system requires its cognate large-tumour antigen (T antigen) and extracts from cells that support its replication in vivo. The host-cell source of DNA polymerase alpha - primase complex plays an important role in discriminating between polyoma T antigen and SV40 T antigen-dependent replication of their homologous DNA. The SV40 origin- and T antigen-dependent DNA replication has been reconstituted in vitro with purified protein components isolated from HeLa cells. In addition to SV40 T antigen, HeLa DNA polymerase alpha - primase complex, eukaryotic topoisomerase I and a single-strand DNA binding protein from HeLa cells are required. The latter activity, isolated solely by its ability to support SV40 DNA replication, sediments and copurifies with two major protein species of 72 and 76 kDa. Although crude fractions yielded closed circular monomer products, the purified system does not. However, the addition of crude fractions to the purified system resulted in the formation of replicative form I (RFI) products. We have separated the replication reaction with purified components into multiple steps. In an early step, T antigen in conjunction with a eukaryotic topoisomerase (or DNA gyrase) and a DNA binding protein, catalyses the conversion of a circular duplex DNA molecule containing the SV40 origin to a highly underwound covalently closed circle. This reaction requires the action of a helicase activity and the SV40 T antigen preparation contains such an activity. The T antigen associated ability to unwind DNA copurified with other activities intrinsic to T antigen (ability to support replication of SV40 DNA containing the SV40 origin, poly dT-stimulated ATPase activity and DNA helicase).  相似文献   

14.
We have characterized the effects of p53 on several biochemical activities of simian virus 40 (SV40) large tumor (T) antigen. While p53 induced a strong inhibition of the T antigen DNA helicase activity, surprisingly, its RNA helicase activity was stimulated. This supports the liklihood that the DNA and RNA helicase activities of T antigen reflect discrete functions. p53 did not significantly affect the ATP-dependent conversion of T antigen monomers to hexamers. However, the ability of these hexamers to assemble on a DNA fragment containing the viral origin was impaired by p53. Thus, these results suggest that p53 inhibits the function but not the formation of T antigen multimers. This conclusion was further supported by the observation that the addition of a purified p53:T antigen complex was as inhihitory as free p53 to the DNA helicase activity of free T antigen. Thus our data indicates that the targets of p53 inhibition are the functional units of T antigen, namely the hexamers.  相似文献   

15.
To define the role of SV40 large T antigen in the transformation and immortalization of human cells, we have constructed a plasmid lacking most of the unique coding sequences of small t antigen as well as the SV40 origin of replication. The promoter for T antigen, which lies within the origin of replication, was deleted and replaced by the Rous sarcoma virus promoter. This minimal construct was co-electroporated into normal human fibroblasts of neonatal origin along with a plasmid containing the neomycin resistance gene (neo). Three G418-resistant, T antigen-positive clones were expanded and compared to three T antigen-positive clones that received the pSV3neo plasmid (capable of expressing large and small T proteins and having two origins of replication). Autonomous replication of plasmid DNA was observed in all three clones that received pSV3neo but not in any of the three origin minus clones. Immediately after clonal expansion, several parameters of neoplastic transformation were assayed. Low percentages of cells in T antigen-positive populations were anchorage independent or capable of forming colonies in 1% fetal bovine serum. The T antigen-positive clones generally exhibited an extended lifespan in culture but rarely became immortalized. Large numbers of dead cells were continually generated in all T antigen-positive, pre-crisis populations. Ninety-nine percent of all T antigen-positive cells had numerical or structural chromosome aberrations. Control cells that received the neo gene did not have an extended life span, did not have noticeable numbers of dead cells, and did not exhibit karyotype instability. We suggest that the role of T antigen protein in the transformation process is to generate genetic hypervariability, leading to various consequences including neoplastic transformation and cell death.  相似文献   

16.
The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional domains.  相似文献   

17.
M Hartl  T Willnow    E Fanning 《Journal of virology》1990,64(6):2884-2894
Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA.  相似文献   

18.
We describe a new complementation function within the simian virus 40 (SV40) A gene. This function is required for viral DNA replication and virus production in vivo but, surprisingly, does not affect any of the intrinsic enzymatic functions of T antigen directly required for in vitro DNA replication. Other well-characterized SV40 T-antigen mutants, whether expressed stably from integrated genomes or in cotransfection experiments, complement these mutants for in vivo DNA replication and plaque formation. These new SV40 mutants were isolated and cloned from human cells which stably carry the viral DNA. The alteration in the large-T-antigen gene was shown by marker rescue and nucleotide sequence analysis to be a deletion of 322 bp spanning the splice-donor site of the first exon, creating a 14-amino-acid deletion in the large T antigen. The mutant gene was expressed in H293 human cells from an adenovirus vector, and the protein was purified by immunoaffinity chromatography. The mutant protein directs greater levels of DNA replication in vitro than does the wild-type protein. Moreover, the mutant protein reduces the lag time for in vitro DNA synthesis and can be diluted to lower levels than wild-type T antigen and still promote good replication, which is in clear contrast to the in vivo situation. These biochemical features of the protein are independent of the source of the cellular replication factors (i.e., HeLa, H293, COS 7, or CV1 cells) and the cells from which the T antigens were purified. The mutant T antigen does not transform Rat-2 cells. Several different models which might reconcile the differences observed in vivo and in vitro are outlined. We propose that the function of T antigen affected prepares cells for SV40 replication by activation of a limiting cellular replication factor. Furthermore, a link between the induction of a cellular replication factor and transformation by SV40 is discussed.  相似文献   

19.
M Montenarh  D Müller 《FEBS letters》1987,221(2):199-204
SV40 large T antigen is phosphorylated at up to ten different amino acids clustered in an N-terminal and a C-terminal part of the polypeptide chain. The N-terminal phosphorylated residues include Ser 123 and Thr 124. We have analyzed the oligomerization, the complex formation with the cellular oncoprotein p53 and the DNA-binding properties of T antigen from two different SV40 transformed cell lines which have either an amino acid exchange at Ser 123 to Phe (W7) or Thr 124 to Ile (D29). In comparison to wild-type T antigen both mutant T antigens have a slightly reduced binding affinity for both binding sites, I and II, of SV40 DNA. Phosphorylation at both residues of T antigen is not essential for formation of the complex with p53. Only the phosphorylation at Thr 124 seems to be critical for the formation of high molecular mass oligomers. Our data support the hypothesis that the oligomerization of T antigen seems to be implicated in viral DNA replication.  相似文献   

20.
Viral nucleoprotein complexes were extracted from the nuclei of simian virus 40 (SV40)-infected TC7 cells by low-salt treatment in the absence of detergent, followed by sedimentation on neutral sucrose gradients. Two forms of SV40 nucleoprotein complexes, those containing SV40 replicative intermediate DNA and those containing SV40 (I) DNA, were separated from one another and were found to have sedimentation values of 125 and 93S, respectively. [(35)S]methioninelabeled proteins in the nucleoprotein complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to VP1, VP3, and histones, a protein with a molecular weight of 100,000 (100K) is present in the nucleoprotein complexes containing SV40 (I) DNA. The 100K protein was confirmed as SV40 100K T antigen, both by immunoprecipitation with SV40 anti-T serum and by tryptic peptide mapping. The 100K T antigen is predominantly associated with the SV40 (I) DNA-containing complexes. The 17K T antigen, however, is not associated with the SV40 (I) DNA-containing nucleoprotein complexes. The functional significance of the SV40 100K T antigen in the SV40 (I) DNA-containing nucleoprotein complexes was examined by immunoprecipitation of complexes from tsA58-infected TC7 cells. The 100K T antigen is present in nucleoprotein complexes extracted from cells grown at the permissive temperature but is clearly absent from complexes extracted from cells grown at the permissive temperature and shifted up to the nonpermissive temperature for 1 h before extraction, suggesting that the association of the 100K T antigen with the SV40 nucleoprotein complexes is involved in the initiation of SV40 DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号