首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, focus is on Corynebacterium glutamicum mannose metabolic genes with the aim to improve this industrially important microorganism’s ability to ferment mannose present in mixed sugar substrates. cgR_0857 encodes C. glutamicum’s protein with 36% amino acid sequence identity to mannose 6-phosphate isomerase encoded by manA of Escherichia coli. Its deletion mutant did not grow on mannose and exhibited noticeably reduced growth on glucose as sole carbon sources. In effect, C. glutamicum manA is not only essential for growth on mannose but also important in glucose metabolism. A double deletion mutant of genes encoding glucose and fructose permeases (ptsG and ptsF, respectively) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was not able to grow on mannose unlike the respective single deletion mutants with mannose utilization ability. A mutant deficient in ptsH, a general PTS gene, did not utilize mannose. These indicate that the glucose-PTS and fructose-PTS are responsible for mannose uptake in C. glutamicum. When cultured with a glucose and mannose mixture, mannose utilization of manA-overexpressing strain CRM1 was significantly higher than that of its wild-type counterpart, but with a strong preference for glucose. ptsF-overexpressing strain CRM2 co-utilized mannose and glucose, but at a total sugar consumption rate much lower than that of the wild-type strain and CRM1. Strain CRM3 overexpressing both manA and ptsF efficiently co-utilized mannose and glucose. Under oxygen-deprived conditions, high volumetric productivity of organic acids concomitant with the simultaneous consumption of the mixed sugars was achieved by the densely packed growth-arrested CRM3 cells.  相似文献   

2.
The aerobic microorganism Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar xylose, which is commonly found in agricultural residues and other lignocellulosic biomass. We demonstrated the functionality of the corynebacterial xylB gene encoding xylulokinase and constructed two recombinant C. glutamicum strains capable of utilizing xylose by cloning the Escherichia coli gene xylA encoding xylose isomerase, either alone (strain CRX1) or in combination with the E. coli gene xylB (strain CRX2). These genes were provided on a high-copy-number plasmid and were under the control of the constitutive promoter trc derived from plasmid pTrc99A. Both recombinant strains were able to grow in mineral medium containing xylose as the sole carbon source, but strain CRX2 grew faster on xylose than strain CRX1. We previously reported the use of oxygen deprivation conditions to arrest cell replication in C. glutamicum and divert carbon source utilization towards product production rather than towards vegetative functions (M. Inui, S. Murakami, S. Okino, H. Kawaguchi, A. A. Vertès, and H. Yukawa, J. Mol. Microbiol. Biotechnol. 7:182-196, 2004). Under these conditions, strain CRX2 efficiently consumed xylose and produced predominantly lactic and succinic acids without growth. Moreover, in mineral medium containing a sugar mixture of 5% glucose and 2.5% xylose, oxygen-deprived strain CRX2 cells simultaneously consumed both sugars, demonstrating the absence of diauxic phenomena relative to the new xylA-xylB construct, albeit glucose-mediated regulation still exerted a measurable influence on xylose consumption kinetics.  相似文献   

3.
Corynebacterium glutamicum is particularly known for its potentiality in succinate production. We engineered C. glutamicum for the production of succinate. To enhance C3–C4 carboxylation efficiency, chromosomal integration of the pyruvate carboxylase gene pyc resulted in strain NC-4. To increase intracellular NADH pools, the pntAB gene from Escherichia coli, encoding for transhydrogenase, was chromosomally integrated into NC-4, leading to strain NC-5. Furthermore, we deleted pgi gene in strain NC-5 to redirect carbon flux to the pentose phosphate pathway (PPP). To solve the drastic reduction of PTS-mediated glucose uptake, the ptsG gene from C. glutamicum, encoding for the glucose-specific transporter, was chromosomally integrated into pgi-deficient strain resulted in strain NC-6. In anaerobic batch fermentation, the production of succinate in pntAB-overexpressing strain NC-5 increased by 14% and a product yield of 1.22 mol/mol was obtained. In anaerobic fed-batch process, succinic acid concentration reached 856 mM by NC-6. The yields of succinate from glucose were 1.37 mol/mol accompanied by a very low level of by-products. Activating PPP and transhydrogenase in combination led to a succinate yield of 1.37 mol/mol, suggesting that they exhibited a synergistic effect for improving succinate yield.  相似文献   

4.
D-xylose is one of the most abundant carbohydrates in nature. This work focuses on xylose metabolism of Gluconobacter oxydans as revealed by a few studies conducted to understand xylose utilization by this strain. Interestingly, the G. oxydans 621H Δmgdh strain (deficient in membrane-bound glucose dehydrogenase) was greatly inhibited when grown on xylose and no xylonate accumulation was observed in the medium. These experimental observations suggested that the mgdh gene was responsible for the conversion of xylose to xylonate in G. oxydans, which was also verified by whole-cell biotransformation. Since 621H Δmgdh could still grow on xylose in a very small way, two seemingly important genes in the oxo-reductive pathway for xylose metabolism, a xylitol dehydrogenase-encoding gox0865 (xdh) gene and a putative xylulose kinase-encoding gox2214 (xk) gene, were knocked out to investigate the effects of both genes on xylose metabolism. The results showed that the gox2214 gene was not involved in xylose metabolism, and there might be other genes encoding xylulose kinase. Though the gox0865 gene played a less important role in xylose metabolism compared to the mgdh gene, it was significant in xylitol utilization in G. oxydans, which meant that gox0865 was a necessary gene for the oxo-reductive pathway of xylose in vivo. To sum up, when xylose was used as the carbon source, the majority of xylose was directly oxidized to xylonate for further metabolism in G. oxydans, whereas only a minor part of xylose was metabolized by the oxo-reductive pathway.  相似文献   

5.
6.

Objectives

To enhance succinic acid production in Corynebacterium glutamicum by increasing the supply of NADH and the rate of glucose consumption by decreasing H+-ATPase activity.

Results

A mutant of C. glutamicum NC-3-1 with decreased H+-ATPase activity was constructed. This increased the rate of glycolysis and the supply of NADH. Fermentation of C. glutamicum NC-3-1 gave 39 % higher succinic acid production (113 and 81 g/l), a 29 % higher succinic acid yield (0.94 and 0.73 g succinic acid/g glucose) and decreased by-products formation compared to that of C. glutamicum NC-3 in 5 l bioreactor.

Conclusion

The point mutation in C. glutamicum NC-3-1 increased the rate of glycolysis and resulted in higher succinic acid production, higher succinic acid yield and significantly decreased formation of by-products.
  相似文献   

7.
8.
Clostridium acetobutylicum ATCC 824 was metabolically engineered for improved xylose utilization. The gene talA, which encodes transaldolase from Escherichia coli K-12, was cloned and overexpressed in C. acetobutylicum ATCC 824. Compared with C. acetobutylicum ATCC 824 (824-WT), the transformant bearing the E. coli talA gene (824-TAL) showed improved ability on xylose utilization and solvents production using xylose as the sole carbon source. During the fermentation of xylose and glucose mixtures with three xylose/glucose ratios (approximately 1:2, 1:1 and 2:1), the rate of xylose consumption and final solvents titers of 824-TAL were all higher than those of 824-WT, despite glucose repression on xylose uptake still existing. These results suggest that the insufficiency of transaldolase in the pentose phosphate pathway (PPP) of C. acetobutylicum is one of the bottlenecks for xylose metabolism and therefore, overexpressing the gene encoding transaldolase is able to improve xylose utilization and solvent production.  相似文献   

9.
The ascomycetes Candida albicans, Saccharomyces cerevisiae and Scheffersomyces stipitis metabolize the pentose sugar xylose very differently. S. cerevisiae fails to grow on xylose, while C. albicans can grow, and S. stipitis can both grow and ferment xylose to ethanol. However, all three species contain highly similar genes that encode potential xylose reductases and xylitol dehydrogenases required to convert xylose to xylulose, and xylulose supports the growth of all three fungi. We have created C. albicans strains deleted for the xylose reductase gene GRE3, the xylitol dehydrogenase gene XYL2, as well as the gre3 xyl2 double mutant. As expected, all the mutant strains cannot grow on xylose, while the single gre3 mutant can grow on xylitol. The gre3 and xyl2 mutants are efficiently complemented by the XYL1 and XYL2 from S. stipitis. Intriguingly, the S. cerevisiae GRE3 gene can complement the Cagre3 mutant, while the ScSOR1 gene can complement the Caxyl2 mutant, showing that S. cerevisiae contains the enzymatic capacity for converting xylose to xylulose. In addition, the gre3 xyl2 double mutant of C. albicans is effectively rescued by the xylose isomerase (XI) gene of either Piromyces or Orpinomyces, suggesting that the XI provides an alternative to the missing oxido-reductase functions in the mutant required for the xylose-xylulose conversion. Overall this work suggests that C. albicans strains engineered to lack essential steps for xylose metabolism can provide a platform for the analysis of xylose metabolism enzymes from a variety of species, and confirms that S. cerevisiae has the genetic potential to convert xylose to xylulose, although non-engineered strains cannot proliferate on xylose as the sole carbon source.  相似文献   

10.
11.
Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTSGlc transport system to be responsible for glucosamine uptake in C. glutamicum. The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid l-lysine and the diamine putrescine from glucosamine was demonstrated.  相似文献   

12.
Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B.  相似文献   

13.
To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditions induced by biotin limitation. The mutant showed an increased specific rate of glucose consumption, decreased growth, higher glutamic acid production, and aspartic acid formation during the glutamic acid production phase. A significant increase in phosphoenolpyruvate (PEP) carboxylase activity and a significant decrease in PEP carboxykinase activity occurred in the mutant, which suggested an enhanced overall flux of the anaplerotic pathway from PEP to oxaloacetic acid in the mutant. The enhanced anaplerotic flux may explain both the increased rate of glucose consumption and the higher productivity of glutamic acid in the mutant. Since the pyk-complemented strain had similar metabolic profiles to the wild-type strain, the observed changes represented intrinsic effects of pyk deletion on the physiology of C. glutamicum.  相似文献   

14.

Objective

To explore the glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.

Result

Overexpression of a glycerol facilitator, glycerol dehydrogenase and dihydroxyacetone kinase from Escherichia coli K-12 in C. glutamicum led to recombinant strains NC-3G diverting glycerol utilization towards succinate production under O2 deprivation. Under these conditions, strain NC-3G efficiently consumed glycerol and produced succinate without growth. The recombinant C. glutamicum utilizing glycerol as the sole carbon source showed higher intracellular NADH/NAD+ ratio compare with utilizing glucose. The mass conversion of succinate increased from 0.64 to 0.95. Using an anaerobic fed-batch fermentation process, the final strain produced 38.4 g succinate/l with an average yield of 1.02 g/g.

Conclusions

The metabolically-engineered strains showed an efficient succinate production using glycerol as sole carbon source under O2 deprivation.
  相似文献   

15.
Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11?±?0.004 h?1 and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.  相似文献   

16.
Genome analysis of C. glutamicum ATCC 13032 has showed one putative adenylate cyclase gene, cyaB (cg0375) which encodes membrane protein belonging to class III adenylate cyclases. To characterize the function of cyaB, a deletion mutant was constructed, and the mutant showed decreased level of intracellular cyclic AMP compared to that of wild-type. Interestingly, the cyaB mutant displayed growth defect on acetate medium, and this effect was reversed by complementation with cyaB gene. Similarly, it showed growth defect on glucose-acetate mixture minimal medium, and the utilization of glucose was retarded in the presence of acetate. The deletion mutant retained the activity of glyoxylate bypass enzymes. Additionally, the mutant could grow on ethanol but not on propionate medium. The data obtained from this study suggests that adenylate cyclase plays an essential role in the acetate metabolism of C. glutamicum, even though detailed regulatory mechanisms involving cAMP are not yet clearly defined. The observation that glyoxylate bypass enzymes are derepressed in cyaB mutant indicates the involvement of cAMP in the repression of aceB and aceA.  相似文献   

17.
Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the l-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more l-glutamate and l-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM l-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM l-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.  相似文献   

18.
19.
A transketolase mutant was first isolated from Corynebacterium glutamicum, an organism of industrial importance. The mutant strain exhibited an absolute requirement for shikimic acid or the aromatic amino acids and vitamins for growth, and also failed to grow on ribose or gluconic acid as sole carbon source, even with the aromatic supplement. All of these defective properties were fully restored in spontaneous revertants, indicating the existence of a single transketolase in C. glutamicum that was indispensable both for aromatic biosynthesis and for utilization of these carbohydrates in vivo. The transketolase mutant accumulated ribulose extracellularly when cultivated in glucose medium with shikimic acid, but no ribose was detected. Received: 10 April 1998 / Received revision: 26 May 1998 / Accepted: 14 June 1998  相似文献   

20.
Efficient xylose utilisation by microorganisms is of importance to the lignocellulose fermentation industry. The aim of this work was to develop constitutive catabolite repression mutants in a xylose-utilising recombinantSaccharomyces cerevisiae strain and evaluate the differences in xylose consumption under fermentation conditions.S. cerevisiae YUSM was constitutively catabolite repressed through specific disruptions within theMIG1 gene. The strains were grown aerobically in synthetic complete medium with xylose as the sole carbon source. Constitutive catabolite repressed strain YCR17 grew four-fold better on xylose in aerobic conditions than the control strain YUSM. Anaerobic batch fermentation in minimal medium with glucose-xylose mixtures and N-limited chemostats with varying sugar concentrations were performed. Sugar utilisation and metabolite production during fermentation were monitored. YCR17 exhibited a faster xylose consumption rate than YUSM under high glucose conditions in nitrogen-limited chemostat cultivations. This study shows that a constitutive catabolite repressed mutant could be used to enhance the xylose consumption rate even in the presence of high glucose in the fermentation medium. This could help in reducing fermentation time and cost in mixed sugar fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号