首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the Drosophila tolloid (tld) gene lead to a partial transformation of dorsal ectoderm into ventral ectoderm. The null phenotype of tld is similar to, but less severe than decapentaplegic (dpp), a TGF-beta family member required for the formation of all dorsal structures. We have cloned the tld locus by P element tagging. At the blastoderm stage, tld RNA is expressed dorsally, similar to that described for dpp. Analysis of a tld cDNA reveals three sequence motifs: an N terminal region of similarity to a metalloprotease, two EGF-like repeats, and five copies of a repeat found in human complement proteins C1r and C1s. tld sequence is 41% identical to human bone morphogenetic protein 1 (BMP-1); the closest members to dpp within the TGF-beta superfamily are BMP-2 and BMP-4, two other bone morphogenetic proteins. These findings suggest that these genes are members of a signal generating pathway that has been conserved between insects and mammals.  相似文献   

2.
The Drosophila decapentaplegic (dpp) gene, a member of the tranforming growth factor β superfamily of growth factors, is critical for specification of the embryonic dorsal-ventral axis, for proper formation of the midgut, and for formation of Drosophila adult structures. The Drosophila tolloid gene has been shown to genetically interact with dpp. The genetic interaction between tolloid and dpp suggests a model in which the tolloid protein participates in a complex containing the DPP ligand, its protease serving to activate DPP, either directly or indirectly. We report here the identification and cloning of another Drosophila member of the tolloid/bone morphogenic protein (BMP) 1 family, tolkin, which is located 700 bp 5' to tolloid. Its overall structure is like tolloid, with an N-terminal metalloprotease domain, five complement subcomponents C1r/C1s, Uegf, and Bmp1 (CUB) repeats and two epidermal growth factor (EGF) repeats. Its expression pattern overlaps that of tolloid and dpp in early embryos and diverges in later stages. In larval tissues, both tolloid and tolkin are expressed uniformly in the imaginal disks. In the brain, both tolloid and tolkin are expressed in the outer proliferation center, whereas tolkin has another stripe of expression near the outer proliferation center. Analysis of lethal mutations in tolkin indicate it is vital during larval and pupal stages. Analysis of its mutant phenotypes and expression patterns suggests that its functions may be mostly independent of tolloid and dpp.  相似文献   

3.
Bone morphogenetic protein 1 (BMP-1), which is a tolloid member of the astacin-like family of zinc metalloproteinases, is a highly effective procollagen C-proteinase (PCP) and chordinase. On the other hand, mammalian tolloid like-2 (mTLL-2) does not cleave chordin or procollagen; procollagen is cleaved by mTLL-2 in the presence of high levels of procollagen C-proteinase enhancer-1 (PCPE-1), for reasons that are unknown. We used these differences in activity between BMP-1 and mTLL-2 to narrow in on the domains in BMP-1 that specify PCP and chordinase activity. Using a domain swap approach, we showed that: 1) the metalloproteinase and CUB2 domains of BMP-1 are absolutely required for PCP activity; swaps with either of the corresponding domains in BMP-1 and mTLL-2 did not result in procollagen cleavage and 2) the proteinase domain of mTLL-2 can cleave chordin if coupled to the CUB1 domain of BMP-1. Therefore, the minimal structure for chordinase activity comprises a metalloproteinase domain (either from BMP-1 or from mTLL-2) and the CUB1 domain of BMP-1 (the CUB1 domain of mTLL-2 cannot substitute for the CUB1 domain of BMP-1). We showed that the minimal procollagen C-proteinase (BMP-1 lacking the EGF and CUB3 domain) was enhanced by PCPE-1 but not as well as BMP-1 retaining the CUB3 domain. Further studies showed that PCPE-1 had no effect on the ability of BMP-1 to cleave chordin. The data support a previously suggested mechanism of PCPE-1 whereby PCPE-1 interacts with procollagen, but in addition, the CUB3 domain of BMP-1 appears to augment the interaction.  相似文献   

4.
5.
The procollagen C-proteinase (PCP) is a zinc peptidase of the astacin family and the metzincin superfamily. The enzyme removes the C-terminal propeptides of fibrillar procollagens and activates other matrix proteins. Besides its catalytic protease domain, the procollagen C-proteinase contains several C-terminal CUB modules (named after complement factors C1r and C1s, the sea urchin UEGF protein, and BMP-1) and EGF-like domains. The two major splice forms of the C-proteinase differ in their overall domain composition. The longer variant, termed mammalian tolloid (mTld, i.e., PCP-2), has the protease-CUB1-CUB2-EGF1-CUB3-EGF2-CUB4-CUB5 composition, whereas the shorter form termed bone morphogenetic protein 1 (BMP-1, i.e., PCP-1) ends after the CUB3 domain. Two related genes encode proteases similar to mTld in humans and have been termed mammalian tolloid like-1 and -2 (mTll-1 and mTll-2, respectively). For mTll-1, it has been shown that it has C-proteinase activity. We demonstrate that recombinant EGF1-CUB3, CUB3, CUB3-EGF2, EGF2-CUB4, and CUB4-CUB5 modules of the procollagen C-proteinase can be expressed in bacteria and adopt a functional antiparallel beta-sheet conformation. As shown by surface plasmon resonance analysis, the modules bind to procollagen I in a 1:1 stoichiometry with dissociation constants (K(D)) ranging from 622.0 to 1.0 nM. Their binding to mature collagen I is weaker by at least 1 order of magnitude. Constructs containing EGF domains bind more strongly than those consisting of CUB domains only. This suggests that a combination of CUB and EGF domains serves as the minimal functional unit. The binding affinities of the EGF-containing modules for procollagen increase in the order EGF1-CUB3 < CUB3-EGF2 < EGF2-CUB4. In the context of the full length PCP, this implies that a given module has an affinity that continues to increase the more C-terminally the module is located within the PCP. The tightest binding module, EGF2-CUB4 (K(D) = 1.0 nM), is only present in mTld, which might provide a quantitative explanation for the different efficiencies of BMP-1 and mTld in procollagen C-proteinase activity.  相似文献   

6.
Bone morphogenetic protein-1 (BMP-1) is a shorter spliced variant of mammalian tolloid (mTld), both of which cleave the C-propeptides of type I procollagen during the synthesis of extracellular matrix collagen fibrils. The fact that BMP-1 and mTld both exhibit procollagen C-proteinase (PCP) activity and that BMP-1 is the smaller variant might indicate that BMP-1 comprises the minimal required sequences for PCP activity. BMP-1 comprises a metalloproteinase domain, three CUB domains, and an epidermal growth factor (EGF)-like domain, which is located between the second and third CUB (complement components C1r/C1s, the sea urchin protein Uegf, and BMP-1) domains. In this study we showed the following. 1) The CUB1 domain is required for secretion of the molecule. Domain swapping experiments, in which CUB1 and other CUB domains were interchanged, resulted in retention of the proteins by cells. Therefore, CUB1 and its location immediately adjacent to the metalloproteinase domain are essential for secretion of the protein. 2) Mutants lacking the EGF-like and CUB3 domains exhibited full C-proteinase activity. In contrast, mutants lacking the CUB2 domain were poor C-proteinases. 3) Further studies showed that Glu-483 on the beta4-beta5 loop of CUB2 is essential for C-proteinase activity of BMP-1. In conclusion, the study showed that the minimal domain structure for PCP activity is considerably shorter than expected and comprises the metalloproteinase domain and the CUB1 and CUB2 domains of BMP-1.  相似文献   

7.
Bone morphogenetic protein (BMP)-1 and mammalian tolloid (mTld) are Ca(2+)-dependent metalloproteinases that result from alternative splicing of the bmp1 gene. They have different proteinase activities, e.g. BMP-1 effectively cleaves procollagen (an extracellular matrix protein) and chordin (a BMP antagonist), whereas mTld is a poor procollagen proteinase and will not cleave chordin in the absence of twisted gastrulation. This is perplexing because mTld (being the longer variant) might be expected to cleave all substrates cleaved by BMP-1. Studies have shown that the minimal structure for procollagen proteinase activity is proteinase-CUB1-CUB2 (BMP-1DeltaEC3) and therefore lacking the epidermal growth factor (EGF)-like domain thought to account for the Ca(2+) dependence of BMP-1. In this study we generated three deletion mutants of mTld that lacked either one or both EGF-like domains (referred to as "mTld-DeltaEGF"). The mutated proteins were poorly but sufficiently secreted from 293-EBNA cells for in vitro assays of procollagen and chordin cleavage. Most surprisingly, the mTld-DeltaEGF mutants required Ca(2+) for proteolytic activity, thereby showing that the EGF-like domains do not account for the Ca(2+) dependence of BMP-1/mTld. Moreover, the mTld-DeltaEGFs are effective procollagen proteinases and cleave chordin. Furthermore, BMP-1DeltaEC3 cleaves chordin and requires Ca(2+) for activity. Studies using nondenaturing gels showed that mTld molecules lacking EGF-like domains have a loose conformation such that in the presence of Ca(2+) binding sites for chordin and procollagen on the "BMP-1-part" of the molecule are exposed. We propose that the EGF-like domains could hold CUB4/5 domains in locations that exclude substrates cleavable by BMP-1.  相似文献   

8.
Normal human bone marrow stroma cells include stem cells for both haemopoietic and osteochondrogenic lineages and express both bone morphogenetic protein (BMP) type I and type II receptors. As a member of the TGF-beta super-family, BMP-6 binds to both BMP type I and type II receptors and is involved in the developmental processes of renal and hepatic systems as well as of human foetal intestine. Also, BMP-6 induces osteoblastic differentiation of pluripotent mesenchymal cells and is an autocrine stimulator of chondrocyte differentiation. The present study was carried out to investigate the effect of BMP-6 on human cobblestone-area-forming cells (CAFC), that represent the functional primitive repopulating haemopoietic stem cell in long-term bone marrow culture. Also, the effect of BMP-6 on marrow stroma production of interleukin-6, -11 and their common receptor gp130 that is expressed in haemopoietic stem cells and is indispensable for their proliferation and tri-lineage differentiation was examined. Moreover, the effect of BMP-6 on marrow stroma release of soluble adhesion molecule VCAM-1 mediating the primitive haemopoietic stem cell adhesion to marrow stroma was examined. The number of CAFC was significantly reduced after BMP-6 treatment from 88+/-10 per 10(5)cells in control cultures in a dose dependent manner to only 48+/-3 per 10(5)cells in 50 ng/ml BMP-6-treated cultures, P< 0.01. Quantitative ELISA measurement revealed 50 ng/ml BMP-6 was able to significantly reduce IL-6 and IL-11 production from marrow stroma, P< 0.01. Also, BMP-6 significantly increased soluble gp130 release by 7.4-fold in 50 ng/ml BMP-6-treated marrow stroma cultures. The profound rapid increase in this natural antagonist of human IL-6 cytokine family may reduce the gp130 signaling. Also, the soluble VCAM-1 released increased by two-fold in 50 ng/ml BMP-6-treated marrow stroma cultures. The marked increase in the soluble form may exert an antagonist effect on the function of VCAM-1 (ligand for VLA4). Recently, blocking the VLA4/VCAM-1 adhesion pathway was shown to mobilise haemopoietic CD34 positive cells in normal individuals. Also, we previously observed a significantly lower expression of VLA4 (CD49d) on G-CSF-mobilised blood CD34 positive cells than on bone marrow CD34 positive cells before mobilisation in the same normal donors. Since BMP are currently being used in clinical trials for bone repair and fracture healing, the present results suggest a possible role for BMP-6 in mobilising CD34 positive cells for transplantation. Further in vitro tests are required to evaluate this potential mobilising role of BMP-6 in human long-term bone marrow culture.  相似文献   

9.
Osteogenic protein-2, OP-2, a new member of the transforming growth factor-beta (TGF-beta) superfamily, closely related to the osteogenic/bone morphogenetic proteins, was discovered in mouse embryo and human hippocampus cDNA libraries. The TGF-beta domain of OP-2 shows 74% identity to OP-1, 75% to Vgr-1, and 76% to BMP-5, hence OP-2 may also have bone inductive activity. The genomic locus of OP-2 has seven exons, like OP-1, and spans more than 27 kilobases (kb). In the C-terminal TGF-beta domain, OP-2 has a unique additional cysteine. Mouse embryos express relatively high levels of OP-2 mRNA at 8 days, two species of 3 and 5 kb. A careful study of mRNA expression of the osteogenic proteins in specific organs revealed discrete mRNA species for BMP-3, BMP-4, BMP-5, and BMP-6/Vgr-1 in lung or liver of young and adult mice. OP-1 is expressed in kidney; however, OP-2 and BMP-2 mRNAs were not detected in any organs studied, suggesting an early developmental role.  相似文献   

10.
11.
Drosophila tolloid (TLD) is a member of a family of proteinases that play important roles in development and includes mammalian tolloid (mTLD) and bone morphogenetic protein (BMP)-1. TLD accentuates the activity of decapentaplegic (DPP), a transforming growth factor beta superfamily growth factor, by cleaving its antagonist Short gastrulation (Sog). Similarly, the activity of BMP-2/4 (vertebrate homologues of DPP) is augmented by cleavage of chordin. However, whereas TLD is an effective Sogase, mTLD is a poor chordinase and is functionally replaced by its smaller splice variant BMP-1, which lacks the most C-terminal epidermal growth factor (EGF)-like and CUB domains of mTLD. Moreover, the minimal chordinase activity resides in the N-terminal half of BMP-1. This study showed that the proteolytic activity of TLD is considerably enhanced by Ca2+ and tested the hypothesis that the Sogase activity of TLD resides in the N-terminal half of the proteinase. Unexpectedly, it was found that TLD lacking the CUB4 and CUB5 domains and/or the EGF-like domains was unable to cleave Sog. Loss of function mutations have been reported in the tld gene that result in amino acid substitutions at E835K (in CUB4), S915L (in CUB5), and N760I (in EGF2) in TLD. The CUB mutants were found to be ineffective Sogases, but the activity of the EGF2 mutant was unchanged. The results show that substrate recognition and cleavage by Drosophila tolloid and mTLD are different despite their identical domain structure and homologous functions in patterning. The result that the N760I mutant has full Sogase activity suggests that novel substrates for TLD exist.  相似文献   

12.
When C2C12 pluripotent mesenchymal precursor cells are treated with transforming growth factor beta1 (TGF-beta1), terminal differentiation into myotubes is blocked. Treatment with bone morphogenetic protein 2 (BMP-2) not only blocks myogenic differentiation of C2C12 cells but also induces osteoblast differentiation. The molecular mechanisms governing the ability of TGF-beta1 and BMP-2 to both induce ligand-specific responses and inhibit myogenic differentiation are not known. We identified Runx2/PEBP2alphaA/Cbfa1, a global regulator of osteogenesis, as a major TGF-beta1-responsive element binding protein induced by TGF-beta1 and BMP-2 in C2C12 cells. Consistent with the observation that Runx2 can be induced by either TGF-beta1 or BMP-2, the exogenous expression of Runx2 mediated some of the effects of TGF-beta1 and BMP-2 but not osteoblast-specific gene expression. Runx2 mimicked common effects of TGF-beta1 and BMP-2 by inducing expression of matrix gene products (for example, collagen and fibronectin), suppressing MyoD expression, and inhibiting myotube formation of C2C12 cells. For osteoblast differentiation, an additional effector, BMP-specific Smad protein, was required. Our results indicate that Runx2 is a major target gene shared by TGF-beta and BMP signaling pathways and that the coordinated action of Runx2 and BMP-activated Smads leads to the induction of osteoblast-specific gene expression in C2C12 cells.  相似文献   

13.
14.
Matrix GLA protein (MGP) is ubiquitously expressed with high accumulation in bone and cartilage, where it was found to associate with bone morphogenetic proteins (BMP) during protein purification. To test whether MGP affects BMP-induced differentiation, three sets of experiments were performed. First, pluripotent C3H10T1/2 cells transfected with human MPG (hMGP) or antisense to hMGP (AS-hMGP) were treated with BMP-2. In cells overexpressing hMGP, osteogenic and chondrogenic differentiation was inhibited indicating decreased BMP-2 activity. Conversely, in cells overexpressing AS-hMGP, BMP-2 activity was enhanced. Second, cells were prepared from homozygous and heterozygous MPG-deficient mice aortas. When treated with BMP-2, these cells underwent chondrogenic and osteogenic differentiation, respectively, whereas controls did not. Third, FLAG-tagged hMGP with the same biological effect as native hMGP inhibited BMP-induced differentiation, when exogenously added to culture media. Together, these results suggest that MGP modulates BMP activity. To test whether hMGP fragments would retain the effect of full-length hMGP, three subdomains were overexpressed in C3H10T1/2 cells. In cells expressing the mid-region, alone (amino acids (aa) 35-54) or in combination with the N terminus (aa 1-54) but not the C terminus (aa 35-84), osteogenic differentiation was enhanced and occurred even without added BMP-2. Thus, two subdomains had the opposite effect of full-length hMGP, possibly due to different expression levels or domain characteristics.  相似文献   

15.
GATA-6 is expressed in presumptive cardiac mesoderm before gastrulation, but its role in heart development has been unclear. Here we show that Xenopus and zebrafish embryos, injected with antisense morpholino oligonucleotides designed specifically to knock-down translation of GATA-6 protein, are severely compromised for heart development. Injected embryos express greatly reduced levels of contractile machinery genes and, at the same stage, of regulatory genes such as bone morphogenetic protein-4 (BMP-4) and the Nkx2 family. In contrast, initial BMP and Nkx2 expression is normal, suggesting a maintenance role for GATA-6. Endoderm is critical for heart formation in several vertebrates including Xenopus, and separate perturbation of GATA-6 expression in the deep anterior endoderm and in the overlying heart mesoderm shows that GATA-6 is required in both for cardiogenesis. The GATA-6 requirement in cardiac mesoderm was confirmed in zebrafish, an organism in which endoderm is thought not to be necessary for heart formation. We therefore conclude that proper maturation of cardiac mesoderm requires GATA-6, which functions to maintain BMP-4 and Nkx2 expression.  相似文献   

16.
Bone morphogenetic protein-1 (BMP-1)/tolloid proteinases are fundamental to regulating dorsal ventral patterning and extracellular matrix deposition. In mammals there are four proteinases, the splice variants BMP-1 and mammalian tolloid (mTLD), and tolloid like-1 and -2 (TLL-1/2). BMP-1 has the highest catalytic activity and lacks three non-catalytic domains. We demonstrate that TLL-1, which has intermediate activity, forms a calcium-ion dependent dimer with monomers stacked side-by-side. In contrast, truncated TLL-1 molecules having the same shorter structure as BMP-1 are monomers and have improved activity towards their substrate chordin. The increased activity exceeds not only that of full-length TLL-1 but also BMP-1.

Structured summary

MINT-7386098: BMP-1 (uniprotkb:P13497) cleaves (MI:0194) Chordin (uniprotkb:Q9H2X0) by protease assay (MI:0435)  相似文献   

17.
Sex-determining mechanisms are highly variable between phyla. Only one example has been found in which structurally and functionally related genes control sex determination in different phyla: the sexual regulators mab-3 of Caenorhabditis elegans and doublesex of Drosophila both encode proteins containing the DM domain, a novel DNA-binding motif. These two genes control similar aspects of sexual development, and the male isoform of DSX can substitute for MAB-3 in vivo, suggesting that the two proteins are functionally related. DM domain proteins may also play a role in sexual development of vertebrates. A human gene encoding a DM domain protein, DMRT1, is expressed only in the testis in adults and maps to distal 9p24.3, a short interval that is required for testis development. Earlier in development we find that murine Dmrt1 mRNA is expressed exclusively in the genital ridge of early XX and XY embryos. Thus Dmrt1 and Sry are the only regulatory genes known to be expressed exclusively in the mammalian genital ridge prior to sexual differentiation. Expression becomes XY-specific and restricted to the seminiferous tubules of the testis as gonadogenesis proceeds, and both Sertoli cells and germ cells express Dmrt1. Dmrt1 may also play a role in avian sexual development. In birds the heterogametic sex is female (ZW), and the homogametic sex is male (ZZ). Dmrt1 is Z-linked in the chicken. We find that chicken Dmrt1 is expressed in the genital ridge and Wolffian duct prior to sexual differentiation and is expressed at higher levels in ZZ than in ZW embryos. Based on sequence, map position, and expression patterns, we suggest that Dmrt1 is likely to play a role in vertebrate sexual development and therefore that DM domain genes may play a role in sexual development in a wide range of phyla.  相似文献   

18.
The bone morphogenetic proteins (BMPs) play critical roles in patterning the early embryo and in the development of many organs and tissues. We have identified a new member of this multifunctional gene family, BMP-11, which is most closely related to GDF-8/myostatin. During mouse embryogenesis, BMP-11 is first detected at 9.5 dpc in the tail bud with expression becoming stronger as development proceeds. At 10.0 dpc, BMP-11 is expressed in the distal and posterior region of the limb bud and later localizes to the mesenchyme between the skeletal elements. BMP-11 is also expressed in the developing nervous system, in the dorsal root ganglia, and dorsal lateral region of the spinal cord. To assess the biological activity of BMP-11, we tested the protein in the Xenopus ectodermal explant (animal cap) assay. BMP-11 induced axial mesodermal tissue (muscle and notochord) in a dose-dependent fashion. At higher concentrations, BMP-11 also induced neural tissue. Interestingly, the activin antagonist, follistatin, but not noggin, an antagonist of BMPs 2 and 4, inhibited BMP-11 activity on animal caps. Our data suggest that in Xenopus embryos, BMP-11 acts more like activin, inducing dorsal mesoderm and neural tissue, and less like other family members such as BMPs 2, 4, and 7, which are ventralizing and anti-neuralizing signals. Taken together, these data suggest that during vertebrate embryogenesis, BMP-11 plays a unique role in patterning both mesodermal and neural tissues.  相似文献   

19.
Small G proteins of the Rho family are pivotal regulators of several signaling networks. The Ras homolog family (Rho) and one of its targets, Rho-associated protein kinase (ROCK), participate in a wide variety of biological processes, including bone formation. A previous study has demonstrated that the ROCK inhibitor Y-27632 enhanced bone formation induced by recombinant human bone morphogenetic protein-2 (BMP-2) in vivo and in vitro. However, the effect of other Rho family members, such as Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42), on bone formation remains unknown. In this study, we investigated whether Rac1 also participates in BMP-2-induced osteogenesis. Expression of a dominant-negative mutant of Rac1 enhanced BMP-2-induced osteoblastic differentiation in C2C12 cells, whereas a constitutively active mutant of Rac1 attenuated that effect. Knockdown of T-lymphoma invasion and metastasis 1 (Tiam1), a Rac-specific guanine nucleotide exchange factor, enhanced BMP-2-induced alkaline phosphatase activity. Further, we demonstrated that BMP-2 stimulated Rac1 activity. These results indicate that the activation of Rac1 attenuates osteoblastic differentiation in C2C12 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号