首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmentally friendly approaches to genetic engineering   总被引:4,自引:0,他引:4  
Summary Several environmental problems related to plant genetic engineering may prohibit advancement of this technology and prevent realization of its full potential. One such common concern is the demonstrated escape of foreign genes through pollen dispersal from transgenic crop plants to their weedy relatives, creating super weeds or causing gene pollution among other crops or toxicity of transgenic pollen to nontarget insects. The high rates of gene flow from crops to wild relatives (as high as 38% in sunflower and 50% in strawberries) are certainly a serious concern. Maternal inheritance of the herbicide resistance gene via chloroplast genetic engineering has been shown to be a practical solution to these problems. Another common concern is the suboptimal production of Bacillus thuringiensis (Bt) insecticidal protein or reliance on a single (or similar) B.t. protein in commercial transgenic crops, resulting in B.t. resistance among target pests. Clearly, different insecticidal proteins should be produced in lethal quantities to decrease the development of resistance. Such hyperexpression of a novel B.t. protein in chloroplasts has resulted in 100% mortality of insects that are up to 40 000-fold resistant to other B.t. proteins. Yet another concern is the presence of antibiotic resistance genes in transgenic plants that could inactivate oral doses of the antibiotic or be transferred to pathogenic microbes in the GI tract or in soil, rendering them resistant to treatment with such antibiotics. Cotransformation and elimination of antibiotic resistant genes from transgenic plants using transposable elements via breeding are promising new approaches. Genetic engineering efforts have also addressed yet another concern, i.e., the accumulation and persistence of plastics in our environment by production of biodegradable plastics. Recent approaches and accomplishments in addressing these environmental concerns via chloroplast genetic engineering are discussed in this review.  相似文献   

2.
乳酸菌食品级表达载体的研究与应用   总被引:1,自引:1,他引:0  
乳酸菌是能够发酵糖类产生大量有机酸的革兰氏阳性菌的通称,在发酵食品中有着悠久的应用历史。乳酸菌通常被认为是安全菌株,这些微生物的基因工程操作在食品、医学等方面具有广阔的应用前景。表达载体是基因工程中常用的工具之一,大多数乳酸菌的表达载体通常以抗生素抗性基因作为选择标记,然而抗性基因具有潜在的转移性,因此需要开发食品级表达载体。食品级表达载体不含有抗生素的抗性基因,仅包含来自同源宿主或通常被认为是安全生物的DNA。本文介绍了乳酸菌食品级表达载体的构成及其常用宿主,同时对乳酸菌食品级表达载体的应用进行了归纳总结。  相似文献   

3.
高等植物叶绿体基因组转化的应用   总被引:4,自引:1,他引:4  
王永飞  马三梅  王莹 《遗传》2004,26(6):977-19
叶绿体基因组转化技术由于其独特的优越性,现已成为植物基因工程的研究热点。本文简单介绍了叶绿体基因组转化技术的原理和方法;并重点综述了该技术在基础研究和实践中的应用。这些应用主要包括利用叶绿体基因组转化技术进行Rubisco的组装,叶绿体基因结构、转录、翻译和RNA编辑等研究;利用叶绿体作为生物反应器生产人生长激素、霍乱毒素抗体、聚羟基丁酸脂和生物弹性蛋白等;获得抗虫、抗病、抗除草剂和耐旱的转基因植物;以及降低转基因植物的外源基因扩散等。  相似文献   

4.
裸藻(Euglena), 又称为眼虫, 是具有植物和动物双重特性的单细胞真核生物, 其细胞核具有间核性质, 叶绿体起源于二次共生, 具有不稳定性, 在胁迫条件下易丢失。因此, 裸藻是研究生物进化和叶绿体内共生的理想材料, 具有重要的科学价值。而且裸藻细胞富含多不饱和脂肪酸、氨基酸和维生素等多种营养物质, 能够积累很高含量的副淀粉和蜡酯, 既是一种高附加值的保健食品, 也是生产生物能源的优质原材料。目前, 关于裸藻基因功能的研究主要是采用生理生化的方法, 缺少有效的遗传操作技术, 裸藻基因工程改造的研究进展十分缓慢, 文章对裸藻遗传转化方法及其研究进展进行了详细综述, 以期为裸藻功能基因组学的研究和生物技术的开发提供参考。  相似文献   

5.
Chloroplast genetic engineering is an environmentally friendly approach, where the foreign integrated gene is often expressed at a higher level than nuclear transformation. The cry1Ab gene was successfully transferred into the cabbage chloroplast genome in this study. The aadA and cry1Ab genes were inserted into the pASCC201 vector and driven by the prrn promoter. The cabbage-specific plastid vectors were transferred into the chloroplasts of cabbage via particle gun mediated transformation. Regenerated plantlets were selected by their resistance to spectinomycin and streptomycin. According to antibiotic selection, the regeneration percentage of the two cabbage cultivars was 4-5%. The results of PCR, Southern, Northern hybridization and western analyses indicated that the aadA and cry1Ab genes were not only successfully integrated into the chloroplast genome, but functionally expressed at the mRNA and protein level. Expression of Cry1Ab protein was detected in the range of 4.8-11.1% of total soluble protein in transgenic mature leaves of the two species. Insecticidal effects on Plutella xylostella were also demonstrated in cry1Ab transformed cabbage. The objectives of this study were to establish a gene transformation system for Brassica chloroplasts, and to study the possibility for insect-resistance in dicot vegetables using chloroplast gene transformation.  相似文献   

6.
用于叶绿体遗传转化的表达载体   总被引:17,自引:3,他引:14  
侯丙凯  于惠敏  夏光敏 《遗传》2002,24(1):100-103
叶绿体遗传转化是植物基因工程的新方向。本文简要介绍用于叶绿体遗传转化的表达载体的构建方法,涉及同源重组片段、叶绿体特异的启动子和终止子、筛选标记基因,以及目前在叶绿体中已实现表达的外源基因等内容。 Abstract:Chloroplast genetic transformation is a new way of plant genetic engineering.This paper reviews the construction methods of expression vector used in chloroplast genetic transformation.It contains the homologous recombinant fragments,the chloroplast specific promoter and terminater,the selectable marker genes and the interest genes whose expression in chloroplast have been achieved.  相似文献   

7.
Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas.  相似文献   

8.
细菌耐药性是21世纪国际关注的重要问题,也是全球面临的重大挑战.肠杆菌科细菌是医院感染的重要病原菌之一.近年来,随着抗生素的大量使用,多种肠杆菌科耐药菌,尤其是多重耐药肠杆菌开始大量出现,对人类健康形成了日益严重的威胁.细菌可以通过耐药基因突变或水平转移的方式获得耐药性,通常情况下,可以通过已知的耐药机制预测相应的耐药...  相似文献   

9.
随着植物转基因研究的不断深入,核基因组转化的转基因沉默现象严重影响了基因工程的应用效果。植物叶绿体遗传转化以叶绿体基因组为平台对植物进行遗传操作,外源基因定点整合及母性遗传特性能较好地解决"顺式失活"和"位置效应"等类的基因沉默问题和转基因逃逸等安全问题,成为植物基因工程发展的新方向,在工业、农业及医药生物领域发挥了重要作用,也为生产廉价、安全的植物疫苗提供了新思路。本文在简要介绍叶绿体转化的原理、转化方法与优势的基础上,重点综述了近年来通过该技术表达的一些重要的病毒抗原和细菌抗原。最后,对叶绿体转化技术在表达外源基因方面存在的问题进行分析。未来随着叶绿体基因表达、调控机制研究的逐渐深入及相关技术体系的日臻完善,叶绿体转化有望成为疫苗生产的生力军。  相似文献   

10.
叶绿体是植物细胞和真核藻类执行光合作用的重要细胞器,在叶绿体中表达外源基因比在细胞核中表达具有一些独特优势。叶绿体基因工程涉及叶绿体的基因组特征、转化系统的优点、转化过程及方法等方面,叶绿体基因工程在提高植物光合效率、改良植物特性、生产生物药物及改善植物代谢途径等方面已得到应用。尽管叶绿体基因工程还存在同质化难度高、标记基因转化效率较低、宿主种类偏少等问题,但作为外源基因在高等植物中表达的良好平台其仍然具有广阔的发展和应用前景。  相似文献   

11.
Marker-free transgenic plants   总被引:16,自引:0,他引:16  
Selectable marker genes are widely used for the efficient transformation of crop plants. In most cases, selection is based on antibiotic or herbicide resistance. Due mainly to consumer concerns, a suite of strategies (site-specific recombination, homologous recombination, transposition and co-transformation) have been developed to eliminate the marker gene from the nuclear or chloroplast genome after selection. Current efforts concentrate on systems where marker genes are eliminated efficiently soon after transformation. Alternatively, transgenic plants are produced by the use of marker genes that do not rely on antibiotic or herbicide resistance but instead promote regeneration after transformation. Here, the merits and shortcomings of different approaches and possible directions for their future development are discussed.  相似文献   

12.
Genetic engineering of higher plant plastids typically involves stable introduction of antibiotic resistance genes as selection markers. Even though chloroplast genes are maternally inherited in most crops, the possibility of marker transfer to wild relatives or microorganisms cannot be completely excluded. Furthermore, marker expression can be a substantial metabolic drain. Therefore, efficient methods for complete marker removal from plastid transformants are necessary. One method to remove the selection gene from higher plant plastids is based on loop-out recombination, a process difficult to control because selection of homoplastomic transformants is unpredictable. Another method uses the CRE/lox system, but requires additional retransformation and sexual crossing for introduction and subsequent removal of the CRE recombinase. Here we describe the generation of marker-free chloroplast transformants in tobacco using the reconstitution of wild-type pigmentation in combination with plastid transformation vectors, which prevent stable integration of the kanamycin selection marker. One benefit of a procedure using mutants is that marker-free plastid transformants can be produced directly in the first generation (T0) without retransformation or crossing.  相似文献   

13.
新一代转基因植物研究进展   总被引:12,自引:0,他引:12  
转基因植物具有抗病、抗虫、抗逆、高产、营养成分改善等优良性状,但其安全性引起了人们的关注。新一代植物转基因技术,如叶绿体基因工程、基因约束、多基因共转、去除抗性标记基因、对外源基因进行实时监控、抗性管理策略、最小程度地改变基因等技术的发展,将使未来的转基因植物更好地适应人们的需求,更有利于消费者食用安全和生态环境的可持续发展 。  相似文献   

14.
Plastid transformation is widely used in basic research and for biotechnological applications. Initially developed in Chlamydomonas and tobacco, it is now feasible in a broad range of species. Selection of transgenic lines where all copies of the polyploid plastid genome are transformed requires efficient markers. A number of traits have been used for selection such as photoautotrophy, resistance to antibiotics and tolerance to herbicides or to other metabolic inhibitors. Restoration of photosynthesis is an effective primary selection method in Chlamydomonas but can only serve as a screening tool in flowering plants. The most successful and widely used markers are derived from bacterial genes that inactivate antibiotics, such as aadA that confers resistance to spectinomycin and streptomycin. For many applications, the presence of a selectable marker that confers antibiotic resistance is not desirable. Efficient marker removal methods are a major attraction of the plastid engineering tool kit. They exploit the homologous recombination and segregation pathways acting on chloroplast genomes and are based on direct repeats, transient co-integration or co-transformation and segregation of trait and marker genes. Foreign site-specific recombinases and their target sites provide an alternative and effective method for removing marker genes from plastids.  相似文献   

15.
何勇  罗岸  母连胜  陈强  张艳  叶开温  田志宏 《遗传》2017,39(9):810-827
与细胞核基因工程相比,质体基因工程能更安全、精确和高效地对外源基因进行表达,作为下一代转基因技术已广泛用于基础研究和生物技术应用领域。与细胞核基因工程一样,质体基因工程中也需要合适的选择标记基因用于转化子的筛选和同质化,但基于质体基因组的多拷贝性和母系遗传特点,转化子的同质化需要一个长期的筛选过程,这就决定了质体基因工程中选择标记基因的选择标准将不同于细胞核基因工程中广泛使用的现行标准。目前,质体基因工程的遗传转化操作中使用较多的是抗生素选择标记基因,出于安全性考虑,需要找到可替换、安全的选择标记基因或有效的标记基因删除方法。本文在对质体基因工程研究的相关文献分析基础之上,对主要使用的选择标记基因及其删除体系进行了综述,并对比了其优缺点,同时探讨了质体基因工程中所使用的报告基因,以期为现有选择标记基因及其删除体系的改进和开发提供一定参考,进一步推动质体基因工程,尤其是单子叶植物质体基因工程的发展。  相似文献   

16.
Chloroplast Transformation in Oilseed Rape   总被引:24,自引:0,他引:24  
The chloroplast transformation vector pNRAB carries two expression cassettes for the spectinomycin resistance gene aadA and the insect resistance gene cry1Aa10. The two cassettes are sited between the rps7 and ndhB targeting fragments. Biolistic delivery of the vector DNA, followed by spectinomycin selection, yielded chloroplast transformants at a frequency of four in 1000 bombarded cotyledon petioles. PCR analysis and Southern blot of PCR products confirmed the site-specific integration of aadA and cry1Aa10 into the chloroplast genomes of transgenic oilseed rape. When transgenic oilseed rape leaves were fed to second instar Plutella xylostera larvae, 47% mortality was observed against this insect and the surviving larvae had significantly lower weight than the control. This is the first report of chloroplast transformation in oilseed rape and the introduction of novel genes between the rps7 and ndhB genes in the chloroplast genome. This offers an opportunity for improvement of oilseed rape by chloroplast genetic engineering.  相似文献   

17.
Chimeric RNA/DNA and modified DNA oligonucleotides have been shown to direct gene-conversion events in vitro through a process involving proteins from several DNA-repair pathways. Recent experiments have extended the utility of these molecules to plants, and we previously demonstrated that plant cell-free extracts are competent to support oligonucleotide-directed genetic repair. Using this system, we are studying Arabidopsis DNA-repair mutants and the role of plant proteins in the DNA-repair process. Here we describe a method for investigating mechanisms of plastid DNA-repair pathways. Using a genetic readout system in bacteria and chimeric or modified DNA oligonucleotides designed to direct the conversion of mutations in antibiotic resistance genes, we have developed an assay for genetic repair of mutations in a spinach chloroplast lysate system. We report genetic repair of point and frameshift mutations directed by both types of modified oligonucleotides. This system enables the mechanistic study of plastid gene repair and facilitates the direct comparison between plant nuclear and organelle DNA-repair pathways.  相似文献   

18.
Antibiotics: opportunities for genetic manipulation   总被引:1,自引:0,他引:1  
New antibiotics can still be discovered by the development of novel screening procedures. Notable successes over the last few years include the monobactams, beta-lactamase inhibitors (clavulanic acid) and new glycopeptides in the antibacterial field; antiparasitic agents such as avermectins; and herbicidal antibiotics like bialaphos. In the future we can expect the engineering of genes from 'difficult' pathogens, including mycobacteria and fungi, and cancer cells, to provide increasingly useful in vitro targets for the screening of antibiotics that can kill pathogens and tumours. There will also be a greater awareness of the need to reveal the full potential for antibiotic production on the part of microorganisms by the physiological and/or genetic awakening of 'silent' genes. Nevertheless, the supply of natural antibiotics for direct use or chemical modification is not infinite and there will be increasing scope for widening the range of available antibiotics by genetic engineering. 'Hybrid' antibiotics have been shown to be generated by the transfer of genes on suitable vectors between strains producing chemically related compounds. More exciting is the possibility of generating novelty by the genetic engineering of the synthases that determine the basic structure of antibiotics belonging to such classes as the beta-lactams and polyketides. Research in this area will certainly yield knowledge of considerable scientific interest and probably also of potential applicability. In the improvement of antibiotic titre in actinomycetes, protoplast fusion between divergent selection lines has taken a place alongside random mutation and screening. In some cases the cloning of genes controlling metabolic 'bottlenecks' in fungi and actinomycetes will give an immediate benefit in the conversion of accumulated biosynthetic intermediates to the desired end product. However, the main impact of genetic engineering in titre improvement will probably come only after a further use of this technology to understand and manipulate the regulation of antibiotic biosynthesis as a facet of the general challenge of understanding differential gene expression. Streptomyces offers a particularly fertile field for such research, following the isolation of DNA segments that carry groups of closely linked operons for the biosynthesis of and resistance to particular antibiotics, and of genes with pleiotropic effects on morphological differentiation and secondary metabolite formation.  相似文献   

19.
Summary Chloroplast gene mutations which confer antibiotic resistance on chloroplast ribosomes of the green alga Chlamydomonas reinhardtii have been tested for allelism and mapped by recombination analysis of progeny from biparental zygote clones. Thirty-one independently isolated streptomycin resistant mutants have chloroplast ribosomes which are resistant to this drug in an assay based on misreading of isoleucine in response to a poly U template, and comprise one nuclear and four chloroplast gene loci. Four mutants resistant to spectinomycin, and three mutants resistant to neamine and kanamycin, which have chloroplast ribosomes resistant to their respective antibiotics in poly U directed phenylalanine incorporation, appear to map in a single chloroplast gene locus. Representative alleles of this nr/spr locus, the four streptomycin resistance loci, and two chloroplast gene loci for erythromycin resistance, have been analyzed in a series of parallel crosses to establish the following map order for these seven genes in the chloroplast genome: er-u-la-er-u-37-nr-u-2-1/spr-u-1-H-4-sr-u-2-23-sr-u-2-60-sr-u-sm3-sr-u-sm2. These seven genes may constitute a ribosomal region within the chloroplast genome of Chlamydomonas comparable to the ribosomal gene clusters in bacteria.  相似文献   

20.
Six chloroplast gene mutants of Chlamydomonas reinhardtii resistant to spectinomycin, erythromycin, or streptomycin have been assessed for antibiotic resistance of their chloroplast ribosomes. Four of these mutations clearly confer high levels of antibiotic resistance on the chloroplast ribosomes both in vivo. Although one mutant resistant to streptomycin and one resistant to spectinomycin have chloroplast ribosomes as sensitive to antibiotics as those of wild type in vivo, these mutations can be shown to alter the wildtype sensitivity of chloroplast ribosomes in polynucleotide-directed amino acid incorporation in vitro. Genetic analysis of these six chloroplast mutants and three similar mutants (Sager, 1972), two of which have been shown to affect chloroplast ribosomes (Mets and Bogorad, 1972; Schlanger and Sager, 1974), indicates that in Chlamydomonas at least three chloroplast gene loci can affect streptomycin resistance of chloroplast ribosomes and that two can affect erythromycin resistance. The three spectinomycin-resistant mutants examined appear to be alleles at a single chloroplast gene locus, but may represent mutations at two different sites within the same gene. Unlike wild type, the streptomycin and spectinomycin resistant mutants which have chloroplast ribosomes sensitive to antibiotics in vivo, grow well in the presence of antibiotic by respiring exogenously supplied acetate as a carbon source, and have normal levels of cytochrome oxidase activity and cyanide-sensitive respiration. We conclude that mitochondrial protein synthesis in these mutants is resistant to these antibiotics, whereas in wild type it is sensitive. To explain the behavior of these two chloroplast gene mutants as well as other one-step mutants which are resistant both photosynthetically and when respiring acetate in the dark, we have postulated that a mutation in a single chloroplast gene may result in alteration of both chloroplast and mitochondrial ribosomes. Mitochondrial resistance would appear to be the minimal necessary condition for survival of all such mutants, and antibiotic-resistant chloroplast ribosomes would be necessary for survival only under photosynthetic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号