首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
We have previously demonstrated the feasibility of blending bioerodible polyphosphazenes with poly(lactide-co-glycolide) (PLGA) to form versatile polymeric materials with altered bioerosion properties. These studies demonstrated the effective neutralization of the acidic degradation products of PLGA by the polyphosphazene hydrolysis products. In the present study, five new polymers of dipeptide polyphosphazenes poly[(ethyl glycinato)x(glycyl-ethyl glycinato)yphosphazene] and novel blends of these polyphosphazenes with poly(lactide-co-glycolide) (PLGA) were synthesized and fabricated. The miscibility was analyzed using differential scanning calorimetry and scanning electron microscopy. Hydrogen bonding within the blends was assessed by attenuated total reflectance infrared spectroscopy. The phosphazene component of the blend contained varying ratios of the glycyl-glycine ethyl ester to the glycine ethyl ester. Poly[(ethyl glycinato)0.5(glycine ethyl glycinato)1.5phosphazene formed completely miscible blends with PLGA (50:50) and PLGA (85:15). This is ascribed to the multiple hydrogen-bonding sites within the side groups of the polyphosphazene. The components of the blend act as plasticizers for each other because a glass transition temperature for each blend was detected at a lower temperature than for each individual polymer. A hydrolysis study showed that unblended solid poly[(ethyl glycinato)0.5(glycyl ethyl glycinato)1.5phosphazene] hydrolyzed in less than 1 week. However, the blends degraded at a slower rate than both parent polymers. This is attributed to the buffering capacity of the polyphosphazene hydrolysis products, which increases the pH of the degradation media from 2.5 to 4, thereby slowing the degradation rate of PLGA.  相似文献   

2.
Polyphosphazene polyacids show potential as immunostimulating compounds and materials for microencapsulation. Their synthesis requires multistep chemical transition from a hydrolytically unstable macromolecular precursor, poly(dichlorophosphazene), to a water-soluble polyelectrolyte. Insufficient synthetic control in these reactions can lead to molecular weight variations and formation of macromolecules with "structural defects" resulting in significant variations in polymer performance. Simple and reproducible "one pot-one solvent" method is reported for the preparation of polyphosphazene polyacids-poly[di(carboxylatophenoxy)phosphazene] and its copolymers. Molecular weight characteristics and polymer compositions were studied as a function of reaction parameters. Macromolecular byproducts, incompletely substituted polymers containing hydroxyl groups and partially deprotected polymers containing propyl ester functionalities, were synthesized and characterized. It was demonstrated, that the presence of such groups can affect polymer characteristics, such as hydrolytic degradation profiles, immunostimulating activity, and microsphere forming properties. In vivo studies showed that the immunostimulating activity of polyphosphazene polyacids correlates with the content of acid functionalities in the polymer.  相似文献   

3.
Five polyphosphazenes with different hydrophilicites were synthesized and screened in vitro. The purpose was to identify unique types of polymeric substrates that distinctly favored or markedly prevented cellular adhesion. The SK-N-BE(2c) human neuroblastoma cell line, utilized for its electrogenic responses, was used to test this differential adhesion. In particular, the objective was to specifically culture this cell line in a highly selective pattern. Each candidate polymer was cast into films and plated with neuroblastoma cells for 3 days. The polyphosphazene materials which showed negative cellular adhesive properties (-CAPs) were poly[bis(trifluoroethoxy)phosphazene] (TFE) and poly[bis(methoxyethoxyethoxy)phosphazene] (MEEP). The polyphosphazenes which showed positive cellular adhesive properties (+CAPs) were poly[(methoxyethoxyethoxy)(1.0)(carboxylatophenoxy)(1.0)phosphazene] (PMCPP), poly[(methoxyethoxyethoxy)(1.0)(cinnamyloxy)(1.0)phosphazene] (PMCP), and poly[(methoxyethoxyethoxy)(1.0)(p-methylphenoxy)(1.0)phosphazene] (PMMP). To test cellular selectivity, films of -CAP and +CAP were copatterned onto glass substrates. The micropatterned films were plated with SK-N-BE(2c) neuroblastoma cells for one week. The results showed that neuroblastoma cells adhere selectively (over 60%) to the +CAP microfeatures. We also showed that multiple properties can be achieved with a single material and that we can use TFE as both a -CAP and an insulation layer and PMCP as a conductive +CAP layer.  相似文献   

4.
Polyphosphazene polyelectrolytes are potent immunostimulants. Their in vivo performance has been demonstrated for various antigens in a number of animal models. To improve understanding of the mechanism of action, we performed a comparative study in a model system: bovine serum albumin, BSA-poly[di(carboxylatophenoxy)phosphazene], PCPP, in vitro and in vivo. Multi-angle laser light scattering (MALLS) and size-exclusion HPLC methods were used to investigate polyphosphazene-protein formulations in an attempt to establish correlations between their physicochemical behavior and immunostimulating activity. These studies revealed the formation of water-soluble noncovalent protein-polymer complexes in the system. It was shown that both the amount of bound protein and the complex conformation could play an important role in the in vivo performance of the polyphosphazene polyelectrolytes.  相似文献   

5.
Tyrosine-functionalized polyphosphazenes were synthesized, and their hydrolytic stability, pH-sensitive behavior, and hydrogel-forming capabilities were investigated. The physical and chemical properties of the polymers varied with the type of linkage between the tyrosine unit and phosphazene backbone. Poly[(ethyl glycinat-N-yl)(ethyl tyrosinat-N-yl)phophazenes] (linkage via the amino group of tyrosine) were found to be hydrolytically erodible. The rate of hydrolysis was dependent on the ratio of the two side groups, the slowest rate being associated with the highest concentration of tyrosine. The hydrolysis products were identified as phosphates, tyrosine, glycine, ammonia, and ethanol derived from the ester group. The hydrolytically stable phenolic-linked tyrosine derivatives were prepared from N-t-BOC-L-tyrosine methyl ester and alkoxy-based cosubstituents. Polyphosphazenes with both propoxy and phenolic-linked tyrosine side groups showed a pH-sensitive solubility behavior, which was dependent on the ratio and nature of the two side groups. The polymer was soluble in aqueous media below pH 3 and above pH 4. From pH 3-4, the polymer was insoluble. Replacement of propoxy by trifluoroethoxy units yielded a polymer that was insoluble in aqueous media at all pH values. Replacement of propoxy by methoxyethoxyethoxy groups gave a polymer that was soluble at all pH values. Exposure of both the propoxy and methoxyethoxyethoxy polymers to calcium ions in aqueous media caused gel formation due to ionic cross-linking through the carboxylate groups.  相似文献   

6.
A new water-soluble polyphosphazene polyelectrolyte containing carboxylate functionalities, poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) was synthesized via reaction of macromolecular substitution. The polymer was characterized using (1)H, (31)P NMR, and gel permeation chromatography with multiangle laser light scattering detection. PCEP was shown to undergo hydrolytic degradation in aqueous solutions, as indicated by the decrease in the molecular weight and the release of side groups. A series of incompletely substituted copolymers of PCEP containing varying amounts of residual chlorine atoms was also prepared. The rate of degradation for such copolymers increased with the rise in the content of chlorine atoms. In vivo studies demonstrated high potency of PCEP as a vaccine immunoadjuvant. The new polyphosphazene was also shown to be capable of forming microspheres in aqueous solutions via reactions of ionic complexation with physiologically occurring amines, such as spermine.  相似文献   

7.
Amphiphilic diblock copolymers with varying compositions of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly[bis(ethyl glycinat-N-yl)phosphazene] (PNgly) were synthesized via the controlled cationic-induced polymerization of a phosphoranimine (Cl(3)P=NSiMe(3)) at ambient temperature using a PEO-phosphoranimine macroinitiator. The aqueous-phase transition behavior of PEO-PNgly-3 (M(n) = 10,000) and micelle formation of both PEO-PNgly-3 and PEO-PNgly-4 (M(n) = 8,500) were investigated using fluorescence techniques and dynamic light scattering. The critical micelle concentrations (cmc's) of PEO-PNgly-3 and PEO-PNgly-4 were determined to be 3 and 12 mg/L with the mean diameters of micelles being 120 and 130 nm, respectively. The hydrolytic degradation of these diblock copolymers was also studied in solution. These studies coupled with the biodegradability of the poly[bis(ethyl glycinat-N-yl)phosphazene] block to give benign products make PEO-PNgly copolymers well-suited for a wide variety of biomedical applications including novel biodegradable drug-delivery systems.  相似文献   

8.
The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
Diastereomers of oligonucleotide ethyl phosphotriesters were separated by high-performance complementary (affinity) chromatography on a column with the immobilized complementary oligonucleotide. The elution buffer contained 0.18 M K2HPO4, pH 7.5, and 30% acetonitrile. The temperature of the separation was a few degrees lower than Tm of corresponding oligonucleotide complexes. The diastereomers separated completely or partially were: d[GCC(Et)AAACA], d[GCCA(Et)AACA], d[GCAA(Et)ACA], d[GCC(Et)A(Et)AACA], d[GCC(Et)AA(Et)ACA], d[GCCA(Et)A(Et)ACA], d[GCC(Et)A(Et)A(Et)ACA].  相似文献   

10.
Biodegradable polyphosphazenes have been investigated for a variety of applications, such as controlled drug delivery matrixes, tissue-engineering scaffolds, membranes, and bone-type composites. In this study we have evaluated the effect of side group chemistry on the properties of biodegradable phosphazene polymers that contain ethyl alanato side groups together with ethyl glycinato, p-methylphenoxy, or p-phenylphenoxy side groups. The polymers were synthesized by a macromolecular substitution route. The molecular weights of aryloxy/amino acid ester cosubstituted polymers were much higher than the amino acid ester substituted polyphosphazenes described earlier. Polymer properties, such as glass transition temperature, hydrolytic degradation, surface wettability, tensile strength, and modulus of elasticity varied over a wide range following changes to the type of co-substituents on the polymer backbone. The glass transition temperatures varied from -10 to 35 degrees C and increased with the bulkiness of the side groups. Polymer films in phosphate buffer saline solution showed molecular weight declines ranging from 58% to >80% and mass loss ranging from 4% to 90% over a period of 7 weeks. Water contact angles for polymer films varied from 63 degrees to 107 degrees , with the highest angles for the alanine ethyl ester and p-phenylphenoxy cosubstituted polyphosphazene. The tensile strengths were in the range of 2.4-7.6 MPa and the modulus of elasticity was in the range of 31.4-455.9 MPa. Thus, in this study we have demonstrated the tunability of biodegradable polyphosphazenes to suit a range of biomedical applications.  相似文献   

11.
Nanosized polyphosphazene-platinum (II) conjugates with a wide range of molecular weight from 24,000 to 115,000 were synthesized to study their tumor selectivity by enhanced permeability and retention (EPR) effect and their antitumor activity. It has been found from biodistribution study that the present polyphosphazene-Pt(II) conjugates exhibit high tumor selectivity by EPR effect with the tumor to tissue ratio (TTR) from 3.6 to 13 depending on the molecular size. These polymer conjugates have shown excellent in vivo antitumor activity against both murine and human cancer cell lines. In particular, xenograft trials of the conjugates have shown outstanding tumor inhibition effect on the stomach cancer cell line, YCC-3, which is one of the least responsive to the anticancer agents currently in clinical use, although the reason is not clearly explainable yet. The high in vivo activity seems to be attributed to the controlled-release of the antitumor active platinum (II) moiety, [GlyGluPt(dach] (dach=trans-(+/-)-1,2-diaminocyclohexane) from the phosphazene backbone by degradation in aqueous solution.  相似文献   

12.
Narain R  Armes SP 《Biomacromolecules》2003,4(6):1746-1758
We report the facile preparation of a range of novel, well-defined cyclic sugar methacrylate-based polymers without recourse to protecting group chemistry. 2-Gluconamidoethyl methacrylate (GAMA) and 2-lactobionamidoethyl methacrylate (LAMA) were prepared directly by reacting 2-aminoethyl methacrylate with D-gluconolactone and lactobionolactone, respectively. Homopolymerization of GAMA and LAMA by atom transfer radical polymerization (ATRP) gave reasonably low polydispersities as judged by aqueous gel permeation chromatography. A wide range of sugar-based block copolymers were prepared using near-monodisperse macroinitiators based on poly(ethylene oxide) [PEO], poly(propylene oxide) [PPO], or poly(e-caprolactone) [PCL] and/or by sequential monomer addition of other methacrylic monomers such as 2-(diethylamino)ethyl methacrylate [DEA], 2-(diisopropylaminoethyl methacrylate [DPA], or glycerol monomethacrylate [GMA]. The reversible micellar self-assembly of selected sugar-based block copolymers [PEO23-GAMA50-DEA100, PEO23-LAMA30-DEA50, PPO33-GAMA50, and PPO33-LAMA50] was studied in aqueous solution as a function of pH and temperature using dynamic light scattering, transmission electron microscopy, surface tensiometry, and 1H NMR spectroscopy.  相似文献   

13.
An approach to ultra-high load solid (gel) phase peptide synthesis is described in which a bead-form phenolic core polymer, crosslinked poly[N-{2-(4-hydroxyphenyl)ethyl}-acrylamide], is used as a support matrix at near theoretical maximum loading. Consecutive repeating units of the core polymer carry peptide chains undergling stepwise elongation. Synthesis proceeds through a series of solvated networks, which consist mainly of protected peptide. The solvated networks are deemed to be quasi-homogeneous, insofar as each has a regular covalent framework and each is believed to be uniformly distributed throughout the gel beads. Illustrative synthesis of two fully-protected acylpeptide hydrazide segments, corresponding to dynorphin(6–12) and to βh-endorphin (18–26), are described.  相似文献   

14.
Two new spin-labeled photoreactive nonnucleoside ATP analogues, 1-(4-azido-2-nitrophenyl)amino-3-(1-oxyl-2,2,5, 5-tetramethylpyrrolidinyl-3-carbamido)-2-propyl triphosphate (SL-NANTP) and 2-(4-azido-2-nitrophenyl)amino-2,2-(1-oxyl-2,2,6, 6-tetramethyl-4-piperidylidene)di(oxymethylene) ethyl triphosphate (SSL-NANTP), were synthesized and characterized. This study aims to develop a second generation of NANTP-based analogues containing immobile spin labels that can be used to monitor conformational changes in myosin during the contractile cycle of muscle. Previous studies have shown that both a photoaffinity nonnucleoside ATP analogue, 2-[(4-azido-2-nitrophenyl)amino] ethyl triphosphate (NANTP) [Nakamaye et al. (1985) Biochemistry 24, 5226-5235], and a photoaffinity ATP analogue, 3'(2')-O-4-[4-oxo-(4-amino-2,2,6, 6-tetramethyl-piperidino-1-oxyl)-4-benzoyl] benzoyl adenosine 5'-triphosphate (SL-Bz(2)ATP) [Wang et al. (1999) J. Muscle Res. Cell Motil. 20, 743-753], behave like ATP in their interactions with myosin. Remarkably, photolabeled myosin recovers all of its normal enzymatic properties after treatment with actin in the presence of MgATP [Luo et al. (1995) Biochemistry 34, 1978-1987]. For SL-NANTP, the spin label moiety is attached to NANTP via an aminomethyl side chain. In SSL-NANTP, attachment is via a restricted spiro ring. The two new probes interact with myosin subfragment-1 (S1) in a manner analogous to ATP, and after photoincorporation, labeled S1 recovers full activity after treatment with actin and MgATP. The electron paramagnetic resonance (EPR) spectrum resulting from S1 photolabeled with SL-NANTP shows a very high degree of probe mobility. However, the EPR spectrum of S1 photolabeled with SSL-NANTP shows that the probe is highly immobilized with respect to S1, constrained to move within a cone of angle 52 degrees (full-width, half-max). Unlike the parent, NANTP, which photolabels on the 23 kDa tryptic fragment of S1, SSL-NANTP photolabels on the 20 kDa fragment. Its highly immobile nature means that it is potentially a useful reporter group to monitor cross-bridge motion in muscle fibers.  相似文献   

15.
The binding to yeast alcohol dehydrogenase of NAD+ and its five derivatives (N6-[2-[N-[2-[N-(2-methacrylamidoethyl)carbamoyl]ethyl] carbamoyl]ethyl]-NAD (I), N6-[N-[2-[N-(2-methacrylamidoethyl) carbamoyl]ethyl]carbamoylmethyl]-NAD (II), copolymer of I with acrylamide (PA-I), copolymer of II with acrylamide (PA-II), and copolymer of I with N,N-dimethylacrylamide (PDMA-I] were studied statically and kinetically by the stopped-flow method by using the quenching of the enzyme fluorescence in the presence of pyrazole. Apparent dissociation constants and apparent rate constants were determined therefrom. It was concluded that (1) the N6-CH2CH2CO group (of I) is effective in making the derivative bind more strongly as well as faster than NAD+, while the N6-CH2CO group (of II) is not; and (2) the binding of the polymer derivatives of NAD+ to the enzyme is not essentially weaker and slower than that of native NAD+, but is even faster in some cases. The coenzymic activities of the above compounds were also determined with yeast alcohol dehydrogenase, pig heart malate dehydrogenase, and rabbit muscle lactate dehydrogenase.  相似文献   

16.
We studied the mode of regulation of the activity of mature cathepsin B (CB) by L-cysteine and some related thiols. The activity of CB with Z-Arg-Arg-NHMec as substrate was gradually inhibited over a range of increasing concentration of Cys, Cys methyl ester (CysOMe), Cys ethyl ester (CysOEt), N-acetyl-Cys (N-AcCys) and 3-mercaptopropionic acid. However, the inhibition of CB peaked at a definite value of [Cys], [CysOMe], [CysOEt] and [N-AcCys] and was gradually reversed over a range of higher concentrations of Cys and its esters. The maximum inhibitory concentrations of Cys, CysOME, CysOEt and N-AcCys showed a positive relationship to the pKa(RSH) values of the thiols and those of CysOEt and Cys decreased with increasing pH. The capability of the thiols to overcome their own inhibitory effect on CB was dependent on the concentration of their thiolate anion (RS-). However, the preincubation-dilution experiments showed that Cys and N-AcCys did not interact with active CB via a covalent mode. The inhibition of CB by N-AcCys was competitive and could be reversed by CysOMe. This activity-recovering effect of CysOMe was concentration-dependent and obeyed the Michaelis-Menten saturation kinetics over a profound increase of [RS-]. CB reacting in an environment of concurrently decreasing [RS-] and increasing [RSH], which was achieved by means of carboxylesterase-catalyzed deesterification of CysOEt to Cys, was progressively inhibited. Cys and N-AcCys also inhibited the fragmentation of histone H4 by CB and their concentration-dependent inhibitory profiles were qualitatively similar to those observed with Z-Arg-Arg-NHMec. Taken together, the results indicate that the RSH form of Cys and related thiols inhibits the activity of CB while the RS- form of these thiols counteracts or reverses the inhibitory action of the RSH form. This previously unrecognized thiol-thiolate anion regulation mechanism might be involved in a dynamic regulation of CB activity in endosomes and lysosomes and at the sites of lysosome-driven pericellular proteolysis.  相似文献   

17.
Three pentasaccharide analogues of the Brucella A antigen [----2)-alpha-D-Rhap4NFo-(1----], each with one formamido group replaced by a hydroxyl group, have been prepared as their methyl glycosides. Mono- and di-saccharide thioglycosides of D-rhamnose and 4-azido-4,6-dideoxy-D-mannose were used as glycosyl donors for the preparation of protected pentasaccharide derivatives with trisaccharides as intermediates. Glycosylations were performed by activation in situ of the thioglycosides with bromine in the presence of a glycosyl acceptor and silver triflate as promoter. Reduction of the azido groups with hydrogen sulfide. N-formylation with ethyl formate, and hydrogenolysis then gave the target pentasaccharides.  相似文献   

18.
J D Pilot  J M East  A G Lee 《Biochemistry》2001,40(28):8188-8195
We have developed a procedure for the reconstitution of Escherichia coli diacylglycerol kinase (DGK) into phospholipid bilayers containing diacylglycerol substrate. When DGK is reconstituted into a series of phosphatidylcholines containing monounsaturated fatty acyl chains, activity against dihexanoylglycerol (DHG) as a substrate was found to be markedly dependent on the fatty acyl chain length with the highest activity in dioleoylphosphatidylcholine [di(C18:1)PC] and a lower activity in bilayers with shorter or longer fatty acyl chains. Low activities in the short chain phospholipid dimyristoleoylphosphatidylcholine [di(C14:1)PC] followed from an increase in the K(m) value for DHG and ATP, with no effect on v(max). In contrast, in the long chain lipid dierucoylphosphatidylcholine [di(C24:1)PC], the low activity followed from a decrease in v(max) with no effect on K(m). In mixtures of two phosphatidylcholines with different chain lengths, the activity corresponded to that expected for the average chain length of the mixture. Cholesterol increased the activity in di(C14:1)PC but slightly decreased it in di(C18:1)PC or di(C24:1)PC, effects that could follow from changes in bilayer thickness caused by cholesterol.  相似文献   

19.
1. The reactivities of phenylglyoxal (PGO), glyoxal (GO), and/or methylglyoxal (MGO) with several proteins, including ribonuclease A [EC 3.1.4.22] and its derivatives, alpha-chymotrypsin [EC 3.4.21.1], trypsin [EC 3.4.21.4], lysozyme [EC 3.2.1.17], pepsin [EC 3.4.23.1], rennin [EC 3.4.23.4], thermolysin, and insulin and its B chain, have been examined. From analyses of the reaction products, PGO was shown to be the most specific for arginine residues. GO and MGO also reacted rapidly with arginine residues, but they also reacted with lysine residues to a significant extent. A side reaction with N-terminal alpha-amino groups was observed with each of these reagents. 2. Two arginine residues out of four in ribonuclease A, two out of three in alpha-chymotrypsin, one out of two in trypsin, one out of two in pepsin, and one out of five in rennin appeared to react with PGO fairly rapidly, indicating a difference in the relative accessibility of these residues by the reagent. Extensive modification of the arginine residues by PGO occurred with RCM-derivatives of ribonuclease A and insulin B chain. The N-terminal isoleucine residues of alpha-chymotrypsin and trypsin appeared to be unreactive with PGO because of salt bridge formation with an aspartyl residue. The activity of alpha-chymotrypsin toward N-benzoyl-L-tyrosine ethyl ester and the lytic activity of lysozyme were lost rapidly on treatment with PGO, as in the case of ribonuclease A. Pepsin and rennin were only partially inactivated by reaction with PGO.  相似文献   

20.
Protected deoxynucleoside 3'-O-ethyl-N,N-diisopropylphosphoramidite reagents were prepared for use in the automated synthesis of ethyl phosphotriester (Et) modified oligonucleotides. The title diastereomers were separated by reversed-phase HPLC, and chirality at phosphorus was assigned by an improved configurational correlation scheme that was verified by NMR spectroscopic studies (accompanying paper, Part VI). This generally applicable correlation scheme involved enzymatic digestions of each diastereomer to give the corresponding diastereomer of d[A(Et)T]; phosphite triester sulfurization to obtain diastereomeric O-ethyl phosphorothioates, d[AS(Et)T], which were separated by HPLC for stereoretentive oxidation with H2O2 to give d[A(Et)T], and stereoretentive de-ethylation with PhSH-Et3N to give diastereomeric phosphorothioates, d[AST], whose configurations at phosphorus had been assigned previously. Neither the Rp-Rp nor Sp-Sp duplex, (d[GGAA(Et)TTCC])2, was cleaved by EcoRI endonuclease under conditions that led to cleavage of both the unmodified duplex, [d(GGAATTCC)]2, and the mixture of diastereomeric phosphorothioate-modified duplexes, [d(GGAASTTCC)]2. Cleavage of the latter substrates was Sp-selective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号