首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited information is available explaining the economics of supplying N and P fertilizers on established stands of switchgrass growing in phosphorus-deficient soils. The objective of this study was to determine the most economical fertilizer supply system for producing feedstock in phosphorus-deficient soil in the southern Great Plains. Data collected from field trials conducted at two locations in south-central Oklahoma along with prices quoted by local input suppliers and custom service providers and assumptions about the farm-gate price of feedstock were used to estimate expected values for production costs, gross revenue and net return to owner's labor, management, and overhead for eight fertilizer supply systems. The systems included a zero fertilizer check system (0/0), three P systems (0/34, 0/67, and 0/101), one N system (135/0), and three N and P systems (135/34, 135/67, and 135/101). Random-effects mixed ANOVA models were used to determine the effects of fertilizer system on the values of total cost and net return. For the base-case price scenario (feedstock, N and P prices of $110 Mg?1 and $1.28 and 1.17 kg?1, respectively), the 135/0 system was the most profitable system, producing 10.2 Mg of feedstock and $263 of net return per hectare. Economic results were most sensitive to the prices of feedstock, N and P. Net return was negative for all eight systems for the scenario where the farm-gate price of feedstock was relatively low ($55 Mg?1) and prices for N and P were relatively high ($2.20 kg?1).  相似文献   

2.
Integration of switchgrass (Panicum virgatum L.) into livestock production systems has potential to improve farm economics and encourage development of a biofuel industry in the Southern Great Plains. The objectives of this study were to determine the economics of seven alternative switchgrass grazing and bioenergy feedstock systems and to determine how sensitive the results are among the systems for a range of cattle and feedstock prices. Data were collected from a completely randomized designed grazing study in south-central Oklahoma in 2008, 2009, and 2010. Stocking density treatments [0, 2.5, 4.9 and 7.4 hd ha?1] were randomly assigned to 12 0.81-ha switchgrass pastures. Using biological data from the field trial, economic data collected from the marketplace and assumptions about prices of bioenergy feedstock, seven production systems were simulated. The systems included no-graze feedstock only (NG/FS); graze lightly no feedstock (GL/NF); graze moderately no feedstock (GM/NF); graze heavily no feedstock H/NF)]; lightly grazed plus feedstock (GL/F); moderately grazed plus feedstock (GM/F); and heavily grazed plus feedstock (GH/F). Enterprise budgeting was used to compute expected net returns for the seven systems. Random-effects mixed ANOVA models were used to determine the effects of production system on yield, gain, and net return. At a feedstock price $0 Mg?1, the GM/NF was the most profitable ($45 ha?1) system. At feedstock prices of $55 and $83 Mg?1, the GL/F system realized net returns of $232 and $523 ha?1, respectively, and for feedstock prices >$83 Mg?1, the NG/FS system was determined to be most economical.  相似文献   

3.
One-pass harvest equipment has been developed to collect corn (Zea mays L.) grain, stover, and cobs that can be used as bioenergy feedstock. Nutrients removed in these feedstocks have soil fertility implication and affect feedstock quality. The study objectives were to quantify nutrient concentrations and potential removal as a function of cutting height, plant organ, and physiological stage. Plant samples were collected in 10-cm increments at seven diverse geographic locations at two maturities and analyzed for multiple elements. At grain harvest, nutrient concentration averaged 5.5 g?N kg?1, 0.5 g?P kg?1, and 6.2 g?K kg?1 in cobs, 7.5 g?N kg?1, 1.2 g?P kg?1, and 8.7 g?K kg?1 in the above-ear stover fraction, and 6.4 g?N kg?1, 1.0 g?P kg?1, and 10.7 g?K kg?1 in the below-ear stover fraction (stover fractions exclude cobs). The average collective cost to replace N, P, and K was $11.66 Mg?1 for cobs, $17.59 Mg?1 for above-ear stover, and $18.11 Mg?1 for below-ear stover. If 3 Mg ha?1 of above-ear stover fraction plus 1 Mg of cobs are harvested, an average N, P, and K replacement cost was estimated at $64 ha?1. Collecting cobs or above-ear stover fraction may provide a higher quality feedstock while removing fewer nutrients compared to whole stover removal. This information will enable producers to balance soil fertility by adjusting fertilizer rates and to sustain soil quality by predicting C removal for different harvest scenarios. It also provides elemental information to the bioenergy industry.  相似文献   

4.
The suitability of poplar (Populus × canadensis Moench.—genotype ‘Neva’), black locust (Robinia pseudoacacia L.), and eucalyptus (Eucalyptus bridgesiana R. Baker) growing in short rotation coppice (SRC) system in a Mediterranean area (southern Italy), and under two management regimes, was evaluated in terms of survival, biomass yield, biomass quality, and soil fertility. The high management regime (H treatment) consisted of high plant density (6667 trees ha?1) and a 2-year harvesting cycle; the low management regime (L treatment) consisted of low plant density (1667 trees ha?1) and a 4-year harvesting cycle. The dry biomass production was 36, 13, and 9 t dry matter (dm)?ha?1 in the H treatment and 25, 14, and 7 t dm ha?1 in the L treatment for eucalyptus, black locust, and poplar, respectively. The analysis of the biomass showed a superior quality for the black locust feedstock because of its low moisture and ash percentages, high heating value (HHV), and low alkali metal concentrations, although, from an environmental point of view, the high N (12.3 g kg?1) and S (0.7 g kg?1) biomass concentrations would increase the pollutant emissions generated by combustion. Eucalyptus showed a high HHV, especially for the H treatment (18.70 MJ kg?1). Its high concentrations of K (4 g kg?1) and Mg (0.8 g kg?1) could provoke slagging and fouling in combustion equipment, and the high concentrations of S and N, if leaves are considered in the harvested biomass, indicate the low quality of its feedstock. No specific poplar feedstock stood out, although it had a good HHV (19.02 MJ kg?1). The soil fertility was not affected negatively after the 4-year SRC cycle, while S content in soil showed a tendency to increase in the case of black locust cultivation.  相似文献   

5.
Sweet sorghum is a bioenergy crop that produces large amounts of soluble sugars in its stems (3–7 Mg ha?1) and generates significant amounts of bagasse (15–20 Mg ha?1) as a lignocellulosic feedstock. These sugars can be fermented not only to biofuels but also to bio-based chemicals. The market potential of the latter may be higher given the current prices of petroleum and natural gas. The yield and rate of production of optically pure d-(?)- and l-(+)-lactic acid as precursors for the biodegradable plastic polylactide was optimized for two thermotolerant Bacillus coagulans strains. Strain 36D1 fermented the sugars in unsterilized sweet sorghum juice at 50 °C to l-(+)-lactic acid (~150 g L?1; productivity, 7.2 g L?1 h?1). B. coagulans strain QZ19-2 was used to ferment sorghum juice to d-(?)-lactic acid (~125 g L?1; productivity, 5 g L?1 h?1). Carbohydrates in the sorghum bagasse were also fermented after pretreatment with 0.5 % phosphoric acid at 190 °C for 5 min. Simultaneous saccharification and co-fermentation of all the sugars (SScF) by B. coagulans resulted in a conversion of 80 % of available carbohydrates to optically pure lactic acid depending on the B. coagulans strain used as the microbial biocatalyst. Liquefaction of pretreated bagasse with cellulases before SScF (L + SScF) increased the productivity of lactic acid. These results show that B. coagulans is an effective biocatalyst for fermentation of all the sugars present in sweet sorghum juice and bagasse to optically pure lactic acid at high titer and productivity as feedstock for bio-based plastics.  相似文献   

6.
Near-infrared reflectance spectroscopy (NIRS) has been used extensively in the forage industry for rapid measurement of forage constituents and could be useful for determining quality of biomass feedstocks at the point of delivery. In previous work, we developed an assay that partitions feedstock carbohydrates based on their availability to be converted to fermentable sugars, including non-structural carbohydrates (C N), biochemically available carbohydrates (C B) with an associated first-order availability rate constant (k B), and unavailable carbohydrates (C U ). Additional quality parameters measured included neutral detergent lignin (NDL), total available carbohydrates (C A), and total carbohydrates (C T). We evaluated the variability of biomass quality parameters in a set of corn stover samples and developed calibration equations for determining parameter values using NIRS. Fifty-two corn stover samples harvested in Iowa and Wisconsin in 2005 and 2006 were analyzed using a high-throughput assay for determining feedstock quality for biochemical conversion. Non-structural carbohydrates ranged from 84 to 155?g?kg?1 dry matter (DM); C B ranged from 354 to 557?g?kg?1 DM; k B ranged from 0.199 to 0.330?h?1; C A ranged from 463 to 699?g?kg?1 DM, and NDL ranged from 32 to 74?g?kg?1 DM. Significant differences (P?<?0.0001) among samples were observed for all parameters, except k B. Near-infrared reflectance spectroscopy calibration equations were developed for C N, C B, C A, C U , C T, and NDL. It was not possible to generate a meaningful calibration equation for k B. There is significant variability within the corn stover population for several key quality-related carbohydrate and lignin constituents which can be predicted reliably using NIRS.  相似文献   

7.
This study, comprising three independent experiments, was conducted to optimize the zinc (Zn) application through seed coating for improving the productivity and grain biofortification of wheat. Experiment 1 was conducted in petri plates, while experiment 2 was conducted in sand-filled pots to optimize the Zn seed coating using two sources (ZnSO4, ZnCl2) of Zn. In the first two experiments, seeds of two wheat cultivars Lasani-2008 and Faisalabad-2008 were coated with 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 g Zn kg?1 seed using ZnSO4 and ZnCl2 as Zn sources. The results of experiment I revealed that seed coating with 1.25 and 1.50 g Zn kg?1 seed using both sources of Zn improved the seedling emergence. However, seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 was better regarding improvement in seedling growth and seedling dry weight. The results of the second experiment indicated that seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 improved the seedling emergence and seedling growth of tested wheat cultivars. However, seed coating beyond 1.5 g Zn kg?1 seed using either Zn source suppressed the seedling emergence. Third experiment was carried out in glass house in soil-filled earthen pots. Seeds of both wheat cultivars were coated with pre-optimized treatments (1.25, 1.50 g Zn kg?1 seed) using both Zn sources. Seed coating with all treatments of ZnSO4 and seed coating with 1.25 g Zn kg?1 seed using ZnCl2 improved the seedling emergence and yield-related traits of wheat cultivars. Seed coating with 1.25 g Zn kg?1 seed also improved the chlorophyll a and b contents. Maximum straw Zn contents, before and after anthesis, were recorded from seed coated with 1.5 g Zn kg?1 seed using either Zn source. Increase in grain yield from seed coating followed the sequence 1.25 g Zn kg?1 seed (ZnSO4) >1.25 g Zn kg?1 seed (ZnCl2) >1.5 g Zn kg?1 seed (ZnSO4). However, increase in grain Zn contents from seed coated was 1.5 g Zn kg?1 seed (ZnCl2) >1.25 and 1.5 g Zn kg?1 seed (ZnCl2, ZnSO4) >1.25 g Zn kg?1 seed (ZnSO4). Seed coating with Zn increased the grain Zn contents from 21 to 35 %, while 33–55 % improvement in grain yield was recorded. In conclusion, wheat seeds may be coated with 1.25 g Zn kg?1 seed using either source of Zn for improving the grain yield and grain Zn biofortification.  相似文献   

8.
Alfalfa (Medicago sativa L.) is a promising bioenergy and bioproduct feedstock because of its high yield, N-fixation capacity, potential for planting in rotation with corn (Zea mays L.), and valuable protein co-product (leaf meal). Our objective was to examine the effect of growth environment on biomass yield, cellulosic ethanol traits, and paper pulp fiber characteristics of alfalfa stems. Landscape position (summit and mild slope), season of harvest (four harvests per season), and multiple years (2005 and 2006) provided environmental variation. Alfalfa stem samples were analyzed for cell wall carbohydrate and lignin concentration. Stems were subjected to dilute acid pre-treatment, enzymatic saccharification, and pulping processes to measure relevant cellulosic ethanol and paper production traits. Landscape position was not a significant source of variation for yield or any biomass quality trait. Yields varied among harvests in 2005 (1,410–3,265 kg ha?1) and 2006 (1,610–3,795 kg ha?1). All cell wall, conversion test, and paper production traits exhibited year by harvest interactions with no clear pattern. Total carbohydrates and lignin ranged from 440 to 531 g?kg?1 DM and from 113 to 161 g?kg-1 DM, respectively. Release of cell wall sugars by the conversion test ranged widely (419 to 962 g?kg?1 DM). Fiber traits were similarly variable with length and fine content ranging from 1.24 to 1.59 mm and from 15.2% to 21.9%, respectively. Utilizing alfalfa biomass for cellulosic ethanol and paper pulp production will involve dealing with significant feedstock quality variation due to growth environment.  相似文献   

9.
Limited information is available about the economic benefits and costs associated with managing switchgrass (Panicum virgatum L.) produced for bioenergy feedstock in the K-deficient soils common in the southern Great Plains. The objectives of this study were to determine the most economical production system for harvesting and managing N and K fertilizations on switchgrass stands and to determine how sensitive the results are to various feedstock and fertilizer market price scenarios. A 4-year agronomic field experiment was conducted on a K-deficient site in South Central Oklahoma; the treatments included two harvest systems (summer and winter (SW) and winter only (W)), two N rates (0 and 135 kg ha?1), and two K rates (0 and 67 kg ha?1). Enterprise budgeting techniques and mixed ANOVA models were used to determine and compare the effects of eight harvest/N/K systems on yield, total cost, revenue, and net return. The harvest/N/K systems evaluated included SW/0/0, SW/0/67, SW/135/0, SW/135/67, W/0/0, W/0/67, W/135/0, and W/135/67. Results revealed the SW/135/67 system produced significantly (P?>?0.0001) greater average yield compared to the other systems; however, the SW/0/0 system was the most (P?>?0.0001) economical, realizing an average net return of $415 ha?1. Compared to the base–case net return of the SW/0/0 system, the value of the additional yield generated with the SW/135/67 system was less than the costs associated with the extra nutrients and additional harvest activity. For feedstock prices greater than $110 Mg?1, the most economical system shifted from the SW/0/0 to favor the SW/135/67 system.  相似文献   

10.
Fermentative production of styrene from glucose has been previously demonstrated in Escherichia coli. Here, we demonstrate the production of styrene from the sugars derived from lignocellulosic biomass depolymerized by fast pyrolysis. A previously engineered styrene-producing strain was further engineered for utilization of the anhydrosugar levoglucosan via expression of levoglucosan kinase. The resulting strain produced 240 ± 3 mg L?1 styrene from pure levoglucosan, similar to the 251 ± 3 mg L?1 produced from glucose. When provided at a concentration of 5 g L?1, pyrolytic sugars supported styrene production at titers similar to those from pure sugars, demonstrating the feasibility of producing this important industrial chemical from biomass-derived sugars. However, the toxicity of contaminant compounds in the biomass-derived sugars and styrene itself limit further gains in production. Styrene toxicity is generally believed to be due to membrane damage. Contrary to this prevailing wisdom, our quantitative assessment during challenge with up to 200 mg L?1 of exogenously provided styrene showed little change in membrane integrity; membrane disruption was observed only during styrene production. Membrane fluidity was also quantified during styrene production, but no changes were observed relative to the non-producing control strain. This observation that styrene production is much more damaging to the membrane integrity than challenge with exogenously supplied styrene provides insight into the mechanism of styrene toxicity and emphasizes the importance of verifying proposed toxicity mechanisms during production instead of relying upon results obtained during exogenous challenge.  相似文献   

11.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   

12.
Marie Spohn  Luise Giani 《Plant and Soil》2011,338(1-2):183-192
Soil organic carbon stocks decrease after conversion of soils from pasture to cropland. It has been assumed that this applies especially to mineral hydromorphic soils. In this paper we evaluate hot-water extractable carbon (Chwe) as a measure for detecting long-term changes in the SOM following land use change. Furthermore, we assess whether a treatment of the soils with NaOCl leads to the isolation of long-term stable C fractions. For these purposes, we established a chronosequence of sandy hydromorphic soils that have been converted from pasture to cropland at different periods of history. To gain further insight into the impacts of different types of land use on carbon sequestration, soils under forest, either afforested or permanent, were studied. Bulk density, total organic carbon (TOC), Chwe, and NaOCl-resistant C were quantified in the surface soils of 72 Gleyic Podzols and Haplic Gleysols. The bulk density increased from 0.9 (±0.2) g cm?3 to 1.4 (±0.1) g cm?3 during the first 25 years after the conversion of the soils from permanent pasture to cropland. In the permanent pasture sites, the TOC concentration amounted to 35.4 (±12.1) g kg?1. It decreased to 12.88 (±5.9) g kg?1 during the first 46 years of cultivation (R2?=?0.71). In the permanent forest soils the TOC concentrations were significantly higher than in the soils that have been afforested. Chwe concentrations of the chronosequence sites were linearly correlated to the TOC concentrations (R2?=?0.84), while permanent forest sites exhibited significantly higher Chwe/TOC ratios. This shows that the determination of the Chwe is a very promising measure for detecting changes in SOM dynamics following afforestation. In the permanent pasture sites, 14.3 (±5.38) g kg?1 NaOCl-resistant C was measured, while 46 years after conversion, only 2.8 (±1.2) g kg?1remained. No enrichment of NaOCl-resistant C was observed in the chronosequence, as NaOCl-resistant C decreased faster in the course of cultivation than the TOC. Therefore, we conclude that that the C fraction that resists the oxidation with NaOCl is not long-term stable in soils, and most probably, there is no such long-term stable C fraction in the soils under study.  相似文献   

13.
Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of minerals from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha?1 (fall) and 5.4 Mg ha?1 (spring) with similar high heating value (17.7 MJ kg?1). The K/(Ca?+?Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13 % by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.  相似文献   

14.
A pot experiment with acid yellow–brown soil was conducted to investigate the interactive effects of molybdenum (Mo) and phosphorus (P) fertilizers on the photosynthetic characteristics of seedlings and grain yield of Brassica napus which is sensitive to soil P and Mo deficiency. Both Mo and P fertilizers were applied at three levels (0 mg Mo kg?1, 0.15 mg Mo kg?1, 0.30 mg Mo kg?1 soil; 0 mg P kg?1, 80 mg P kg?1, 160 mg P kg?1 soil). The results showed that P fertilizer application increased grain yield, soluble sugar concentrations of seedling leaves, DM and P accumulation of seedling shoots of Brassica napus in the absence or presence of Mo fertilizer. In contrast, Mo fertilizer increased these parameters only in the presence of P fertilizer. Mo accumulation in shoots, chlorophyll concentrations and net photosynthesis rate (P n) of seedling leaves were increased by both Mo and P fertilizers, particularly with the combination of the two fertilizers. The results also showed that the Mo and P fertilizers increased photosynthetic rate through two different mechanisms, with Mo increasing photosynthetic activity of mesophyll cells, and P increasing stomatal conductance. The results demonstrate that there was a synergetic effect on photosynthesis and grain yield between Mo and P fertilizers and it is conducive for Brassica napus growth to co-apply the two fertilizers.  相似文献   

15.
Dried Distiller’s Grains with Solubles (DDGS), a by-product of bio-ethanol production from maize and other cereals, is increasingly used as a feed additive. In this study, five Fusarium toxins, including fumonisin B1 (FB1), fumonisin B2 (FB2), deoxynivalenol (DON), zearalenone (ZEN) and beauvericin (BEA) were quantified by LC-MS/MS in 59 corn-DDGS samples. In addition, the fumonisin level in 30 randomly selected-samples was compared using an ELISA detection technique. No sample was free from mycotoxin contamination, and 50.8 % of the samples were co-contaminated with all five mycotoxins. Moreover, toxin levels were generally high, with mean levels of 9 mg kg?1 FB1, 6 mg kg?1 FB2, 1.2 mg kg?1 DON, 0.9 mg kg?1 ZEN, and 0.35 mg kg?1 BEA. Maximum levels for FB1 (143 mg kg?1) and FB2 (125 mg kg?1) are of acute toxicological relevance. The ELISA method had a tendency to underestimate the fumonisin content when compared with LC-MS/MS. Finally, this is the first reported beauvericin contamination in corn-DDGS.  相似文献   

16.
ABE production from corn: a recent economic evaluation   总被引:2,自引:0,他引:2  
This article details an economic assessment of butanol production from corn using the newly developed hyper-butanol-producing strain of Clostridium beijerinckii BA101. Butanol is produced in batch reactors and recovered by distillation. For a plant with 153,000 metric tons of acetone, butanol, and ethanol (ABE) production capacity, the production equipment cost and total working capital cost is US$33.47×106 and US$110.46×106, respectively. Based on a corn price (C p) of US$79.23 ton−1 (US$2.01 bushel−1), an ABE yield of 0.42 (g ABE/g glucose) butanol price is projected to be US$0.34 kg−1. An improved yield of 0.50 will reduce this price to US$0.29 kg−1. Assumptions, such as by-product credit for gases and complete conversion of corn steep liquor (CSL) to fermentation by-products, have been taken into consideration. An increased price of corn to US$197.10 ton−1 would result in a butanol price of US$0.47 kg−1. A grass-rooted plant would result in a butanol price of US$0.73 kg−1 (C p US$79.23 ton−1). In a worst case scenario, the price of butanol would increase to US$1.07 kg−1 (C p 197.10 ton−1 for a grass-rooted plant and assuming no credit for gases). This is based on the assumption that corn price would not increase to more than US$197.10 ton−1. Journal of Industrial Microbiology & Biotechnology (2001) 27, 292–297. Received 12 September 2000/ Accepted in revised form 12 January 2001  相似文献   

17.
To be sustainable, feedstock harvest must neither degrade soil, water, or air resources nor negatively impact productivity or subsequent crop yields. Simulation modeling will help guide the development of sustainable feedstock production practices, but not without field validation. This paper introduces field research being conducted in six states to support Sun Grant Regional Partnership modeling. Our objectives are to (1) provide a fundamental understanding of limiting factor(s) affecting corn (Zea mays L.) stover harvest, (2) develop tools (e.g., equations, models, etc.) that account for those factors, and (3) create a multivariant analysis framework to combine models for all limiting factors. Sun Grant modelers will use this information to improve regional estimates of feedstock availability. A minimum data set, including soil organic carbon (SOC), total N, pH, bulk density (BD), and soil‐test phosphorus (P), and potassium (K) concentrations, is being collected. Stover yield for three treatments (0%, 50%, and 90% removal) and concentrations of N, P, and K in the harvested stover are being quantified to assess the impact of stover harvest on soil resources. Grain yield at a moisture content of 155 g kg?1 averaged 9.71 Mg ha?1, matching the 2008 national average. Stover dry matter harvest rates ranged from 0 to 7 Mg ha?1. Harvesting stover increased N–P–K removal by an average of 42, 5, and 45 kg ha?1 compared with harvesting only grain. Replacing those three nutrients would cost $53.68 ha?1 based on 2009 fertilizer prices. This first‐year data and that collected in subsequent years is being used to develop a residue management tool that will ultimately link multiple feedstock supplies together in a landscape vision to help develop a comprehensive carbon management plan, quantify corn stover harvest effects on soil quality, and predict regional variability in feedstock supplies.  相似文献   

18.
Sweet sorghum (Sorghum bicolor L. Moench) is a promising bioenergy crop for the production of ethanol and bio-based products. Sugarcane billet harvesters can be used to harvest sweet sorghum. Multiple extractor fan speed settings of these harvesters allow for separating the extraneous matter in the feedstock, which has been associated with increased milling throughput and better juice quality at the processing facility. This removal is not completely selective, and some stalk material is also lost. These losses can be higher for sweet sorghum than sugarcane due its lower weight. This paper presents an assessment of how the speed of the primary extractor fan of a sugarcane billet combine used for harvesting sweet sorghum affects the biomass yield, biomass losses, and quality at delivery for the production of ethanol from extracted juice and fiber. Three primary extractor fan speeds (0, 800, and 1100 rpm) were evaluated. Higher fan speeds decreased fresh biomass yields by up to 28.3 Mg ha?1. Juice quality was not significantly different among treatments. Ethanol yield calculated from sweet sorghum harvested at 0 rpm was 6075 L ha?1. This value decreased by about half for material harvested at 1100 rpm due to the differences in biomass yield.  相似文献   

19.
On July 6, 2013, in downtown Lac-Mégantic (southern Québec, Canada), several tank cars carrying crude oil derailed. This resulted in a series of explosions and a huge fire that led to the terrible Lac-Mégantic disaster. This study deals with the characterization of the Chaudière River banks and bed in order to determine the current state of contamination by hydrocarbons (C10-C50), polycyclic aromatic hydrocarbons (PAHs), and trace metals (TMs). The highest concentrations of hydrocarbons found in the Chaudière River are respectively 960 mg kg?1 dry weight in soil and 760 mg kg?1 dry weight in river sediment. Over half of the all samples were under the detection threshold (i.e. > 300 mg kg?1 in soil and > 832 mg kg?1 in sediment). The concentration in river sediment PAH concentrations were low, with values below the detection threshold. TM concentrations in the soil and sediment are also very low, rarely exceeding class A and B thresholds and chronic effect reference values (164 mg kg?1) which constitute the criteria for soil quality and the protection of aquatic life established by the Québec Environment Ministry. These low levels are largely due to the efforts deployed by government authorities to limit the infiltration and dispersal of contaminants along the river, and to the hydrological conditions that also favoured the dispersal and dilution of pollutants.  相似文献   

20.
The effects of a bioinsecticide formulation based on extract of Annona squamosa L. (Annonaceae) containing 10,000 mg L?1 of acetogenin annonin as the main active ingredient were investigated against three primary pest species of stored grains in Brazil [maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), Mexican bean weevil Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae: Bruchinae), and cowpea weevil Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae: Bruchinae)] by means of residual contact bioassays. In a concentration-dependent manner, the annonin-based commercial bioinsecticide caused significant adult mortality of C. maculatus (LC50 = 6890 μL kg?1), S. zeamais (LC50 = 2781 μL kg?1), and Z. subfasciatus (LC50 = 2120 μL kg?1) after 120 h of residual contact exposure. In addition to acute toxicity, the tested bioinsecticide also promoted a significant reduction of the number of eggs laid by females of C. maculatus (EC50 = 5949.7 μL kg?1) and Z. subfasciatus (EC50 = 552.7 μL kg?1). Moreover, the bioinsecticide significantly reduced the number of emerged insects (F1 generation) of C. maculatus (EC50 = 2763.0 μL kg?1), S. zeamais (EC50 = 1380.8 μL kg?1), and Z. subfasciatus (EC50 = 561.5 μL kg?1). The bioinsecticide also reduced the percentage of damaged grains for the three pest species studied, and its grain-protectant properties are comparable to or superior in efficacy in relation to a diatomaceous earth-based insecticide (Insecto® at 1000 mg kg?1) used as a positive control. Thus, this standardized formulation has promising bioactivity against stored insect species and can be a useful component for IPM of stored grains in Brazil and elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号