首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A marine unicellular aerobic nitrogen-fixing cyanobacterium Synechococcus sp. strain Miarni BG 043511 was pretreated with different light and dark regimes in order to induce higher growth synchrony. A pretreatment of two dark and light cycles of 16 h each yielded good synchrony for 3 cell division cycles. Longer dark treatments decreased the degree of synchrony and shorter dark treatments caused irregular cell division. Once synchronous culture was established, distinct phases of cellular carbohydrate accumulation and cellular carbohydrate degradation were observed even under continuous illumination. Changes in carbohydrate content were repeated in a cyclic manner with approximately 20 h intervals, the same as the cell division cycle. This change in carbohydrate metabolism provided a good index of growth synchrony under nitrogen-fixing conditions.
Photosynthetic oxygen evolution and nitrogen fixation capabilities and their activities in near, in situ, culture conditions were measured in well synchronized cultures of this strain under continuous illumination. Distinct oscillations of both photosynthetic oxygen evolution and nitrogen fixation capabilities with ca 20-h intervals, similar to the interval of the cell division cycle, were observed for three cycles. However, the activities of photosynthetic oxygen evolution were inversely correlated with those of nitrogen fixation. During the nitrogen fixation period, net oxygen consumption was observed even in the light under conditions approximating in situ culture conditions. The phase of temporal appearance of nitrogenase activity during the cell division cycle coincided with the phase of carbohydrate net degradation. These data indicate that this unicellular cyanobacterium can grow diazotrophically under conditions of continuous illumination by the segregation of photosynthesis and nitrogen fixation within a cell division cycle.  相似文献   

2.
The dinoflagellate Prorocentrum minimum (Pavillard) Schiller is known to be a major bloom-causing microalga in the southern ocean of the Korean peninsula. The acclimation of this alga to darkness for 10 days was investigated by analyzing the content of various lipids, such as phospholipid (PL), galactolipid (GL), and triacylglyceride (TAG). Actively growing cultures of the alga under normal growth conditions (14:10 h LD [light:dark] cycle) were transferred to a growth chamber under conditions of no light and no carbon sources in the medium, and the culture was continued for another 10 days. The results showed that the content of TAG and GL decreased gradually during dark incubation, whereas the total PL content changed little; PC, PE, and PG decreased; and PS, PA, and PI increased. An increase in the activity of β-oxidation and isocitrate lyase (ICL, a glyoxylate cycle enzyme) paralleled the decrease of TAG and GL. These observations strongly suggested that TAG and GL were utilized as alternative carbon sources by the cells under the prolonged dark cultivation. Light treatment of the cells cultivated in the dark for 10 days allowed them to attain the lipid composition that was observed in cells grown in light. These results strongly suggested that the cells maintained their metabolic integrity without unrecoverable cellular damages or cell death during 10 days of dark cultivation.  相似文献   

3.
The development cycle of the cyanophage AS-1 was studied in the host blue-green alga, Anacystis nidulans, under conditions that impair photosynthesis and under various light/dark regimes. Under standard conditions of incubation the 16-h development cycle consisted of a 5-h eclipse period and an 8-h latent period. Burst size was decreased by dark incubation to 2% of that observed in the light. An inhibitor of photosystem II, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), reduced the burst size to 27% of that of the uninhibited control, whereas cyanophage production was completely abolished by carbonyl-cyanide m-chlorophenyl hydrazone (CCCP), an inhibitor of photosynthetic electron transport. Dark incubation of infected cells decreased the latent period by 1–2 h and the eclipse period by 1 h, once the cultures were illuminated. This suggests that adsorption took place in the dark. Intracellular growth curves indicated that light is necessary for viral development. Infected cells must be illuminated at least 13 h to produce a complete burst at the same rate as the continuously illuminated control. Low light intensities retarded the development cycle, and at lowest light intensities no phage yield was obtained. AS-1 is highly dependent on host cell photophosphorylation for its development.List of Abbreviations CCCP Carbonyl-cyanide m-chlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - m.o.i. multiplicity of infection - O.D. optical density - PFU plaque-forming unit Dedicated to Prof. Roger Y. Stanier on the occasion of his 60th birthday  相似文献   

4.
Allophanate lyase can be induced by urea or acetamide 20-40-fold within 4 h in NH4 + -deprived cultures of Chlamydomonas reinhardi. In light-synchronized cultures, allophanate lyase induction appeared to be limited to the light phase of the cell cycle, provided that culture samples were induced under ongoing illumination conditions (i.e. light induction of light phase cells and dark induction of dark phase cells). However, when culture samples were induced under constant light conditions this cell cycle pattern was abolished. Light was found to be required for allophanate lyase induction and this was shown to be due, in part, to the light requirement for inducer uptake. The relationship between allophanate lyase induction and gametogenesis is discussed.  相似文献   

5.
A system of highly synchronized chloroplast divisions was developed in the unicellular red alga Cyanidioschyzon merolae De Luca, Taddei, & Varano. Chloroplast divisions were examined by epifluorescence microscopy following treatments with light and inhibitors. When the cells during stationary phase were transferred into a new medium under a 12:12 h LD cycle, chloroplasts, mitochondria, and cell nuclei divided synchronously in that order soon after the initiation of dark periods. More than 40% of the cells contained dividing chloroplasts. To obtain a system of highly synchronized cell division and chloroplast division, the cells synchronized by a 12:12 h LD cycle were treated with various inhibitors. Nocodazole and propyzamide did not affect cell and organelle divisions, whereas aphidicolin markedly inhibited cell-nuclear divisions and cytokinesis and induced a delay in chloroplast division. More than 80% of the cells contained dividing chloroplasts when cells synchronized by light were treated with aphidicolin for 12 h. This synchronized system will be useful for studies of the molecular and cellular mechanisms of organelle divisions .  相似文献   

6.
Abstract The cyanobacterium Oscillatoria agardhii was grown in turbidostat cultures with the light energy supply in either the continuous mode or in the pulsed mode (8/16 h light/dark (L/D) cycle). The light irradiance value used was sufficient to allow the maximal growth rate to be attained, when supplied continuously. Adaptation of O. agardhii to the L/D cycle was characterized by an increase in pigment content and photosynthetic performance, accompanied by a decrease in growth rate. This mode of adaptation resembled the adaptation of O. agardhii to continuous low light intensities. It is suggested that in this case the L/D cycle provokes this adaptation in order to allow the cells to accumulate carbohydrate rapidly during the light period. This was attributed to the storage of polyglucose, which served as a carbon and energy source for growth in the dark. The utilization of polyglucose in the dark was able to sustain the synthesis of all other cell components at the same rate as when cells were growing in the light. The growth yield in the dark, whilst metabolizing internally stored polyglucose, was 0.52 g cell C/g polyglucose C, or 0.62 g cell dry weight/g polyglucose. Although in the pulsed mode there is a 66% loss in light irradiance per 24 h when compared with a continuous light regime, the growth rate of the cyanobacteria grown in the pulsed mode was only 35% lower than the growth rate of a culture grown in continuous light. This can be explained by a high growth yield in the dark and by increased CO2 fixation rates in the light of cells grown in the pulsed mode.  相似文献   

7.
Allophanate lyase can be induced by urea or acetamied 20–40-fold within 4 h in NH4+-deprived cultures of Chlamydomonas reinhardi. In light-synchronized cultures, allophanate lyase induction appeared to be limited to the light phase of the cell cycle, provided that culture samples were induced under ongoing illumination conditions (i.e. light induction of light phase cells and dark induction of dark phase cells). However, when culture samples were induced under constant light conditions this cell cycle pattern was abolished. Light was found to be required for allophanate lyase induction and this was shown to be due, in part, to light requirement for inducer uptake. The relationship between allophanate lyase induction and gametogenesis is discussed.  相似文献   

8.
For the first time, photoautotrophic cell suspension cultures of Mesembryanthemum crystallinum have been established. The cells are growing in a sugar-free culture medium in the presence of 2 % (v/v) CO2 as the sole carbon source. A 16 h light photoperiod is applied. Increase in fresh and dry weight during a 21 days growth cycle was more than 3-fold. Treatment of the cells with 200 mM NaCl from day 10 to day 21 of subculture stimulated cell culture growth, enhanced CO2 fixation and elicited an increase in the extractable activities of enzymes related to CO2 fixation (RubisCO; PEP carboxylase) and malic acid metabolism (NAD / NADP dependent malic enzyme and malic acid dehydrogenase). The cells performed osmotic adjustment to high salinity by uptake of K+, Na+, Cl? and formation of proline as well as by a reduction in cell size. Although sugar and starch content of the cells changed during light/dark transition, a CAM-related diurnal fluctuation of malic acid was not observed.  相似文献   

9.
Cells of Chlamydomonas reinhardi Dangeard were grown synchronouslyunder a 12 hr light-12 hr dark regime. Time courses of nucleardivision, chloroplast division, "apparent cytokinesis" and zoosporeliberation were followed during the vegetative cell cycle inthe synchronous culture. Liberation of zoospores occurred atabout 23–24 hr after the beginning of the light periodat 25°C. Four zoospores were produced per mother cell underthe conditions used. At lower temperatures, the process of zoosporeliberation as well as length of the cell cycle was markedlyprolonged, but the number of zoospores produced per mother cellwas approximately the same. At different light intensities,lengths of the cell cycle were virtually the same, while thenumber of zoospores liberated was larger at higher rather thanat lower light intensities. During the dark period, nuclear division, chloroplast divisionand apparent cytokinesis took place, in diis order, and proceededless synchronously than did the process of zoospore liberation.When the 12 hr dark period was replaced with a 12 hr light periodduring one cycle, the time of initiation as well as the durationof zoospore liberation was litde affected in most cases, whereasnuclear division, chloroplast division and apparent cytokinesiswere considerably accelerated by extended illumination. Whenalgal cells which had been exposed to light for 24 hr were furtherincubated in the light, zoospore liberation started much earlierand proceeded far less synchronously, compared with that under12 hr light-12 hr dark alternation. (Received October 12, 1970; )  相似文献   

10.
Cloned cultures of the dinoflagellate Gonyaulax polyedra grown in a 12-h light-12-h dark cycle (LD 12:12) were synchronized to the beginning of G1 by a two sequential filtration technique. After the second filtration, with the cultures growing in LD 12:12, not many cells had divided after 1 day, but approximately half underwent cell division after 2 days. Flow cytometric measurements of the cells revealed that there is one unique S phase starting about 12 h prior to cell division and lasting for less than 4 h. A majority of cells in cultures synchronized in the same way but maintained in continuous light (LL) after filtration also divided synchronously after 2 days. Just as for the cultures in LD 12:12, those in LL have a similar discrete DNA synthesis phase prior to division. It is concluded that the circadian control of cell division acts before the S phase, giving rise to a discontinuous DNA synthesis phased by the circadian clock.  相似文献   

11.
In order to investigate a requirement for isoprenoid compounds in the cell cycle, DNA synthesis was examined in cultured Chinese hamster ovary cells in which mevalonate biosynthesis was blocked with mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Treatment of exponentially-growing cultures with mevinolin led to a decline in DNA synthesis and cell cycle arrest in G1. Synchronous DNA synthesis and cell division could be restored in the arrested cultures, in the absence of exogenous mevalonate, by removing the inhibitor from the culture thereby allowing expression of an induced level of HMG-CoA reductase. In order to quantitate the mevalonate requirement for entry into S phase, recovery of DNA synthesis was made dependent upon added mevalonate by preventing the induction of the enzyme using 25-hydroxycholesterol, a specific repressor of HMG-CoA reductase synthesis. When cultures were treated with both inhibitors, optimal recovery of DNA synthesis was obtained with 200 micrograms/ml mevalonate following an 8 h lag, whereas a progressively longer lag-time was found with lower concentrations of mevalonate. Exogenous dolichol, ubiquinone, or isopentenyladenine had no effect on the arrest or recovery of DNA synthesis. Cholesterol was required during the arrest incubation for cell viability, but was not sufficient for recovery in the absence of mevalonate. The recovery of DNA synthesis by 200 micrograms/ml mevalonate, which was maximal 14-16 h after the addition of mevalonate, only required that the mevalonate be present for the first 4 h, whereas more than an 8-h incubation was required for maximal recovery with 25 micrograms/ml mevalonate. Maximal recovery at either concentration of mevalonate was achieved after approximately 400 fmol mevalonate/micrograms protein was incorporated into non-saponifiable lipids. This quantity represents approximately 0.1% of the mevalonate required for the synthesis of total cellular isoprenoid compounds. The results indicate that production of a quantitatively minor product(s) of mevalonate metabolism is required during the first 4 h following release of the block before other cellular events necessary for entry into S phase can occur.  相似文献   

12.
Summary In autotrophic cultures of Chlorella synchronised by alternating light and dark periods of 16:8 hours the DNA content duplicated normally 4 times successively during the S mphase, i. e. between the 10th and 18th hour after the beginning of the light period. This finding together with electron microscopical observations revealed that one duplication of the DNA and of the nuclei per cell proceeds every 110 minutes. All nuclei of a cell seem to undergo successive DNA syntheses and nuclear divisions synchronously. The rate of DNA synthesis was independent from illumination. On appropriate reduction of the light period the last duplication cycle fell out and the average final spore number per cell was accordingly lower.If a culture was transferred to darkness or low light intensity 3 hours before the normal end of the light period the release of spores was promoted by approximately 1 1/2 hours, provided a strong decrease of metabolically accessible carbohydrates was prevented by either an additional short illumination during the dark period or by continuing the weak light.A possible explanation for the shortening of the cell development is that, by passing over one DNA duplication and one protoplast division, the cell can enter sooner the respective subsequent developmental stages.  相似文献   

13.
Summary We have studied the cell cycle of cells obtained from chorionic villi in direct and culture preparations by incorporation of the thymidine analogue BrdU to produce latelabelling or sister chromatid differentiation patterns. We have, therefore, been able to estimate the duration of the cell cycle and, more specifically, the length of some of its phases. While results for chorionic villus sample cells in culture resembled those obtained for fibroblasts, data for the spontaneously dividing trophoblastic cells in direct preparations were different. Villi exposed to BrdU immediately after sampling showed a slight delay in the incorporation of the analogue and a lower percentage of labelled cells compared to villi treated after an overnight incubation, probably due to a temporary effect of the sampling technique. Results from semi-direct protocols suggest that cells have a G2 of no more than 4h, and a mid-S phase of 10–16h. The G1 period is very variable. After 48 h incubation with BrdU, only 4% of cells reach their second generation, whereas this percentage increases up to 70% after 72h, indicating that under these experimental conditions most cells have a cell cycle of approximately 36 h. The average number of sister chromatid exchanges was similar in both direct preparations and cultures: 5.2±2.1 SCE per cell.  相似文献   

14.
The cell cycle was examined in embryo and root explants of Vicia faba in culture to test whether or not polyploidy and aneuploidy affected organogenetic potential. Nuclear DNA contents and the mitotic index were measured in the 0–1 mm apical segment of primary roots of 5-day old seedlings and at various times following transfer to modified MS in darkness or Chu's N6 medium in an 8 h light/16h dark cycle (N6-MS programme) at 20°C. Mature embryos were dissected and cut longitudinally. Each half was cultured on the N6-MS programme. Root explants grown on MS in darkness developed into callus but there was no subsequent organogenesis. Only on the N6-MS programme were new roots initiated from root-derived callus. Using the N6-MS programme, embryo-derived callus became green and after 3 to 4 months, produced roots and shoots. Approximately 40% of these cultures regenerated plantlets. Polyploidy occurred within 24 h of culture irrespective of both tissue source and culture protocol. Variations in chromosome number from 2n=2x=12 were also routinely observed. Thus, calluses had the ability to initiate roots and shoots regardless of persistent polyploidy and aneuploidy. Compared with the baseline of cell cycle data for roots in vivo, the proportions of cells in the different cell cycle phases remained constant. Thus, in V. faba induction of organogenesis seems more related to culture protocols than to specific changes to the cell cycle. The mitotic index was significantly lower in vitro compared with meristems of intact roots.  相似文献   

15.
The marine planktonic diatom Skeletonema costatum (Grev.) Cleve was cultured under three light regimes: constant light, a 12h light:12h dark (12h:12h) cycle and a 2h light:2h dark (2h:2h) regime. In continuous light, the enzymatic system involved in inorganic carbon fixation showed a loss in efficiency compared with that of cells cultured in 12h:12h or 2h:2h. On the other hand, a 2h:2h photoperiod induced larger cells with more chlorophyll a per cell and a higher assimilation rate. Carbon dioxide incorporation in the light, investigated by a study of the photosynthetic products and the measurement of enzyme activities (ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxykinase), was shown to occur, in the three regimes, by a C3 pathway on which were superimposed β-carboxylations. The β-carboxylating reactions in the light represented 12% of the C3 pathway in CL, 8% in 12h:12h, and 3% in 2h:2h. Dark carbon dioxide incorporation (β-carboxylations in the dark)was ≈15 times higher in 2h:2h than in 12h:12h. The rate of this fixation was nearly constant throughout the day in 2h:2h and represented 12% of the fixation in the light, while in 12h:12h it varied between 0.9 and 1.7%. These results lead to the conclusion that β-carboxylations occurring in the light are different from those occurring in the dark. To explain the great difference in dark fixation between 2h:2h and 12h:12h cultures, two hypotheses are proposed: higher cellular content of dark-activated phosphoenolpyruvate carboxykinase (PEPCKase) in 2h:2h culture and/or higher amount of substrate for β-carboxylations. Finally, we assume that medium-light fluctuations (2h) induced modifications of the total photosynthetic system; these are expressed in an improved efficiency of inorganic carbon fixation per cell, either in the light or in the dark. The ecological implications of these mechanisms might be important in oceans characterized by high turbulence.  相似文献   

16.
Delayed luminescence was measured from samples of a synchronously growing cell culture of the unicellular green alga, Scenedesmus obtusiusculus Chod., every second hour during the 24 h cell cycle under a 15/9 h lighi/dark regime. Both high (air + 2.5% CO2) and low (0.03% CO2) CO2 conditions were used. Under high CO2 conditions, while light excitation induces formation of a late (maximum reached after 10–60 s) transient peak in delayed luminescence in cells sampled after 10–16 h in the cell cycle. During most of the cell cycle low CO2 conditions stimulate a late transient peak formation. Excitation with 700 nm light, but not with 680 nm light, induces a late transient peak in delayed luminescence under high CO2 conditions. The transient peak is more or less pronounced depending on the cell stage. The variations might be due to a changing capacity for light-induced state I/stale II transitions during the cell cycle. It is assumed that the formation of a late transient peak in delayed luminescence is due to ATP hydrolyzation and is thus favoured by a high ATP/NADPH ratio. Hydrolyzation of ATP affects the transthylakoidal ΔpH, which regulates the reverse electron flow to the plastoquinone-pool and QA/QB, thus affecting the decay kinetics of the delayed luminescence.  相似文献   

17.
Summary Pseudo-continuous culture of recombinant marine cyanobacteria was carried out under a light dark cycle. As a model foreign gene, the structural gene of chloramphenicol acetyl transferase (CAT) was used. Under a light dark alternate conditions, a steady state cell concentration was observed. However, the level of CAT expression did not show a stationary phase, but oscillated with the light dark cycle. This may be due to the lack of energy for foreign peptide synthesis during dark incubation. This result also indicates the possibility of regulation of foreign gene expression by controlling light illumination.  相似文献   

18.
Suspension-cultured mouse plasmacytoma cells (MPC-11) were accumulated in the late G1 phase by exposure to isoleucine-deficient medium for 20- 24 h. The arrested culture was fed with complete medium enabling the cells to continue the cell cycle synchronously, undergo mitosis, and enter a second cycle of growth. This method of synchronization left the protein-synthesizing ability intact as judged by the polysome profile and the capacity of the cells to incorporate labeled amino acids into protein after the restoration of isoleucine. After incubation in isoleucine-deficient medium and the addition of isoleucine to the culture, cells entered the S phase after a short lag, as judged by [3H]thymidine incorporation into nucleic acid and by spectrophotometric measurement of nuclear DNA. The cells were in mitosis between 12 and 18 h as judged by the increase in cell count and analysis of cell populations on albumin gradients. Synthesis and secretion of light- chain immunoglobulin were maximal in the late G1/early S phase of the first cycle. During late S phase, G2 phase, and mitosis, both synthesis and secretion were observed to be at a low level; however, immediately after motosis the cells which then entered the G1 phase apparently commenced synthesis of light chain immunoglobulin straight away, although secretion of labeled material remained at a low level.  相似文献   

19.
The non-heterocystous cyanobacterium Oscillatoria sp. strain 23 fixes nitrogen under aerobic conditions. If nitrate-grown cultures were transferred to a medium free of combined nitrogen, nitrogenase was induced within about 1 day. The acetylene reduction showed a diurnal variation under conditions of continuous light. Maximum rates of acetylene reduction steadily increased during 8 successive days. When grown under alternating light-dark cycles, Oscillatoria sp. fixes nitrogen preferably in the dark period. For dark periods longer than 8 h, nitrogenase activity is only present during the dark period. For dark periods of 8 h and less, however, nitrogenase activity appears before the beginning of the dark period. This is most pronounced in cultures grown in a 20 h light – 4 h dark cycle. In that case, nitrogenase activity appears 3–4 h before the beginning of the dark period. According to the light-dark regime applied, nitrogenase activity was observed during 8–11 h. Oscillatoria sp. grown under 16 h light and 8 h dark cycle, also induced nitrogenase at the usual point of time, when suddenly transferred to conditions of continuous light. The activity appeared exactly at the point of time where the dark period used to begin. No nitrogenase activity was observed when chloramphenicol was added to the cultures 3 h before the onset of the dark period. This observation indicated that for each cycle, de novo nitrogenase synthesis is necessary.  相似文献   

20.
单细胞真核绿藻在中国水螅(Hydra sinensis)内胚层皮肌细胞中共生是有较高科研价值的特殊生物学现象。水螅宿主细胞为共生藻提供CO2、氮源及矿物质,而共生藻通过光合作用可能为宿主提供碳水化合物等有机物营养,因此水螅与共生藻间代谢流是以共生藻光合作用为中心,但基于代谢流二者间的互作机制目前尚未阐明。水螅通过营养积累进行出芽生殖,从母体脱落的芽体数量间接反映水螅营养积累的相对量。而光暴露时长能影响共生绿藻光合作用,如果共生藻的确能向水螅细胞转移光合作用产物,那光暴露时长应该能间接影响水螅的营养积累、从而进一步影响水螅无性出芽生殖。为证实该假说,本研究应用种群累积培养法,观察了光周期对中国水螅种群增长、无性出芽生殖及抗氧化酶(SOD和CAT)活力的影响。结果显示,光周期对中国水螅种群增长具有明显的影响。培养15 d后,所有实验组水螅的种群密度均为正增长,其中8L∶16D(在一个24h周期内光暴露8 h、黑暗16 h)实验组种群密度最大、而0L∶24D(持续黑暗)实验组种群密度最小。另外,随着光暴露时长的增加,中国水螅SOD及CAT活力整体均呈下降趋势。结果表明,从光周期对中国水螅无性出芽生殖及两种抗氧化酶活力的影响来看,中国水螅对光周期的生理学响应较为敏感,这个现象可能源于共生绿藻能通过向宿主细胞转移光合作用产物的方式为水螅提供营养补充。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号