首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary We have performed formal genetic studies on 26 patients (14 males, 12 females) with neurofibromatosis 1 (von Recklinghausen's disease, NF1) in Japan. Family studies of 74 members of 18 kindreds revealed that 50% of the cases were caused by a new mutation; the mutation rate was assumed to be 7.3–10.5 × 10-5. A tendency of paternal age effect, which was not accounted for by the maternal age effect, was observed, but live-birth order had no significant effect. Genetic linkage of neurofibromatosis 1 to the NF1 gene or the genetic marker in the pericentric region of chromosome 17 was established in 3 informative families.  相似文献   

2.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a prevalence of around 1 in 3500, affecting all ethnic groups. The clinical manifestations of the disease are variable, even among members of the same family, and affect a variety of tissues and cell types, including skin, iris, central and peripheral nervous systems and skeletal system. It has been reported that the majority of sporadic mutations in NF1 arise in paternally inherited alleles. We present here a collaborative study of the parental origin and type of mutation in individuals with de novo NF1, who account for up to a half of all cases of clinically diagnosed NF1. We have studied intragenic and extragenic markers in 470 NF1 families. In 32 of these families it was possible to assess the parental origin of a de novo NF1 mutation either by linkage analysis (in families with three generations) or by the detection of an intragenic deletion in a sporadic NF1 case. Eleven of these 32 families have three generations (the second and third generation being affected), with the mutation (not a large deletion) being of paternal origin in 82% of them (P < 0.05). In the other 21 families an intragenic deletion was detected, in 76% being in the maternal chromosome and in 24% in the paternal one (P < 0.05). Our results suggest that in NF1 the majority of deletions occur in oogenesis, while other types of mutations should account for the paternally derived NF1 mutations. Received: 26 June 1996 / Revised: 1 August 1996  相似文献   

3.
Unequal meiotic crossover: a frequent cause of NF1 microdeletions   总被引:7,自引:0,他引:7       下载免费PDF全文
Neurofibromatosis type 1 is a common autosomal dominant disorder caused by mutations of the NF1 gene on chromosome 17. In only 5%-10% of cases, a microdeletion including the NF1 gene is found. We analyzed a set of polymorphic dinucleotide-repeat markers flanking the microdeletion on chromosome 17 in a group of seven unrelated families with a de novo NF1 microdeletion. Six of seven microdeletions were of maternal origin. The breakpoints of the microdeletions of maternal origin were localized in flanking paralogous sequences, called "NF1-REPs." The single deletion of paternal origin was shorter, and no crossover occurred on the paternal chromosome 17 during transmission. Five of the six cases of maternal origin were informative, and all five showed a crossover, between the flanking markers, after maternal transmission. The observed crossovers flanking the NF1 region suggest that these NF1 microdeletions result from an unequal crossover in maternal meiosis I, mediated by a misalignment of the flanking NF1-REPs.  相似文献   

4.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

5.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk? mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

6.
Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder. To date, a relatively small number of NF1 mutations have been characterized, thus precluding genotype-phenotype correlations. By genotyping 75 NF1 families, we have detected six hemizygous patients (two of whom are members of the same family). The five presumed deletions were confirmed by two quantitative methods of analysis of NF1 copy number: Southern hybridization with cDNA probes and a single-strand conformation polymorphism analysis that discriminates between the NF1 gene and the pseudogene sequences. The five deletions remove most of the NF1 gene, at least 225 kb, from exon 9 to the 3′ end of the coding sequence. The origin of de novo mutations in the NF1 gene has been reported to be mainly paternal but we have determined that four of the de novo deletions involved the maternal chromosome and one the paternal chromosome. The six patients with deletions exhibited precocious, multiple clinical features of the disease. The incidence of tumor complications, particularly plexiform neurofibromas and intracranial tumors, among this group of patients is higher than the observed incidence in our NF1 population, suggesting that NF1 haploinsufficiency may cause a more severe phenotype with regard to tumor development. In contrast to other reports that associated large deletions with mildly dysmorphic facies, mental retardation and a large number of cutaneous neurofibromas, only one out of our six patients presented this phenotype. Received: 15 August 1996 / Revised: 10 December 1996  相似文献   

7.
Summary Summary data are presented on 168 D/21 and 131 G/21 translocation trisomies reported to the New York State Chromosome Registry. By combining these data with others from the literature it is estimated that about 59% of D/21 cases are the result of mutation in the parental generation; the rest are translocations inherited from parental carriers (39% maternal, 3% paternal). The proportion of mutants is about 10% greater for 14/21 cases and significant lower for 13/21 cases. Of G/21 cases 93% are mutant, about 6% of maternal origin, and 1% of paternal origin. All the mutant cases involve 21/21 rearrangements. Estimated mutation rates per 105 gametes for translocation trisomies in affected livebirths are 0.1 for 21/13, 0.5 to 0.9 for 21/14, and 1.1 to 1.4 for 21/21. The rates for 21/15 and 21/22 translocation trisomies are probably all conservatively less than 0.1 per 105 gametes. Of interchange trisomy Patau's syndrome, about 60% of cases are mutant; the rest are translocations inherited from a parental carrier (about 25% for 13/13 cases and about 45% for 13/14 cases. The estimated mutation rates for 13/13 and 13/14 interchange trisomies are each about 0.5 per 105 gametes; the rate for 13/15 interchange trisomies is less than 0.1 per 105 gametes. A male excess is observed for D/21 (sex ratio=1.70), and G/21 (sex ratio=1.38) interchange Down's syndrome, and a female excess for D/13 interchange Patau's syndrome (sex ratio =0.77), trends similar to those seen in the respective 47, trisomies associated with these phenotypes.  相似文献   

8.
9.
The sex-linked temperature-sensitive mutation shibirets of Drosophila melanogaster shows a maternal effect causing embryonic lethality at 29°C. The maternal influence is due to gene action autonomous to the ovary. Embryos carrying the paternally derived wild-type gene can survive at 29°C but only if heat pulses are begun at least 9 hr after oviposition. The paternal rescue is presumably due to zygotic gene action at this locus beginning part way through embryogenesis. A maternal wild-type genome, however, can produce shi embryos that have sufficient shi+ product to support embryogenesis up to the hatching stage even at 29°C.  相似文献   

10.
In myotonic dystrophy (DM), the size of a CTG repeat in the DM kinase gene generally increases in successive generations with clinical evidence of anticipation. However, there have also been cases with an intergenerational contraction of the repeat. We examined 1,489 DM parent-offspring pairs, of which 95 (6.4%) showed such contractions in peripheral blood leukocytes (PBL). In 56 of the 95 pairs, clinical data allowed an analysis of their anticipation status. It is surprising that anticipation occurred in 27 (48%) of these 56 pairs, while none clearly showed a later onset of DM in the symptomatic offspring. The contraction occurred in 76 (10%) of 753 paternal transmissions and in 19 (3%) of 736 maternal transmissions. Anticipation was observed more frequently in maternal (85%) than in paternal (37%) transmissions (P < .001). The parental repeat size correlated with the size of intergenerational contraction (r2 = .50, P « .001), and the slope of linear regression was steeper in paternal (–.62) than in maternal (–.30) transmissions (P « .001). Sixteen DM parents had multiple DM offspring with the CTG repeat contractions. This frequency was higher than the frequency expected from the probability of the repeat contractions (6.4%) and the size of DM sib population (1.54 DM offspring per DM parent, in 968 DM parents). We conclude that (1) intergenerational contraction of the CTG repeat in leukocyte DNA frequently accompanies apparent anticipation, especially when DM is maternally transmitted, and (2) the paternal origin of the repeat and the presence of the repeat contraction in a sibling increase the probability of the CTG repeat contraction.  相似文献   

11.
Summary The distributions are given of gene frequencies among embryos after G X W and W X G plastid crosses within and between eight Pelargonium cultivars and some of their inbred or hybrid derivatives.Two distinct segregation patterns are recognized. Homozygous type I female parents (Pr1Pr1) have a high frequency of progeny with only maternal alleles, are intermediate for biparental and low for paternal offspring. Heterozygous type II female plants (Pr1Pr2) have an equally high frequency of maternal and paternal offspring and a generally low biparental frequency. These correspond to L-shaped and U-shaped gene frequency distributions respectively in which the only modes are at 0 per cent (maternal embryos) and 100 per cent (paternal embryos), with no mode corresponding to the population mean and no sign of a Gaussian distribution.The extremely variable plastid gene frequencies are strongly influenced by the maternal nuclear genotype and by the plastid genotype in which the wild-type allele is always more successful than the mutant in strict comparisons.The relative frequencies of maternal and paternal zygotes, and the mean gene frequency among all the zygotes in a cross, are explicable in terms of the input frequencies of genes from the two parents, their degree of mixing, and by some form of selective replication of plastids. This selection is controlled by nuclear and plastid genotypes which may act in the same direction, to increase the frequency of either the maternal or the paternal alleles, or in opposition. But selection alone is inadequate to explain the shapes of the gene frequency distributions. Instead, a model is proposed in which the segregation or replication of plastids appears to have a strong random element, which results in random drift of gene frequencies within a heteroplasmic zygote or embryo.  相似文献   

12.
Neurofibromatosis type 1 (NF1) is a frequent hereditary disorder. The disease is characterized by a very high mutation rate (up to 1/10000 gametes per generation). NF1-related loci in the human genome have been implicated in the high mutation rate by hypothesizing that these carry disease-causing mutations, which can be transferred to the functional NF1 gene on chromosome arm 17q by interchromosomal gene conversion. To test this hypothesis, we want to identify and characterize the NF1-related loci in the human genome. In this study, we have localized an NF1-related locus in the most centromeric region of the long arm of chromosome 22. We demonstrate that this locus contains sequences homologous to cDNAs that include the GAP-related domain of the functional NF1 gene. However, the GAP-related domain itself is not represented in this locus. In addition, cosmids specific to this locus reveal, by in situ hybridization, NF1-related loci in the pericentromeric region of chromosome arm 14q and in chromosomal band 2q21. These cosmids will enable us to determine whether identified disease-causing mutations are present at the chromosome 22-associated NF1-related locus. Received: 18 December 1995 / Revised: 5 February 1996  相似文献   

13.
Populus is a genus of fast growing trees that may be suitable as a bioenergy crop grown in short rotation, but understanding the genetic nature of yield and genotype interactions with the environment is critical in developing new high-yield genotypes for wide-scale planting. In the present study, 210 genotypes from an F2 population (Family 331; POP1) derived from a cross between Populus trichocarpa 93-968 and P. deltoides ILL-129 were grown in southern UK, central France and northern Italy. The performance of POP1, based upon first- and second-year main stem traits and biomass production, improved from northern to southern Europe. Trees at the Italian site produced the highest mean biomass ranging from 0.77 to 18.06 oven-dried tonnes (ODT) ha−1 year−1, and the UK site produced the lowest mean biomass ranging from 0.18 to 10.31 ODT ha−1 year−1. Significant genotype × environment interactions were seen despite heritability values across sites being moderate to high. Using a pseudo-testcross analysis, 37 quantitative trait loci (QTL) were identified for the maternal parent and 45 for the paternal parent for eight stem and biomass traits across the three sites. High genetic correlations between traits suggested that collocating QTL could be inferred as a single pleiotropic QTL, reducing the number of unique QTL to 23 and 24 for the maternal and paternal parent, respectively. Additive genetic effects were seen to differ significantly for eight QTL on the maternal map and 20 on the paternal map across sites. An additive main effects and multiplicative interaction analysis was carried out to obtain stability parameters for each trait. These parameters were mapped as QTL, and collocation to trait QTL was accessed. Two of the eight stability QTL collocate to trait QTL on the maternal map, and 8 of the 20 stability QTL collocate to trait QTL on the paternal map, suggesting that a regulatory gene model is prevalent over an allele sensitivity model for stem trait stability across these environments.  相似文献   

14.
Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11–q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11–q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m−/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m−/p+), but not paternal (m+/p−), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.  相似文献   

15.
Beckwith-Wiedemann syndrome (BWS) is characterized by numerous growth abnormalities and an increased risk of childhood tumors. The gene for BWS is localized in the 11p15.5 region, as determined by linkage analysis of autosomal dominant pedigrees. The increased maternal transmission pattern seen in the autosomal dominant-type pedigrees and the findings of paternal uniparental disomy reported for a subgroup of patients indicate that the gene for BWS is imprinted. Previously, we found p57 KIP2 , which is a Cdk-kinase inhibitor located at 11p15, is mutated in two BWS patients. Here, we screened for the mutation of the gene in 15 BWS patients. Received: 25 March 1997 / Accepted: 22 May 1997  相似文献   

16.
New germline mutations in the human retinoblastoma gene are known to arise preferentially on paternally derived chromosomes, but the magnitude of that bias has not been measured. We evaluated 49 cases with a new germline mutation and found that in 40 cases (82%) the mutation arose on the paternally derived allele. We also evaluated 48 cases likely to have a somatic initial mutation; in this group the initial mutation arose on paternal or maternal chromosomes with approximately equal frequency. There was no statistically significant difference in the average age of fathers of children with new paternal germline mutations from the average age of fathers of children with new maternal germline mutations or somatic initial mutations. Combining the data with that from previous reports from other groups, the proportion of new germline mutations arising on a paternally derived allele is 85% (based on 72 cases; 95% confidence interval = 76–93%). This number can be useful in the genetic counseling of some families with retinoblastoma. Received: 18 December 1996 / Accepted: 30 April 1997  相似文献   

17.
18.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by marked variation in clinical severity. To investigate the contribution to variability by genes either contiguous to or contained within the NF1 gene, we screened six NF1 patients with mild facial dysmorphology, mental retardation, and/or learning disabilities, for DNA rearrangement of the NF1 region. Five of the six patients had NF1 gene deletions on the basis of quantitative densitometry, locus hemizygosity, and analysis of somatic cell hybrid lines. Analyses of hybrid lines carrying each of the patient's chromosomes 17, with 15 regional DNA markers, demonstrated that each of the five patients carried a deletion > 700 kb in size. Minimally, each of the deletions involved the entire 350-kb NF1 gene; the three genes--EVI2A, EVI2B, and OMG--that are contained within an NF1 intron; and considerable flanking DNA. For four of the patients, the deletions mapped to the same interval; the deletion in the fifth patient was larger, extending farther in both directions. The remaining NF1 allele presumably produced functional neurofibromin; no gene rearrangements were detected, and RNA-PCR demonstrated that it was transcribed. These data provide compelling evidence that the NF1 disorder results from haploid insufficiency of neurofibromin. Of the three documented de novo deletion cases, two involved the paternal NF1 allele and one the maternal allele. The parental origin of the single remaining expressed NF1 allele had no dramatic effect on patient phenotype. The deletion patients exhibited a variable number of physical anomalies that were not correlated with the extent of their deletion. All five patients with deletions were remarkable for exhibiting a large number of neurofibromas for their age, suggesting that deletion of an unknown gene in the NF1 region may affect tumor initiation or development.  相似文献   

19.
In mammals, both the maternal and paternal genomes are necessary for normal embryogenesis due to parent-specific epigenetic modification of the genome during gametogenesis, which leads to non-equivalent expression of imprinted genes from the maternal and paternal alleles. In this study, we identified a paternally expressed imprinted gene, Zdbf2, by microarray-based screening using parthenogenetic and normal embryos. Expression analyses showed that Zdbf2 was paternally expressed in various embryonic and adult tissues, except for the placenta and adult testis, which showed biallelic expression of the gene. We also identified a differentially methylated region (DMR) at 10 kb upstream of exon 1 of the Zdbf2 gene and this differential methylation was derived from the germline. Furthermore, we also identified that the human homolog (ZDBF2) of the mouse Zdbf2 gene showed paternal allele-specific expression in human lymphocytes but not in the human placenta. Thus, our findings defined mouse chromosome 1 and human chromosome 2 as the loci for imprinted genes.  相似文献   

20.
p57 KIP2 is a potent tight-binding inhibitor of several G1 cyclin/cyclin-dependent kinase (Cdk) complexes, and is a negative regulator of cell proliferation. The gene encoding p57 KIP2 is located at 11p15.5, a region implicated in both sporadic cancers and Beckwith-Wiedemann syndrome (BWS). Previously we demonstrated that p57 KIP2 is imprinted and only the maternal allele is expressed in both mice and humans. We also showed mutations found in p57 KIP2 in patients with BWS that were transmitted from the patients’ carrier mothers, indicating that the expressed maternal allele was mutant and that the repressed paternal allele was normal. In the study reported here, we performed functional analysis of the two mutated p57 KIP2 genes. We showed that the nonsense mutation found in the Cdk inhibitory domain in a BWS patient rendered the protein inactive with consequent complete loss of its role as a cell cycle inhibitor and of its nuclear localization. We also showed that the mutation in the QT domain, although completely retaining its cell cycle regulatory activity, lacked nuclear localization and was thus prevented from performing its role as an active cell cycle inhibitor. Consequently, no active p57 KIP2 would have existed, which might have caused the disorders in BWS patients. Received: 7 November 1998 / Accepted: 19 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号