首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA gene (Auxyn10A), which encodes a mesophilic family 10 xylanase from Aspergillus usamii E001 (abbreviated to AuXyn10A), was amplified and inserted into the XhoI and NotI sites of pPIC9KM vector constructed from a parent pPIC9K. The recombinant expression vector, designated pPIC9KM-Auxyn10A, was transformed into Pichia pastoris GS115. All P. pastoris transformants were spread on a MD plate, and then inoculated on geneticin G418-containing YPD plates for screening multiple copies of integration of the Auxyn10A. One transformant expressing the highest recombinant AuXyn10A (reAuXyn10A) activity of 368.6 U/ml, numbered as P. pastoris GSX10A4-14, was selected by flask expression test. SDS-PAGE assay demonstrated that the reAuXyn10A was extracellularly expressed with an apparent M.W. of 39.8 kDa. The purified reAuXyn10A displayed the maximum activity at pH 5.5 and 50 °C. It was highly stable at a broad pH range of 4.5–8.5, and at a temperature of 45 °C. Its activity was not significantly affected by EDTA and several metal ions except Mn2+, which caused a strong inhibition. The K m and V max, towards birchwood xylan at pH 5.5 and 50 °C, were 2.25 mg/ml and 6,267 U/mg, respectively. TLC analysis verified that the AuXyn10A is an endo-β-1,4-d-xylanase, which yielded a major product of xylotriose and a small amount of xylose, xylotetraose, and xylopentose from birchwood xylan, but no xylobiose.  相似文献   

2.

Background

Xylanases have drawn much attention owing to possessing great potential in various industrial applications. However, the applicability of xylanases, exemplified by the production of bioethanol and xylooligosaccharides (XOSs), was bottlenecked by their low stabilities at higher temperatures. The main purpose of this work was to improve the thermostability of AuXyn11A, a mesophilic glycoside hydrolase (GH) family 11 xylanase from Aspergillus usamii E001, by N-terminus replacement.

Results

A hybrid xylanase with high thermostability, named AEXynM, was predicted by computational methods, and constructed by substituting the N-terminal 33 amino acids of AuXyn11A with the corresponding 38 ones of EvXyn11TS, a hyperthermostable family 11 xylanase. Two AuXyn11A- and AEXynM-encoding genes, Auxyn11A and AExynM, were then highly expressed in Pichia pastoris GS115, respectively. The specific activities of two recombinant xylanases (reAuXyn11A and reAEXynM) were 10,437 and 9,529 U mg-1. The temperature optimum and stability of reAEXynM reached 70 and 75°C, respectively, much higher than those (50 and 45°C) of reAuXyn11A. The melting temperature (T m) of reAEXynM, measured using the Protein Thermal Shift (PTS) method, increased by 34.0°C as compared with that of reAuXyn11A. Analyzed by HPLC, xylobiose and xylotriose as the major hydrolytic products were excised from corncob xylan by reAEXynM. Additionally, three single mutant genes from AExynM (AExynM C5T, AExynM P9S, and AExynM H14N) were constructed by site-directed mutagenesis as designed theoretically, and expressed in P. pastoris GS115, respectively. The thermostabilities of three recombinant mutants clearly decreased as compared with that of reAEXynM, which demonstrated that the three amino acids (Cys5, Pro9, and His14) in the replaced N-terminus contributed mainly to the high thermostability of AEXynM.

Conclusions

This work highly enhanced the thermostability of AuXyn11A by N-terminus replacement, and further verified, by site-directed mutagenesis, that Cys5, Pro9, and His14 contributed mainly to the improved thermostability. It will provide an effective strategy for improving the thermostabilities of other enzymes.  相似文献   

3.
GH10 xylanase from Thermoascus aurantiacus strain SL16W (TasXyn10A) showed high stability and activity up to 70–75 °C. The enzyme’s half-lives were 101 h, 65 h, 63 min and 6 min at 60, 70, 75 and 80 °C, respectively. The melting point (T m), as measured by DSC, was 78.5 °C, which is in line with a strong activity decrease at 75–80 °C. The biomass-dissolving ionic liquid 1-ethyl-3-methylimidazolium acetate ([emim]OAc) in 30 % concentration had a small effect on the stability of TasXyn10A; T m decreased by only 5 °C. It was also observed that [emim]OAc inhibited much less GH10 xylanase (TasXyn10A) than the studied GH11 xylanases. The K m of TasXyn10A increased 3.5-fold in 15 % [emim]OAc with xylan as the substrate, whereas the approximate level of V max was not altered. The inhibition of enzyme activity by [emim]OAc was lesser at higher substrate concentrations. Therefore, high solid concentrations in industrial conditions may mitigate the inhibition of enzyme activity by ionic liquids. Molecular docking experiments indicated that the [emim] cation has major binding sites near the catalytic residues but in lower amounts in GH10 than in GH11 xylanases. Therefore, [emim] cation likely competes with the substrate when binding to the active site. The docking results indicated why the effect is lower in GH10.  相似文献   

4.
A neutral xylanase (XynII) from Volvariella volvacea was identified and characterized. Unlike other modular xylanases, it consists of only a single GH10 catalytic domain with a unique C-terminal sequence (W-R-W-F) and a phenylalanine and proline-rich motif (T-P-F-P-P-F) at N-terminus, indicating that it is a novel GH10 xylanase. XynII exhibited optimal activity at pH 7 and 60 °C and stability over a broad range of pH 4.0–10.0. XynII displayed extreme highly SDS resistance retaining 101.98, 92.99, and 69.84 % activity at the presence of 300 mM SDS on birchwood, soluble oat spelt, and beechwood xylan, respectively. It remained largely intact after 24 h of incubation with proteinase K at a protease to protein ratio of 1:50 at 37 °C. The kinetic constants K m value towards beechwood xylan was 0.548 mg ml?1, and the k cat/K m ratio, reflecting the catalytic efficiency of the enzyme, was 126.42 ml mg?1 s?1 at 60 °C. XynII was a true endo-acting xylanase lacking cellulase activity. It has weak activity towards xylotriose but efficiently hydrolyzed xylans and xylooligosaccharides larger than xylotriose mainly to xylobiose. Synergistic action with acetyl xylan esterase (AXEI) from V. volvacea was observed for de-starched wheat bran. The highest degree of synergy (DS 1.42) was obtained in sequential reactions with AXEI digestion preceding XynII. The high SDS resistance and intrinsic stability suggested XynII may have potential applications in various industrial processes especially for the detergent and textile industries and animal feed industries.  相似文献   

5.
A xylosidase gene, gsxyn, was cloned from the deep-sea thermophilic Geobacillus stearothermophilus, which consisted of 2,118 bp and encoded a protein of 705 amino acids with a calculated molecular mass of 79.8 kDa. The GSxyn of glycoside hydrolase family 52 (GH52) displayed its maximum activity at 70 °C and pH 5.5. The K m and k cat values of GSxyn for ρNPX were 0.48 mM and 36.64 s?1, respectively. Interestingly, a new exo-xylanase activity was introduced into GSxyn by mutating the tyrosine509 into glutamic acid, whereas the resultant enzyme variant, Y509E, retained the xylosidase activity. The optimum xylanase activity of theY509E mutant displayed at pH 6.5 and 50 °C, and retained approximately 45 % of its maximal activity at 55 °C, pH 6.5 for 60 min. The K m and k cat values of the xylanase activity of Y509E mutant for beechwood xylan were 5.10 mg/ml and 22.53 s?1, respectively. The optimum xylosidase activity of theY509E mutant displayed at pH 5.5 and 60 °C. The K m and k cat values of the xylosidase activity of Y509E mutant for ρNPX were 0.51 mM and 22.53 s?1, respectively. This report demonstrated that GH52 xylosidase has provided a platform for generating bifunctional enzymes for industrially significant and complex substrates, such as plant cell wall.  相似文献   

6.
The xyn10B gene, encoding the endo-1,4-β-xylanase Xyn10B from Thermotoga thermarum, was cloned and expressed in Escherichia coli. The ORF of the xyn10B was 1,095 bp and encoded to mature peptide of 344 amino acids with a calculated MW of 40,531 Da. The recombinant xylanase was optimally active at 80 °C, pH 6.0 and retained approx. 60 % of its activity after 2 h at 75 °C. Apparent K m , k cat and k cat /K m values of the xylanase for beechwood xylan were 1.8 mg ml?1, 520 s?1 and 289 ml mg?1 s?1, respectively. The end products of the hydrolysis of beechwood xylan were mainly oligosaccharides but without xylose after 2 h hydrolysis.  相似文献   

7.
The gene of Thermotoga maritima GH10 xylanase (TmXYN10B) was synthesised to study the extreme limits of this hyperthermostable enzyme at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids (ILs). TmXYN10B expressed from Pichia pastoris showed maximal activity at 100 °C and retained 92 % of maximal activity at 105 °C in a 30-min assay. Although the temperature optimum of activity was lowered by 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), TmXYN10B retained partial activity in 15–35 % hydrophilic ILs, even at 75–90 °C. TmXYN10B retained over 80 % of its activity at 90 °C in 15 % [EMIM]OAc and 15–25 % 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DMP) during 22-h reactions. [EMIM]OAc may rigidify the enzyme and lower V max. However, only minor changes in kinetic parameter K m showed that competitive inhibition by [EMIM]OAc of TmXYN10B is minimal. In conclusion, when extended enzymatic reactions under extreme conditions are required, TmXYN10B shows extraordinary potential.  相似文献   

8.
A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 °C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 °C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K m and V max values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone.  相似文献   

9.
To improve the temperature characteristics of a mesophilic glycoside hydrolase family (GHF) 11 xylanase AoXyn11A from Aspergillus oryzae, both introduction of a disulfide bridge and the substitution of a specific amino acid were carried out by in silico design and site-directed mutagenesis. Based on the analysis of a known crystal structure of thermophilic xylanase TlXynA from Thermomyces lanuginosus, and the alignment of primary structures between AoXyn11A and TlXynA, one mutant AoXyn11AM with a disulfide bridge (Cys108–Cys152) was designed by replacing the Ser108 and Asn152 of AoXyn11A with Cys residues, respectively. Additionally, based on the analysis of amino acid B-factor values, another mutant AoXyn11AM-G22A was predicted by substituting Gly22 of AoXyn11AM (having the maximum B-factor value of 69.25 Å, with the corresponding Ala23 of TlXynA. Thereafter, two mutant xylanase-encoding genes, Aoxyn11A M and Aoxyn11A M-G22A, were constructed by site-directed mutagenesis. Aoxyn11A and two mutant genes were expressed in E. coli BL21(DE3) respectively, and three expressed recombinant xylanases, reAoXyn11A, reAoXyn11AM and reAoXyn11AM-G22A, were purified to homogeneity. The temperature optima of reAoXyn11AM and reAoXyn11AM-G22A were 60 and 65°C, respectively, being 5 and 10°C higher than that of reAoXyn11A. Their thermal inactivation half-lives at 50°C were 1.8- and 8.4-folds longer than that of reAoXyn11A. There were no obvious alterations after mutations in specific activity and enzymatic properties, except for the temperature characteristics.  相似文献   

10.
A novel bacterial isolate, capable of producing extracellular highly thermostable, halo-alkali-stable and cellulase-free xylanase, was isolated from soil and identified as Bacillus halodurans TSPV1 by polyphasic approach. The Plackett–Burman design identified wheat bran, lactose, tryptone and NaCl as the factors that significantly affect xylanase production, and thus, these were optimized by response surface methodology. The data analysis suggested that optimum levels of wheat bran (15–20 g L?1), lactose (1.0–1.5 g L?1), tryptone (2–2.5 g L?1) and NaCl (7.0–8.0 g L?1) support 6.75-fold higher xylanase production than that in the un-optimized medium. The xylanase is optimally active at 90 °C and pH 10, and stable for 4 h at 90 °C (T 1/2 60 h) over a broad range of NaCl concentrations (0–29 %). This is the first report on the isolation of polyextremophilic B. halodurans strain that produces thermo-halo-alkali-stable xylanase in submerged fermentation. This enzyme efficiently saccharifies agro residues like wheat bran and corncobs. Fifty-six percent of hemicellulose of wheat bran could be hydrolyzed by xylanase (100 U g?1 substrate) along with cellulase (22 U FPase and 50 U CMCase g?1). The xylanase, being thermo-alkali stable and cellulase free, can find applications in pre-bleaching of paper pulps and hydrolysis of xylan in agricultural residues.  相似文献   

11.
An endo-1,4-β-xylanase gene, xylcg, was cloned from Chaetomium globosum and successfully expressed in Escherichia coli. The complete gene of 675 bp was amplified, cloned into the pET 28(a) vector, and expressed. The optimal conditions for the highest activity of the purified recombinant XylCg were observed at a temperature of 40 °C and pH of 5.5. Using oat-spelt xylan, the determined K m, V max, and k cat/K m values were 0.243 mg?ml?1, 4,530 U?mg?1 protein, and 7,640 ml?s?1?mg?1, respectively. A homology model and sequence analysis of XylCg, along with the biochemical properties, confirmed that XylCg belongs to the GH11 family. Rice straw pretreated with XylCg showed 30 % higher conversion yield than the rice straw pretreated with a commercial xylanase. Although xylanases have been characterized from fungal and bacterial sources, C. globosum XylCg is distinguished from other xylanases by its high catalytic efficiency and its effectiveness in the pretreatment of lignocellulosic biomass.  相似文献   

12.
A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified. It was active on oat spelt and birchwood xylans and on wheat arabinoxylans. It cleaved xylotetraose, xylopentaose, and xylohexaose but not xylobiose, clearly indicating that Xyn10A is a xylanase. Surprisingly, it showed a low activity against carboxymethylcellulose but no activity at all against aryl-cellobioside and cellooligosaccharides. The enzyme exhibited K m and V max of 1.6 mg ml−1 and 118 μmol min−1 mg−1 on oat spelt xylan, and its optimal temperature and pH for activity were 37°C and pH 6.0, respectively. Its catalytic properties (k cat/K m = 3,300 ml mg−1 min−1) suggested that Xyn10A is one of the most active GH10 xylanase described to date. Phylogenetic analyses showed that Xyn10A was closely related to other GH10 xylanases from human Bacteroides. The xyn10A gene was expressed in B. xylanisolvens XB1A cultured with glucose, xylose or xylans, and the protein was associated with the cells. Xyn10A is the first family 10 xylanase characterized from B. xylanisolvens XB1A.  相似文献   

13.
A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe2+ ions, but was inhibited strongly by Fe3+. The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe2+ treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe3+ was first time demonstrated to associate tryptophan fluorescence quenching.  相似文献   

14.
A xylanase gene (TrXyn10) from Thermoactinospora rubra YIM 77501T was cloned and expressed in Escherichia coli. The amino acid sequence displayed 78% homology with Microbispora mesophila xylanase (WP_062413927.1). The recombinant xylanase (TrXyn10), with MW 46.1 kDa, could hydrolyse beechwood, birchwood and oatspelt xylan. Based on the sequence, enzymatic properties and tertiary structure of the protein, TrXyn10 belongs to glycoside hydrolase family 10 (GH10). The optimal pH and temperature for the recombinant enzyme were determined to be 7.0 and 55 °C, respectively. TrXyn10 was stable over a wide pH range, and it retained more than 45% of the total activity at pH 6.0–12.0 for 12 h. In addition, the activity was greatly promoted, by approximately 200% of the initial activity, after incubation at pH 6.0 and 7.0 for 12 h. Based on enzymatic properties and product analysis, we showed that TrXyn10 is a neutral endoxylanase.  相似文献   

15.
The purified extracellular xylanase of polyextremophilic Bacillus halodurans TSEV1 has been visualized as a single band on SDS-PAGE and eluted as single peak by gel filtration, with a molecular mass of 40 kDa. The peptide finger print and cloned xylanase gene sequence analyses indicate that this enzyme belongs to GH family 10. The active site carboxyl residues are mainly involved in catalysis, while tryptophan residues are involved in substrate binding. The enzyme is optimally active at 80 °C and pH 9.0, and stable in the pH range of 7.0–12.0 with T 1/2 of 35 min at 80 °C (pH 9.0). Activation energy for birch wood xylan hydrolysis is 30.51 kJ mol?1. The K m, V max and k cat (birchwood xylan) are 2.05 mg ml?1, 333.33 μmol mg?1 min?1 and 3.33 × 104 min?1, respectively. The pKa1 and pKa2 of ionizable groups of the active site that influence V max are 8.51 and 11.0. The analysis of thermodynamic parameters for xylan hydrolysis suggests this as a spontaneous process. The enzyme is resistant to chemical denaturants like urea and guanidinium-HCl. The site-directed mutagenesis of catalytic glutamic acid residues (E196 and E301) resulted in a complete loss of activity. The birch wood xylan hydrolyzate contained xylobiose and xylotriose as the main products without any trace of xylose, and the enzyme hydrolyzes xylotetraose and xylopentaose rapidly to xylobiose. Thermo-alkali-stability, resistance to various chemical denaturants and mode of action make it a useful biocatalyst for generating xylo-oligosaccharides from agro-residues and bleaching of pulp in paper industries.  相似文献   

16.
The thermostable bifunctional CMCase and xylanase encoding gene (rBhcell-xyl) from Bacillus halodurans TSLV1 has been expressed in Escherichia coli. The recombinant E. coli produced rBhcell-xyl (CMCase 2272 and 910 U L?1 xylanase). The rBhcell-xyl is a ~62-kDa monomeric protein with temperature and pH optima of 60 °C and 6.0 with T1/2 of 7.0 and 3.5 h at 80 °C for CMCase and xylanase, respectively. The apparent K m values (CMC and Birchwood xylan) are 3.8 and 3.2 mg mL?1. The catalytic efficiency (k cat/K m ) values of xylanase and CMCase are 657 and 171 mL mg?1 min?1, respectively. End-product analysis confirmed that rBhcell-xyl is a unique endo-acting enzyme with exoglucanase activity. The rBhcell-xyl is a GH5 family enzyme possessing single catalytic module and carbohydrate binding module. The action of rBhcell-xyl on corn cobs and wheat bran liberated reducing sugars, which can be fermented to bioethanol and fine biochemicals.  相似文献   

17.
Endo-1,4-β-xylanases are mostly classified into glycoside hydrolase (GH) family 10 or 11. In this study, we examined the catalytic functions of a recombinant endo-1,4-β-xylanase belonging to GH10 (Xyn10C) from a marine bacterium, Saccharophagus degradans 2-40. Optimal activity of this enzyme was evident at 30 °C and pH 7.0, but activity remained even at low temperatures, indicating its adaptation to cold. With respect to other xylanases known to be active in cold temperatures, Xyn10C is unique in that it showed maximal activity in the presence of 2 M of NaCl. The action patterns of recombinant Xyn10C on xylans from hardwood and softwood differed in part, but the enzyme hydrolyzed polysaccharidic substrates primarily to xylobiose and xylotriose through xylo-oligosaccharides, releasing a small amount of xylose. The K m and V max values on birchwood xylan were 10.4 mg mL?1 and 253 µmol mg?1 min?1, respectively. The efficient catalytic function of Xyn10C on short-length xylo-oligosaccharide chains was similar to the typical function of other known GH10 xylanases.  相似文献   

18.
A putative endo-1,4-β-d-xylanohydrolase gene xyl11 from Aspergillus niger, encoding a 188-residue xylanase of glycosyl hydrolase family 11, was constitutively expressed in Pichia pastoris. The recombinant Xyl11 exhibited optimal activity at pH 5.0 and 50 °C, and displayed more than 68 % of the maximum activity over the temperature range 35–65 °C and 33 % over the pH range 2.2–7.0. It maintained more than 40 % of the original activity after incubation at 90 °C (pH 5.0) for 10 min and more than 75 % of the original activity after incubation at pH 2.2–11.0 (room temperature) for 2 h. The specific activity, K m and V max of purified Xyl11 were 22,253 U mg?1, 6.57 mg ml?1 and 51,546.4 μmol min?1 mg?1. It could degrade xylan to a series of xylooligosaccharides and no xylose was detected. The recombinant enzyme with high stability and catalytic efficiency could work over wide ranges of pH and temperature and thus has the potential for various industrial applications.  相似文献   

19.
A new xylanase gene (xynA) from the marine microorganism Zunongwangia profunda was identified to encode 374 amino acid residues. Its product (XynA) showed the highest identity (42.78 %) with a xylanase from Bacillus sp. SN5 among the characterized xylanases. XynA exhibited the highest activity at pH 6.5 and 30 °C, retaining 23 and 38 % of the optimal activity at 0 and 5 °C, respectively. XynA was not only cold active, but also halophilic, and both its activity and thermostability could be significantly increased by NaCl, showing the highest activity (180 % of the activity) at 3 M NaCl and retaining nearly 100 % activity at 5 M NaCl, compared to the absence of NaCl. In the presence of 3 M NaCl, the k cat/K m value of XynA exhibited a 3.41-fold increase for beechwood xylan compared to no added NaCl, and the residual activity of XynA increased from 23 % (no added NaCl) to 58 % after 1 h incubation at 45 °C. This may be the first report concerning a cold-adapted xylanase from a non-halophilic species that displays the highest activity at a NaCl concentration range from 3 to 5 M. The features of cold activity and salt tolerance suggest the potential application of XynA in the food industry and bioethanol production from marine seaweeds.  相似文献   

20.
Cel5 from marine Hahella chejuensis is composed of glycoside hydrolase family-5 (GH5) catalytic domain (CD) and two carbohydrate binding modules (CBM6-2). The enzyme was expressed in Escherichia coli and purified to homogeneity. The optimum endoglucanase and xylanase activities of recombinant Cel5 were observed at 65 °C, pH 6.5 and 55 °C, pH 5.5, respectively. It exhibited K m of 1.8 and 7.1 mg/ml for carboxymethyl cellulose and birchwood xylan, respectively. The addition of Ca2+ greatly improved thermostability and endoglucanase activity of Cel5. The Cel5 retained 90 % of its endoglucanase activity after 24 h incubation in presence of 5 M concentration of NaCl. Recombinant Cel5 showed production of cellobiose after hydrolysis of cellulosic substrates (soluble/insoluble) and methylglucuronic acid substituted xylooligosaccharides after hydrolysis of glucuronoxylans by endo-wise cleavage. These results indicated that Cel5 as bifunctional enzyme having both processive endoglucanase and xylanase activities. The multidomain structure of Cel5 is clearly distinguished from the GH5 bifunctional glycoside hydrolases characterized to date, which are single domain enzymes. Sequence analysis and homology modeling suggested presence of two conserved binding sites with different substrate specificities in CBM6-2 and a single catalytic site in CD. Residues Glu132 and Glu219 were identified as key catalytic amino acids by sequence alignment and further verified by using site directed mutagenesis. CBM6-2 plays vital role in catalytic activity and thermostability of Cel5. The bifunctional activities and multiple substrate specificities of Cel5 can be utilized for efficient hydrolysis of cellulose and hemicellulose into soluble sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号