首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low voltage-activated (LVA) Ca2+ conductances were characterized in the neurons of the associative laterodorsal (LD) thalamic nucleus in rat brain slices and in enzymatically isolated thalamic units using electrophysiological techniques. Voltage dependence, kinetics of inactivation, pharmacology, and selectivity of the LVA current in the thalamic neurons from animals older than 14 postnatal days were consistent with the existence of two, “fast” and “slow,” subtypes of LVA Ca2+ channels. “Slow” LVA current in enzymatically isolated thalamic neurons was much less prominent, compared with that in slice neurons, suggesting that respective channels are predominatly located on the distal dendrites. “Fast” Ca2+ channels were sensitive to nifedipine (K d−2.6 μM) and La3+ (K d−1.0 mM), whereas “slow” Ca2+ channels were sensitive to Ni2+ (25 μM). Selectivity of the “fast” Ca2+ channels was similar to that found for the LVA Ca2+ channels in other preparations (I Ca:I Sr:I Ba−1.0: 1.23: 0.94), while selectivity of the “slow” Ca2+ channels more resembled selectivity of the HVA Ca2+ channels (I Ca:I Sr:I Ba−1.0: 2.5: 3.4).  相似文献   

2.
Despite the progress in studies of the properties and functions of low-threshold calcium channels (LTCCs) [1], the mechanisms of their selectivity and permeability remain unstudied in detail. We performed a comparative analysis of the selectivity of three cloned pore-forming LTCC subunits (α1G, α1H, and α1I) functionally expressed in Xenopus oocytes with respect to bivalent alkaline-earth metal cations (Ba2+, Ca2+, and Sr2+. The relative conductivities (G) of these channels were determined according to the amplitudes of macroscopic currents (I) and potentials of zero currents (E). The currents were recorded after preliminary intracellular injection of a fast calcium buffer, BAPTA, in order to suppress the endogenous calcium-dependent chloride conductivity. Channels formed by α1G subunits demonstrated the following ratios of the amplitudes of macroscopic currents and potentials of zero current: I Ca:I Ba:I Sr = 1.00:0.75:1.12 and E CaE BaE Sr. For channels that were formed by α1H and α1I subunits, these ratios were as follows: I Ca:I Ba:I Sr = 1.00:1.20:1.17, E CaE BaE Sr and I Ca:I Ba:I Sr = 1.00:1.48: 1.45, E CaE BaE Sr respectively. The different macroscopic conductivities and similar potentials of zero current typical of α1G and α1I channels indicate that, probably, various bivalent cations can in a differential manner influence the stochastic parameters of functioning of these channels. At the same time, channels formed by α1H subunits are characterized by more positive potentials of zero current for Ca2+. It seems possible that the selectivity of the above channels is determined by mechanisms that mediate the selectivity of most high-threshold calcium channels (more affine binding of Ca2+ inside the pore). Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 319–329, July–August, 2005.  相似文献   

3.
The effects of Ni2+ were evaluated on slowly-decaying, high-voltage-activated (HVA) Ca2+ currents expressed by pyramidal neurons acutely dissociated from guinea-pig piriform cortex. Whole-cell, patch-clamp recordings were performed with Ba2+ as the charge carrier. Ni2+ blocked HVA Ba2+ currents (I Bas) with an EC50 of approximately 60 μm. Additionally, after application of nonsaturating Ni2+ concentrations, residual currents activated with substantially slower kinetics than both total and Ni2+-sensitive I Bas. None of the pharmacological components of slowly decaying, HVA currents activated with kinetics significantly different from that of total currents, indicating that the effect of Ni2+ on I Bas kinetics cannot be attributed to the preferential inhibition of a fast-activating component. The effect of Ni2+ on I Ba amplitude was voltage-independent over the potential range normally explored in our experiments (−60 to +20 mV), hence the Ni2+-dependent decrease of I Ba activation rate is not due to a voltage- and time-dependent relief from block. Moreover, Ni2+ significantly reduced I Ba deactivation speed upon repolarization, which also is not compatible with a depolarization-dependent unblocking mechanism. The dependence on Ni2+ concentration of the I Ba activation-rate reduction was remarkably different from that found for I Ba block, with an EC50 of ∼20 μm and a Hill coefficient of ∼1.73 vs.∼1.10. These results demonstrate that Ni2+, besides inhibiting the I Bas under study probably by exerting a blocking action on the pore of the underlying Ca2+ channels, also interferes with Ca2+-channel gating kinetics, and strongly suggest that the two effects depend on Ni2+ occupancy of binding sites at least partly distinct. Received: 13 July 2000/Revised: 9 November 2000  相似文献   

4.
Low voltage-activated, rapidly inactivating T-type Ca2+ channels are found in a variety of cells, where they regulate electrical activity and Ca2+ entry. In whole-cell patch-clamp recordings from mouse spermatogenic cells, trace element copper (Cu2+) inhibited T-type Ca2+ current (I T-Ca) with IC50 of 12.06 μM. Inhibition of I T-Ca by Cu2+ was concentration-dependent and mildly voltage-dependent. When voltage stepped to −20 mV, Cu2+ (10 μM) inhibited I T-Ca by 49.6 ± 4.1%. Inhibition of I T-Ca by Cu2+ was accompanied by a shift of −2.23 mV in the voltage dependence of steady-state inactivation. Cu2+ upshifted the current–voltage (I-V) curve. To know the change of the gating kinetics of T-type Ca2+ channels, we analyzed the effect of Cu2+ on activation, inactivation, deactivation and reactivation of T-type Ca2+ channels. Since T-type Ca2+ channels are a key component in capacitation and the acrosome reaction, our data suggest that Cu2+ can affect male reproductive function through T-type Ca2+ channels as a preconception contraceptive material.  相似文献   

5.
Calcium channels were expressed inXenopus oocytes by means of messenger RNA extracted from the rat thalamo-hypothalamic complex, mRNA(h). Inward barium currents,I Ba, were recorded in Cl-free extracellular solution with 40 mM Ba2+ as a charge carrier, using two-microelectrode technique. Depolarizations from a very negative holding potential (V h=–120 mV) began to activateI Ba at about –80 mV; this current peaked at –30 to –20 mV and reversed at +50 mV, indicating that I Ba may be transferred through the low voltage-activated (LVA) calcium channels. The time-dependent inactivation of the current during a prolonged depolarization to –20 mV was quite slow, followed a single exponential decay with a time constant of 1550 msec, and contained a residual component constituting 30% of the maximum amplitude. The current could not be completely inactivated at any holding potential. As expected for LVA current, a steady-state inactivation curve was shifted towards negative potentials. It could be described by the Boltzmann's equation with the half-inactivation potential of –78 mV, slope factor of 15 mV, and residual level of 0.3. ExpressedI Ba could be blocked by flunarizine (K d=0.42 µM), nifedipine (K d=10 µM), and amiloride at a 500 µM concentration. Among the inorganic Ca2+ channel blockers, the most potent was La3+ (K d=0.48 µM), while Cd2+ and Ni2+ were not very selective and almost thousand-fold less effective (K d=0.52 mM andK d=0.62 mM, respectively) than La3+. Our data show that mRNA(h) induces expression in the oocytes of almost exclusively LVA Ca2+ channels with voltage-dependent and pharmacological properties very similar to those observed for T-type Ca2+ current in native hypothalamic neurons, though kinetic properties of the expressed and natural currents are somewhat different.Neirofiziologiya/Neurophysiology, Vol. 27, No. 3, pp. 183–189, May–June, 1995.  相似文献   

6.
Neuronal ion channels of different types often do not function independently but will inhibit or potentiate the activity of other types of channels, a process called cross-talk. The N-methyl-D-aspartate receptor (NMDA receptor) and the γ-aminobutyric acid type A receptor (GABAA receptor) are important excitatory and inhibitory receptors in the central nervous system, respectively. Currently, cross-talk between the NMDA receptor and the GABAA receptor, particularly in the central auditory system, is not well understood. In the present study, we investigated functional interactions between the NMDA receptor and the GABAA receptor using whole-cell patch-clamp techniques in cultured neurons from the inferior colliculus, which is an important nucleus in the central auditory system. We found that the currents induced by aspartate at 100 μmol L−1 were suppressed by the pre-perfusion of GABA at 100 μmol L−1, indicating cross-inhibition of NMDA receptors by activation of GABAA receptors. Moreover, we found that the currents induced by GABA at 100 μmol L−1 (I GABA) were not suppressed by the pre-perfusion of 100 μmol L−1 aspartate, but those induced by GABA at 3 μmol L−1 were suppressed, indicating concentration-dependent cross-inhibition of GABAA receptors by activation of NMDA receptors. In addition, inhibition of IGABA by aspartate was not affected by blockade of voltage-dependent Ca2+ channels with CdCl2 in a solution that contained Ca2+, however, CdCl2 effectively attenuated the inhibition of I GABA by aspartate when it was perfused in a solution that contained Ba2+ instead of Ca2+ or a solution that contained Ca2+ and 10 mmol L−1 BAPTA, a membrane-permeable Ca2+ chelator, suggesting that this inhibition is mediated by Ca2+ influx through NMDA receptors, rather than voltage-dependent Ca2+ channels. Finally, KN-62, a potent inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), reduced the inhibition of I GABA by aspartate, indicating the involvement of CaMKII in this cross-inhibition. Our study demonstrates a functional interaction between NMDA and GABAA receptors in the inferior colliculus of rats. The presence of cross-talk between these receptors suggests that the mechanisms underlying information processing in the central auditory system may be more complex than previously believed.  相似文献   

7.
Removal of extracellular Ca2+ activates ion channels in the plasma membrane of defolliculated oocytes of the South Africa clawed toad Xenopus laevis. At present, there is controversy about the nature of the Ca2+-inactivated ion channels. Recently, we identified one of these channels as a Ca2+-inactivated Cl channel (CaIC) using single channel analysis. In this work we confirm and extend previous observations on the CaIC by presenting a decisive extension of the regulation and inhibition profile. CaIC current is reversibly blocked by the divalent and trivalent cations Zn2+ (half-maximal blocker concentration, K1/2= 8 μm), Cu2+ (K1/2= 120 μm) and Gd3+ (K1/2= 20 μm). Furthermore, CaIC is inhibited by the specific Cl channel blocker NPPB (K1/2≈ 3 μm). Interestingly, CaIC-mediated currents are further sensitive to the cation channel inhibitor amiloride (500 μm) but insensitive to its high affinity analogue benzamil (100 μm). An investigation of the pH-dependence of the CaIC revealed a reduction of currents in the acidic range. Using simultaneous measurements of membrane current (I m ), conductance (G m ) and capacitance (C m ) we demonstrate that Ca2+ removal leads to instant activation of CaIC already present in the plasma membrane. Since C m remains constant upon Ca2+ depletion while I m and G m increase drastically, no exocytotic transport of CaIC from intracellular pools and functional insertion into the plasma membrane is involved in the large CaIC currents. A detailed overview of applicable blockers is given. These blockers are useful when oocytes are utilized as an expression system for foreign proteins whose investigations require Ca2+-free solutions and disturbances by CaIC currents are unwanted. We further compare and discuss our results with data of Ca2+-inactivated cation channels reported by other groups. Received: 18 June 1999/Revised: 13 August 1999  相似文献   

8.
K+-conductive pathways were evaluated in isolated surface and crypt colonic cells, by measuring 86Rb efflux. In crypt cells, basal K+ efflux (rate constant: 0.24 ± 0.044 min−1, span: 24 ± 1.3%) was inhibited by 30 mM TEA and 5 mM Ba2+ in an additive way, suggesting the existence of two different conductive pathways. Basal efflux was insensitive to apamin, iberiotoxin, charybdotoxin and clotrimazole. Ionomycin (5 μM) stimulated K+ efflux, increasing the rate constant to 0.65 ± 0.007 min−1 and the span to 83 ± 3.2%. Ionomycin-induced K+ efflux was inhibited by clotrimazole (IC50 of 25 ± 0.4 μM) and charybdotoxin (IC50 of 65 ± 5.0 nM) and was insensitive to TEA, Ba2+, apamin and iberiotoxin, suggesting that this conductive pathway is related to the Ca2+-activated intermediate-conductance K+ channels (IKca). Absence of extracellular Ca2+ did neither affect basal nor ionomycin-induced K+ efflux. However, intracellular Ca2+ depletion totally inhibited the ionomycin-induced K+ efflux, indicating that the activation of these K+ channels mainly depends on intracellular calcium liberation. K+ efflux was stimulated by intracellular Ca2+ with an EC50 of 1.1 ± 0.04 μM. In surface cells, K+ efflux (rate constant: 0.17 ± 0.027 min−1; span: 25 ± 3.4%) was insensitive to TEA and Ba2+. However, ionomycin induced K+ efflux with characteristics identical to that observed in crypt cells. In conclusion, both surface and crypt cells present IKCa channels but only crypt cells have TEA- and Ba2+-sensitive conductive pathways, which would determine their participation in colonic K+ secretion.  相似文献   

9.
Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on γ-aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN). The results showed that: (i) NMDA suppressed GABA-and muscimol (Mus)-activated currents (Igaba and IMus), respectively in the Mg2+-free external solution containing 1 μmol/L glycine at a holding potential (V H ) of −40 mV in SDCN neurons. The selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV, 100 γmol/L), inhibited the NMDA-evoked currents and blocked the NMDA-induced suppression of Igaba; (ii) when the neurons were incubated in a Ca2+-free bath or pre-loaded with a membrane-permeable Ca2+ chelator, BAPTA AM (10 μmol/L), the inhibitory effect of NMDA on IGAba disappeared. Cd2+ (10 μmol/L) or La3+ (30 μmol/L), the non-selective blockers of voltage-dependent calcium channels, did not affect the suppression of Igaba by NMDA application; (iii) the suppression of IGAba by NMDA was inhibited by KN-62, a calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results indicated that the inhibition of GABA response by NMDA is Ca2+-dependent and CaMKII is involved in the process of the Ca2+-dependent inhibition.  相似文献   

10.
Calcium channels were expressed inXenopus laevis oocytes by means of matrix RNA (mRNA) extracted from the cerebellum (RNAc) and forebrain (RNAfb). In these oocytes, inward barium currents,I Ba, evoked by 40 mM Ba2+ were investigated using a double microelectrode technique. Currents expressed after injection of both RNAc and RNAfb (further referred to as RNAc- and RNAfb-expressed currents) showed a voltage-dependent characteristic typical of high-threshold calcium channels of mammalian neurons. The threshold of activation was about –40 mV, the maximum amplitude was observed at +20 mV and reversal potential at +60 mV. In both groups of oocytes, no expression of low- or high-threshold calcium channels of other types was observed. Although in both cases the expression ofI Ba had similar macrokinetics, characteristics of their stationary inactivation differed. The half-inactivation potential ranged between –32 and –16 mV, and the slope factor was 28 and 16.6 mV in RNAfb- and RNAc-injected oocytes, respectively. In both cases,I Ba were insensitive to dihydropyridines; however their relation to other pharmacological agents was different. RNAfb-expressedI Ba was completely blocked by Cd2+ (K d=10 µM) and depressed up to 70% by -conotoxin (1 µM), being insensitive to either whole spider toxin fromAgelenopsis aperta venom or to its FTX fraction. On the contrary, RNAc-expressedI Ba was more sensitive to Cd2+ (K d=0.1 µM), stable to -conotoxin, and suppressed up to 75–90% by wholeA. aperta toxin in a dilution of 1:10000, and by FTX at a concentration of 0.5 µM. The findings allow us to suggest that the forebrain and cerebellum of mammals are the structures, whose mRNA differ and provide predominant expression of voltage-dependent calcium channels of N- and P-types, respectively.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 427–436, November–December, 1994.  相似文献   

11.
The kinetic and pharmacological properties of low voltage-activated (LVA) Ca2+ channels were studied in neurons of the laterodorsal (LD) thalamic nucleus in brain slices from 12-day-old rats. A homogeneous population of LVA Ca2+ channels was found in the tested neurons. LVA Ca2+ current evoked by a step depolarization from a holding potential more negative than −70 mV was found to be sensitive to nifedipine (K d=2.6 (M). This current gained its maximum at −55 mV and demonstrated fast monoexponential decay with the time constant of 32.3±4.0 msec (n=15). Lanthanum (1 μM) effectively blocked LVA Ca2+ current, while nickel (25 μM) did not affect this current. It is concluded that the channels that, according to their pharmacological properties, provide the studied LVA Ca2+ current cannot be regarded as T-type Ca2+ channels and belong to some other type of LVA Ca2+ channels.  相似文献   

12.
The calcium-sensitive forms of adenylyl cyclases (AC) have been revealed in the majority of vertebrate and invertebrate animals, as well as in several representatives of unicellular organisms, including infusoria. We have found for the first time that the AC activity in the infusorian Tetrahymena pyriformis changes in the presence of calcium ions. Calcium ions at concentrations of 0.2–20 μM stimulated the activity of this enzyme, with the maximum of the stimulatory effect being observed at 2 μM Ca2+. At a concentration of 100 μM and higher, the calcium cations inhibited the AC activity. Antagonists of calmodulin W-5 and W-7 at concentrations of 20–100 μM decreased the stimulatory effect of 5 μM Ca2+, while at the higher concentrations inhibited it completely. Another calmodulin antagonist, chloropromazine, decreased the Ca2+-stimulated AC activity only at concentrations of 200–1000 μM. The stimulatory effect of serotonin, EGF, and cAMP on AC activity was enhanced in the presence of 5 μM Ca2+. The stimulatory effect of EGF, cAMP, and insulin on AC was decreased in the presence of 100 μM Ca2+, while the effect of cAMP was also observed in the presence of calmodulin antagonists (500 μM). At the same time, stimulatory effect of D-glucose did not change in the presence of Ca2+ and calmodulin antagonists. The obtained data indicate that, in the infusorian T. pyriformis, there are calcium-sensitive forms of AC that can be stimulated by EGF, cAMP, insulin, and serotonin.  相似文献   

13.
The experiments were perfomed on transvcrsus abdominis muscle of Elaphe dione by subendothelial recording. The results indicate that in snake motor nerve endings there exist four types of K* channels, i.e. voltage-dependent fast and slow K channels, Ca2 -activated K channel and ATP-sensitive K channel, (i) The typical wave form of snake terminal current was the double-peaked negativity in standard solution. The first peak was at-tributed to Na influx (INa) in nodes of Ranvier. The second one was blocked by 3, 4-aminopyridine (3, 4-DAP) or te-traethylammonium (TEA), which corresponded to fast K outward current (IKF) through the fast K* channels in terminal part, (ii) After IKF as well as the slow K current (IKS) were blocked by 3, 4-DAP, the TEA-sensitive Ca2 -dependent K current (IK(Ca)) passing through Ca2 -activated K channel was revealed, whose amplitude depended on [K ]and [Ca2 ] It was blocked by Ba2 , Cd2 or Co2 . (iii) IK.F and IK(Ca) were blocked by TEA, while IK.S was retained. It  相似文献   

14.
The metabotropic GABAB and adenosine A1 receptors mediate presynaptic inhibition through regulation of voltage-dependent Ca2+ channels, whereas K+ channel regulation is believed to have no role at the CA3-CA1 synapse. We show here that the inhibitory effect of baclofen (20 μM) and adenosine (300 μM) on field EPSPs are differentially sensitive to Cs+ (3.5 mM) and Ba2+ (200 μM), but not 4-aminopyridine (100 μM). Barium had no effect on paired-pulse facilitation (PPF) in itself, but gave significant reduction (14 ± 5%) when applied in the presence of baclofen, but not adenosine, suggesting that the effect is presynaptic and selective on the GABAB receptor-mediated response. The effect of Ba2+ on PPF was not mimicked by tertiapin (30 nM), indicating that the underlying mechanism does not involve GIRK channels. Barium did not affect PPF in slices from young rats (P7–P8), suggesting developmental regulation. The above effects of Ba2+ on adult tissue were reproduced when measuring evoked whole-cell EPSCs from CA1 pyramidal neurons: PPF was reduced by 22 ± 3% in the presence of baclofen and unaltered in adenosine. In contrast, Ba2+ caused no significant change in frequency or amplitude of miniature EPSCs. The Ba2+-induced reduction of PPF was antagonized by LY341495, suggesting metabotropic glutamate receptor involvement. We propose that these novel effects of Ba2+ and Cs+ are exerted through blockade of inwardly rectifying K+ channels in glial cells, which are functionally interacting with the GABAB receptor-dependent glutamate release that generates heterosynaptic depression.  相似文献   

15.
Elevation of the external potassium concentration induced a two-phase inward current in freshly isolated pyramidal hippocampal neurons. This current was voltage-dependent and demonstrated strong inward rectification. The current consisted of a leakage current and a time-dependent current (τ=40–50 msec at 21°C); the latter was designated asI ΔK. As was shown earlier, K+ is a major charge carrier in the development of slow potassium-activated current. The pharmacological properties ofI ΔK were studied using a patch-clamp technique.I ΔK was completely blocked by external 10 mM TEA or 5 mM Ba2+ (IC50=480±90mM) and exhibited low sensitivity to extracellular Cs+ (2 mM). This current was not affected by 1 mM 4-aminopyridine and was insensitive to a muscarinic agonist, carbachol (50 μM), and to 1 mM extracellular Cd2+. Elevation of external Ca2+ from 2.5 mM to 10 mM did not changeI ΔK. Our data indicate that the pharmacological properties ofI ΔK differ from those of other voltage-gated potassium currents, but more specific blockers must be used to make this evidence conclusive.  相似文献   

16.
The superficial (tonic) abdominal flexor muscles of Atya lanipes do not generate Ca2+ action potentials when depolarized and have no detectable inward Ca2+ current. These fibers, however, are strictly dependent on Ca2+ influx for contraction, suggesting that they depend on Ca2+-induced Ca2+ release for contractile activation. The nature of the communication between Ca2+ channels in the sarcolemmal/tubular membrane and Ca2+ release channels in the sarcoplasmic reticulum in this crustacean muscle was investigated. The effects of dihydropyridines on tension generation and the passive electrical response were examined in current-clamped fibers: Bay K 8644 enhanced tension about 100% but did not alter the passive electrical response; nifedipine inhibited tension by about 70%. Sr2+ and Ba2+ action potentials could be elicited in Ca2+-free solutions. The spikes generated by these divalent cations were abolished by nifedipine. As the Sr2+ or Ba2+ concentrations were increased, the amplitudes of the action potentials and their maximum rate of rise, V max , increased and tended towards saturation. Three-microelectrode voltage-clamp experiments showed that even at high (138 mm) extracellular Ca2+ concentration the channels were silent, i.e., no inward Ca2+ current was detected. In Ca2+-free solutions, inward currents carried by 138 mm Sr2+ or Ba2+ were observed. The currents activated at voltages above −40 mV and peaked at about 0 mV. This voltage-activation profile and the sensitivity of the channels to dihydropyridines indicate that they resemble L-type Ca2+ channels. Peak inward current density values were low, ca.−33 μA/cm2 for Sr2+ and −14 μA/cm2 for Ba2+, suggesting that Ca2+ channels are present at a very low density. It is concluded that Ca2+-induced Ca2+ release in this crustacean muscle operates with an unusually high gain: Ca2+ influx through the silent Ca2+ channels is too low to generate a macroscopic inward current, but increases sufficiently the local concentration of Ca2+ in the immediate vicinity of the sarcoplasmic reticulum Ca2+ release channels to trigger the highly amplified release of Ca2+ required for tension generation. Received: 5 April 1999/Revised: 15 September 1999  相似文献   

17.
The modulation of I A K+ current by ten trivalent lanthanide (Ln3+) cations spanning the series with ionic radii ranging from 0.99 ? to 1.14 ? was characterized by the whole-cell patch clamp technique in bovine adrenal zona fasciculata (AZF) cells. Each of the ten Ln3+s reduced I A amplitude measured at +20 mV in a concentration-dependent manner. Smaller Ln3+s were the most potent and half-maximally effective concentrations (EC50s) varied inversely with ionic radius for the larger elements. Estimation of EC50s yielded the following potency sequence: Lu3+ (EC50= 3.0 μm) ≈ Yb3+ (EC50= 2.7 μm) > Er3+ (EC50= 3.7 μm) ≥ Dy3+ (EC50= 4.7 μm) > Gd3+ (EC50= 6.7 μm) ≈ Sm3+ (EC50= 6.9 μm) > Nd3+ (EC50= 11.2 μm) > Pr3+ (EC50= 22.3 μm) > Ce3+ (EC50= 28.0 μm) > La3+ (EC50= 33.7 μm). Ln3+s altered selected voltage-dependent gating and kinetic parameters of I A with a potency and order of effectiveness that paralleled the reduction of I A amplitude. Ln3+s markedly slowed activation kinetics and shifted the voltage-dependence of I A gating such that activation and steady-state inactivation occurred at more depolarized potentials. In contrast, Ln3+s did not measurably alter inactivation or deactivation kinetics and only slightly slowed kinetics of inactivated channels returning to the closed state. Replacement of external Ca2+ with Mg2+ had no effect on the concentration-dependent inhibition of I A by Ln3+s. In contrast to their action on I A K+ current, Ln3+s inhibited T-type Ca2+ currents in AZF cells without slowing activation kinetics. These results indicate that Ln3+ modulate I A K+ channels through binding to a site on I A channels located within the electric field but which is not specific for Ca2+. They are consistent with a model where Ln3+ binding to negative charges on the gating apparatus alters the voltage-dependence and kinetics of channel opening. Ln3+s modulate transient K+ and Ca2+ currents by two fundamentally different mechanisms. Received: 21 January 1997/Revised: 3 April 1998  相似文献   

18.
This combined study of patch-clamp and intracellular Ca2+ ([Ca2+] i ) measurement was undertaken in order to identify signaling pathways that lead to activation of Ca2+-dependent Cl channels in cultured rat retinal pigment epithelial (RPE) cells. Intracellular application of InsP3 (10 μm) led to an increase in [Ca2+] i and activation of Cl currents. In contrast, intracellular application of Ca2+ (10 μm) only induced transient activation of Cl currents. After full activation by InsP3, currents were insensitive to removal of extracellular Ca2+ and to the blocker of I CRAC, La3+ (10 μm), despite the fact that both maneuvers led to a decline in [Ca2+] i . The InsP3-induced rise in Cl conductance could be prevented either by thapsigargin-induced (1 μm) depletion of intracellular Ca2+ stores or by removal of Ca2+ prior to the experiment. The effect of InsP3 could be mimicked by intracellular application of the Ca2+-chelator BAPTA (10 mm). Block of PKC (chelerythrine, 1 μm) had no effect. Inhibition of Ca2+/calmodulin kinase (KN-63, KN-92; 5 μm) reduced Cl-conductance in 50% of the cells investigated without affecting [Ca2+] i . Inhibition of protein tyrosine kinase (50 μm tyrphostin 51, 5 μm genistein, 5 μm lavendustin) reduced an increase in [Ca2+] i and Cl conductance. In summary, elevation of [Ca] i by InsP3 leads to activation of Cl channels involving cytosolic Ca2+ stores and Ca2+ influx from extracellular space. Tyrosine kinases are essential for the Ca2+-independent maintenance of this conductance. Received: 15 October 1998/Revised: 3 March 1999  相似文献   

19.
Icilin is recognized as a chemical agonist of nociceptors and can activate TRPM8 channels. However, whether this agent has any effects on immune cells remains unknown. In this study, the effects of icilin on ion currents were investigated in RAW 264.7 murine macrophage-like cells. Icilin (1–100 μM) increased the amplitude of nonselective (NS) cation current (I NS) in a concentration-dependent manner with an EC50 value of 8.6 μM. LaCl3 (100 μM) or capsazepine (30 μM) reversed icilin-induced I NS; however, neither apamin (200 nM) nor iberiotoxin (200 nM) had any effects on it. In cell-attached configuration, when the electrode was filled with icilin (30 μM), a unique population of NS cation channels were activated with single-channel conductance of 158 pS. With the use of a long-lasting ramp pulse protocol, increasing icilin concentration produced a left shift in the activation curve of NS channels, with no change in the slope factor of the curve. The probability of channel opening enhanced by icilin was increased by either elevated extracellular Ca2+ or application of ionomycin (10 μM), while it was reduced by BAPTA-AM (10 μM). Icilin-stimulated activity is associated with an increase in mean open time and a reduction in mean closed time. Under current-clamp conditions, icilin caused membrane depolarization. Therefore, icilin interacts with the TRPM8-like channel to increase I NS and depolarizes the membrane in these cells.  相似文献   

20.
A Ca2+-activated (I Cl,Ca) and a swelling-activated anion current (I Cl,vol) were investigated in Ehrlich ascites tumor cells using the whole cell patch clamp technique. Large, outwardly rectifying currents were activated by an increase in the free intracellular calcium concentration ([Ca2+] i ), or by hypotonic exposure of the cells, respectively. The reversal potential of both currents was dependent on the extracellular Cl concentration. I Cl,Ca current density increased with increasing [Ca2+] i , and this current was abolished by lowering [Ca2+] i to <1 nm using 1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA). In contrast, activation of I Cl,vol did not require an increase in [Ca2+] i . The kinetics of I Cl,Ca and I Cl,vol were different: at depolarized potentials, I Cl,Ca as activated in a [Ca2+] i - and voltage-dependent manner, while at hyperpolarized potentials, the current was deactivated. In contrast, I Cl,vol exhibited time- and voltage-dependent deactivation at depolarized potentials and reactivation at hyperpolarized potentials. The deactivation of I Cl,vol was dependent on the extracellular Mg2+ concentration. The anion permeability sequence for both currents was I > Cl > gluconate. I Cl,Ca was inhibited by niflumic acid (100 μm), 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 μm) and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS, 100 μm), niflumic acid being the most potent inhibitor. In contrast, I Cl,vol was unaffected by niflumic acid (100 μm), but abolished by tamoxifen (10 μm). Thus, in Ehrlich cells, separate chloride currents, I Cl,Ca and I Cl,vol, are activated by an increase in [Ca2+] i and by cell swelling, respectively. Received: 12 November 1997/Revised: 5 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号