首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactic acid bacteria are food-grade microorganisms that are potentially good candidates for production of heterologous proteins of therapeutical or technological interest. We developed a model for heterologous protein secretion in Lactococcus lactis using the staphylococcal nuclease (Nuc). The effects on protein secretion of alterations in either (i) signal peptide or (ii) propeptide sequences were examined. (i) Replacement of the native Nuc signal peptide (SPNuc) by that of L. lactis protein Usp45 (SPUsp) resulted in greatly improved secretion efficiency (SE). Pulse-chase experiments showed that Nuc secretion kinetics was better when directed by SPUsp than when directed by SPNuc. This SPUsp effect on Nuc secretion is not due to a better antifolding activity, since SPUsp:Nuc precursor proteins display enzymatic activity in vitro, while SPNuc:Nuc precursor proteins do not. (ii) Deletion of the native Nuc propeptide dramatically reduces Nuc SE, regardless of which SP is used. We previously reported that a synthetic propeptide, LEISSTCDA, could efficiently replace the native Nuc propeptide to promote heterologous protein secretion in L. lactis (Y. Le Loir, A. Gruss, S. D. Ehrlich, and P. Langella, J. Bacteriol. 180:1895–1903, 1998). To determine whether the LEISSTCDA effect is due to its acidic residues, specific substitutions were introduced, resulting in neutral or basic propeptides. Effects of these two new propeptides and of a different acidic synthetic propeptide were tested. Acidic and neutral propeptides were equally effective in enhancing Nuc SE and also increased Nuc yields. In contrast, the basic propeptide strongly reduced both SE and the quantity of secreted Nuc. We have shown that the combination of the native SPUsp and a neutral or acidic synthetic propeptide leads to a significant improvement in SE and in the quantity of synthesized Nuc. These observations will be valuable in the production of heterologous proteins in L. lactis.  相似文献   

2.

Background

Lactic acid bacteria are a family of “generally regarded as safe” organisms traditionally used for food fermentation. In recent years, they have started to emerge as potential chassis for heterologous protein production. And more recently, due to their beneficial properties in the gut, they have been examined as potential candidates for mucosal delivery vectors, especially for acid-sensitive enzymes. One such application would be the delivery of gluten-digesting endopeptidases for the treatment of celiac disease. To facilitate these applications, an efficient recombinant protein expression toolbox is required, especially for recombinant protein secretion. While current tools for enhancing protein secretion consist mainly of signal peptides, secretion propeptides have also been observed to play a crucial role for protein secretion and improved yields.

Results

To expand the propeptide library for secretion optimization, we have mined and characterized three naturally occurring propeptides from the sequenced genomes of 109 Lactococcus species. These newly-mined propeptides were introduced after the N-terminal USP45 secretion signal to characterize and compare their effects on the secretion of Escherichia coli thioredoxin (TRX) and Flavobacterium meningosepticum prolyl endopeptidase (Fm PEP) in Lactococcus lactis NZ9000. All three propeptides, along with the positive control LEISSTCDA, improved volumetric secretion yields by 1.4–2.3-folds. However, enhancement of secretion yield is dependent on protein of interest. For TRX, the optimal combination of USP45 signal peptide and LEISSTCDA produced a 2.3-fold increase in secretion yields. Whilst for Fm PEP, propeptide 1 with USP45 signal peptide improved volumetric secretion yields by 2.2-fold compared to a 1.4-fold increase by LEISSTCDA. Similar trends in Fm PEP activity and protein yield also demonstrated minimal effect of the negative charged propeptides on PEP activity and thus folding.

Conclusions

Overall, we have characterized three new propeptides for use in L. lactis secretion optimization. From success of these propeptides for improvement of secretion yields, we anticipate this collection to be valuable to heterologous protein secretion optimisation in lactic acid bacteria. We have also demonstrated for the first time, secretion of Fm PEP in L. lactis for potential use as a therapy agent in celiac disease.
  相似文献   

3.
Abstract

Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.  相似文献   

4.
The function of the long propeptides of fungal proteinases is not known. Aspergillus fumigatus produces a 33-kDa serine proteinase of the subtilisin family and a 42-kDa metalloproteinase of the thermolysin family. These extracellular enzymes are synthesized as preproenzymes containing large amino-terminal propeptides. Recombinant propeptides were produced in Escherichia coli as soluble fusion proteins with glutathione S-transferase or thioredoxin and purified by affinity chromatography. A. fumigatus serine proteinase propeptide competitively inhibited serine proteinase, with a Ki of 5.3 x 10(-6) M, whereas a homologous serine proteinase from A. flavus was less strongly inhibited and subtilisin was not inhibited. Binding of metalloproteinase propeptide from A. fumigatus to the mature metalloenzyme was demonstrated. This propeptide strongly inhibited its mature enzyme, with a Ki of 3 x 10(-9) M, whereas thermolysin and a metalloproteinase from A. flavus were not inhibited by this propeptide. Enzymatically inactive metalloproteinase propeptide complex could be completely activated by trypsin treatment. These results demonstrate that the propeptides of the fungal proteinases bind specifically and inhibit the respective mature enzymes, probably reflecting a biological role of keeping these extracellular enzymes inactive until secretion.  相似文献   

5.
The ability to express heterologous proteins in microbial hosts is crucial for many areas of research and technology. In most cases, however, successful expression and purification of the desired protein require fusion to another protein. To date, all fusion partners have been chosen from natural sequences, which evolved for other purposes, and may not be optimal fusion partners. However, the rise of synthetic biology and protein design make it possible to design and optimize fusion proteins using novel sequences that did not arise in nature. Here, we describe a series of De novo Expression Enhancer Proteins (DEEPs) that facilitate high‐level expression and facile purification of heterologous proteins and peptides. To test the DEEP system, a de novo protein was fused to several target proteins covering a range of sizes and solubilities. In all cases, fusions to DEEP outperformed fusions to SUMO, a commonly used natural fusion partner. The availability of novel proteins that can be engineered for specific fusion applications could be beneficial to enhance the expression of a wide range of heterologous proteins.  相似文献   

6.
B-cell translocation gene 3 (BTG3) is a member of the antiproliferative BTG gene family and is a downstream target of p53. Here, we show that senescence triggered by BTG3 depletion was accompanied by a secretome enriched with cytokines, growth factors, and matrix-remodeling enzymes, which could promote angiogenesis and cell scattering in vitro. We present evidence that at least part of these activities can be explained by elevated HIF-1α activity. Mechanistically, the BTG3 C-terminal domain competes with the coactivator p300 for binding the HIF-1α transactivation domain. The angiogenic promoting effect of BTG3 knockdown was largely diminished upon co-depletion of HIF-1α, indicating that HIF-1α is a major downstream target of BTG3 in the control of angiogenesis. In vivo, ectopic expression of BTG3 suppresses angiogenesis in xenograft tumors; and syngenic tumor growth and metastasis were enhanced in Btg3-null mice. Moreover, analysis of clinical datasets revealed that a higher BTG3/VEGFA expression ratio correlates with improved patient survival in a number of cancer types. Taken together, our findings highlight the non-autonomous regulation of tumor microenvironment by BTG3 while suppressing tumor progression.Subject terms: Tumour-suppressor proteins, Oncogenesis  相似文献   

7.
Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.  相似文献   

8.
The γ-glutamyl carboxylase utilizes four substrates to catalyze carboxylation of certain glutamic acid residues in vitamin K-dependent proteins. How the enzyme brings the substrates together to promote catalysis is an important question in understanding the structure and function of this enzyme. The propeptide is the primary binding site of the vitamin K-dependent proteins to carboxylase. It is also an effector of carboxylase activity. We tested the hypothesis that binding of substrates causes changes to the carboxylase and in turn to the substrate-enzyme interactions. In addition we investigated how the sequences of the propeptides affected the substrate-enzyme interaction. To study these questions we employed fluorescently labeled propeptides to measure affinity for the carboxylase. We also measured the ability of several propeptides to increase carboxylase catalytic activity. Finally we determined the effect of substrates: vitamin K hydroquinone, the pentapeptide FLEEL, and NaHCO3, on the stability of the propeptide-carboxylase complexes. We found a wide variation in the propeptide affinities for carboxylase. In contrast, the propeptides tested had similar effects on carboxylase catalytic activity. FLEEL and vitamin K hydroquinone both stabilized the propeptide-carboxylase complex. The two together had a greater effect than either alone. We conclude that the effect of propeptide and substrates on carboxylase controls the order of substrate binding in such a way as to ensure efficient, specific carboxylation.  相似文献   

9.
Cucumisin is a subtilisin-like serine protease (subtilase) that is found in the juice of melon fruits (Cucumis melo L.). It is synthesized as a preproprotein consisting of a signal peptide, NH2-terminal propeptide, and 67-kDa protease domain. We investigated the role of this propeptide (88 residues) in the cucumisin precursor. Complementary DNAs encoding the propeptides of cucumisin, two other plant subtilases (Arabidopsis ARA12 and rice RSP1), and bacterial subtilisin E were expressed in Escherichia coli independently of their mature enzymes. The cucumisin propeptide strongly inhibited cucumisin in a competitive manner with a Ki value of 6.2 ± 0.55 nm. Interestingly, cucumisin was also strongly inhibited by ARA12 and RSP1 propeptides but not by the subtilisin E propeptide. In contrast, the propeptides of cucumisin, ARA12, and RSP1 did not inhibit subtilisin. Deletion analysis clearly showed that two hydrophobic regions, Asn32–Met38 and Gly97–Leu103, in the cucumisin propeptide were important for its inhibitory activity. Site-directed mutagenesis also confirmed the role of a Val36-centerd hydrophobic cluster within the Asn32–Met38 region in cucumisin inhibition. Circular dichroism spectroscopy revealed that the cucumisin propeptide had a secondary structure without a cognate protease domain and that the thermal unfolding of the propeptide at 90 °C was only partial and reversible. A tripeptide, Ile35-Val36-Tyr37, in the Asn32–Met38 region was thought to contribute toward the formation of a proper secondary structure necessary for cucumisin inhibition. This is the first report on the function and structural information of the propeptide of a plant serine protease.  相似文献   

10.
Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. The signal sequence is cleaved off during transport across the inner membrane and, in the periplasm, proelastase is further processed. We demonstrate that the propeptide and the mature elastase are both secreted but that the propeptide is degraded extracellularly. In addition, reduction of the extracellular proteolytic activity led to the accumulation of unprocessed forms of LasA and LasD in the extracellular medium, which shows that these enzymes are secreted in association with their propeptides. Furthermore, a hitherto undefined protein with homology to a Streptomyces griseus aminopeptidase accumulated under these conditions.  相似文献   

11.
Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism’s cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with Ki values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.  相似文献   

12.
The mosquito-larvicidal binary toxin produced by Bacillus sphaericus consists of two polypeptides: BinA and BinB. Both proteins function together, and maximum toxicity is obtained when both are present in equimolar ratio. Cloning and expression of each component separately in heterologous hosts led to low toxicity of the crystal proteins. To improve the expression level, the purification process, and the activity of the binary toxin, the binA and binB genes were separately cloned in Eschericia coli. Each gene was fused in frame to the glutathione S-transferase (GST) gene to be expressed as GST-fusion protein (GST-BinA and GST-BinB). A high expression level was observed from both constructs, and the fusion proteins exhibited high toxicity to Culex quinquefasciatus larvae. High-purity toxin could be obtained by affinity chromatography. The result suggests that GST moiety facilitates high protein production and enables better solubility of the toxin inclusions inside the larval gut, leading to higher toxicity of the fusion protein.  相似文献   

13.
Aldehyde dehydrogenase 3A1 (ALDH3A1) is a recently characterized corneal crystallin with its exact functions still being unclear. Expressing recombinant human ALDH3A1 has been difficult in Escherichia coli (E. coli) because of low solubility, yield and insufficient purity issues. In this report, we compared different E. coli expression strategies (namely the maltose binding protein; MBP- and the 6-his-tagged expression systems) under conditions of auto-induction and co-expression with E. coli’s molecular chaperones where appropriate. Thus, we aimed to screen the efficiency of these expression strategies in order to improve solubility of recombinant ALDH3A1 when expressed in E. coli. We showed that the MBP- tagged expression in combination with lower-temperature culture conditions resulted in active soluble recombinant ALDH3A1. Expression of the fused 6-his tagged-ALDH3A1 protein resulted in poor solubility and neither lowering temperature culture conditions nor the auto-induction strategy improved its solubility. Furthermore, higher yield of soluble, active native form of 6-his tagged-ALDH3A1 was facilitated through co-expression of the two groups of E. coli’s molecular chaperones, GroES/GroEL and DnaK/DnaJ/GrpE. Convenient one step immobilized affinity chromatography methods were utilized to purify the fused ALDH3A1 hybrids. Both fusion proteins retained their biological activity and could be used directly without removing the fusion tags. Taken together, our results provide a rational option for producing sufficient amounts of soluble and active recombinant ALDH3A1 using the E. coli expression system for conducting functional studies towards elucidating the biological role(s) of this interesting corneal crystallin.  相似文献   

14.
Bioinformatic analysis of the genome of the methylotrophic yeast Hansenula polymorpha revealed 39 putative glycosylphosphatidylinositol-anchored proteins (GPI-proteins). Notably, dibasic motifs in the proximal ω-site, that has been reported as a plasma membrane retention signal in Saccharomyces cerevisiae GPI-proteins, were not found in any of the predicted GPI-proteins of H. polymorpha. To evaluate the in silico prediction, C-terminal peptides of 40 amino acids derived from ten H. polymorpha GPI-proteins were fused to the Aspergillus saitoi α-1,2-mannosidase (msdS). Cell wall fraction analysis showed that nine of the ten msdS-GPI fusion proteins were mostly localized at the cell wall. Surface expression of functional msdS was further confirmed by in vitro enzyme activity assay and by glycan structure analysis of cell wall mannoproteins. The recombinant H. polymorpha strains expressing surface-displayed msdS have the potential as useful hosts to produce glycoproteins with decreased mannosylation.  相似文献   

15.
Plants have attracted increasing attention as an expression platform for the production of pharmaceutical proteins due to its unlimited scalability and low cost potential. However, compared to other expression systems, plants accumulate relatively low levels of foreign proteins, thus necessitating the development of efficient systems for purification of foreign proteins from plant tissues. We have developed a novel strategy for purification of recombinant proteins expressed in plants, based on genetic fusion to soybean agglutinin (SBA), a homotetrameric lectin that binds to N-acetyl-D-galactosamine. Previously it was shown that high purity SBA could be recovered from soybean with an efficiency of greater than 90% following one-step purification using N-acetyl-D-galactosamine-agar columns. We constructed an SBA fusion protein containing the reporter green fluorescent protein (GFP) and transiently expressed it in N. benthamiana plants. We achieved over 2.5% of TSP accumulation in leaves of N. benthamiana. Confocal microscopic analysis demonstrated in vivo activity of the fused GFP partner. Importantly, high purity rSBA-GFP was recovered from crude leaf extract with ~90% yield via one-step purification on N-acetyl-D-galactosamine-agar columns, and the purified fusion protein was able to induce the agglutination of rabbit red blood cells. Combined with this, tetrameric assembly of the fusion protein was demonstrated via western blotting. In addition, rSBA-GFP retained its GFP signal on agglutinated red blood cells, demonstrating the feasibility of using rSBA-GFP for discrimination of cells that bear the ligand glycan on their surface. This work validates SBA as an effective affinity tag for simple and rapid purification of genetically fused proteins.  相似文献   

16.
17.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the modification of specific glutamates in a number of proteins required for blood coagulation and associated with bone and calcium homeostasis. All known vitamin K-dependent proteins possess a conserved eighteen-amino acid propeptide sequence that is the primary binding site for the carboxylase. We compared the relative affinities of synthetic propeptides of nine human vitamin K-dependent proteins by determining the inhibition constants (Ki) toward a factor IX propeptide/gamma-carboxyglutamic acid domain substrate. The Ki values for six of the propeptides (factor X, matrix Gla protein, factor VII, factor IX, PRGP1, and protein S) were between 2-35 nM, with the factor X propeptide having the tightest affinity. In contrast, the inhibition constants for the propeptides of prothrombin and protein C are approximately 100-fold weaker than the factor X propeptide. The propeptide of bone Gla protein demonstrates severely impaired carboxylase binding with an inhibition constant of at least 200,000-fold weaker than the factor X propeptide. This study demonstrates that the affinities of the propeptides of the vitamin K-dependent proteins vary over a considerable range; this may have important physiological consequences in the levels of vitamin K-dependent proteins and the biochemical mechanism by which these substrates are modified by the carboxylase.  相似文献   

18.
In order to determine the functional role of the procathepsin L propeptide region for the preparation of active recombinant rat cathepsin L (CL), cDNAs encoding two short-length propeptides (C-terminal 2 and 27 residues) and the full-length (96 residues) one plus the entire CL were expressed as two soluble fusion proteins with a fragment of maltose-binding protein and an insoluble fusion protein with glutathione-S-transferase in Escherichia coli, respectively. After refolding of the insoluble fusion protein, each gene product was purified to homogeneity by amylose or glutathione-Sepharose-4B affinity column, and digestion with factor Xa and alpha-thrombin under alkaline conditions (pH approximately 8.0) led to the elution of two pure short-length procathepsin Ls (PCLs) and a full-length one, respectively. The enzymatic activity, estimated by hydrolytic assaying of benzoxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide under acidic conditions (pH 5.5), indicated that the two short-length PCLs exhibited in a great loss of the activity, as compared with the full-length PCL. The CD spectra of the short-length PCLs were different from that of the full-length one. The present results clearly show that the full-length propeptide is essential for construction of the active tertiary structure of CL at the stage of recombinant protein expression, although the expression of CL itself in E. coli does not require the propeptide. Based on the tertiary structure of PCL, the propeptide region necessary for the construction of the CL active structure has been discussed.  相似文献   

19.
The major allergen Der p 1 of the house dust mite Dermatophagoides pteronyssinus is a papain-like cysteine protease (CA1) produced as an inactive precursor and associated with allergic diseases. The propeptide of Der p 1 exhibits a specific fold that makes it unique in the CA1 propeptide family. In this study, we investigated the activation steps involved in the maturation of the recombinant protease Der p 1 expressed in Pichia pastoris and the interaction of the full-length and truncated soluble propeptides with their parent enzyme in terms of activity inhibition and BIAcore interaction analysis. According to our results, the activation of protease Der p 1 is a multistep mechanism that is characterized by at least two intermediates. The propeptide strongly inhibits unglycosylated and glycosylated recombinant Der p 1 (KD = 7 nM) at neutral pH. This inhibition is pH dependent. It decreases from pH 7 to pH 4 and can be related to conformational changes of the propeptide characterized by an increase of its flexibility and formation of a molten globule state. Our results indicate that activation of the zymogen at pH 4 is a compromise between activity preservation and propeptide unfolding.  相似文献   

20.
We established a strategy for protein production and purification via expression in Yarrowia lipolytica as Lip2p fusion protein. To evaluate the expression system a cysteine-rich miniprotein, an antibody fragment and an enzyme showing galactose oxidase activity were chosen. These proteins have varying disulfide bond content, size, and structural complexity. Endogenous lipase Lip2p was used as a fusion partner to direct the fused proteins to the extracellular medium. A linker sequence was introduced at the junction of Lip2p and the respective fused protein that contains a hexahistidine tag followed by a TEV protease cleavage site. This allows for a specific and simple purification via IMAC for capturing the secreted proteins from the supernatant followed by a second IMAC for removing all contaminants after proteolytic release of the protein of interest. Up to 174 mg/L fusion protein was obtained using shake flask cultivation. Functionality of each of the purified proteins was confirmed by individual assays. Expression of proteins of interest via Lip2p fusion not only provides a convenient expression and purification scheme but also enables for an online monitoring of accumulation of secreted fusion proteins in the medium by exploiting the intrinsic lipase activity of the fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号