首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In a series of experiments, we have determined that Legionella pneumophila will proliferate as an intracellular parasite of the ciliated holotrich Tetrahymena pyriformis in sterile tap water at 35 degrees C. After 7 days of incubation, serpentine chains of approximately 10(3) L. pneumophila cells were observed throughout the cytoplasm of the protozoan infected initially with 1 to 30 L. pneumophila cells. The overall L. pneumophila population increased from ca. 1.0 X 10(2) to ca. 5.0 X 10(4) cells per ml in the coculture within this time frame. The interactions between the protozoan and the bacterium appear to depend upon their concentrations as well as temperature of incubation. L. pneumophila did not multiply in sterile tap water alone, in suspensions of lysed T. pyriformis, or in cell-free filtrates of a T. pyriformis culture. In addition to establishing an ecological model, we found that addition of T. pyriformis to environmental specimens served as an enrichment method that improved isolation of legionella from the specimens.  相似文献   

2.
In a series of experiments, we have determined that Legionella pneumophila will proliferate as an intracellular parasite of the ciliated holotrich Tetrahymena pyriformis in sterile tap water at 35 degrees C. After 7 days of incubation, serpentine chains of approximately 10(3) L. pneumophila cells were observed throughout the cytoplasm of the protozoan infected initially with 1 to 30 L. pneumophila cells. The overall L. pneumophila population increased from ca. 1.0 X 10(2) to ca. 5.0 X 10(4) cells per ml in the coculture within this time frame. The interactions between the protozoan and the bacterium appear to depend upon their concentrations as well as temperature of incubation. L. pneumophila did not multiply in sterile tap water alone, in suspensions of lysed T. pyriformis, or in cell-free filtrates of a T. pyriformis culture. In addition to establishing an ecological model, we found that addition of T. pyriformis to environmental specimens served as an enrichment method that improved isolation of legionella from the specimens.  相似文献   

3.
The experimental study of the interaction of Tetrahymena pyriformis with different microorganisms of the genus Pseudomonas, isolated from the soil, was made. The study revealed that T. pyriformis phagocytosed some Pseudomonas pigment-forming species (P. cepacia, P. putida, P. fluorescens, P. pirkettii). The most pronounced cytopathogenic effect was produced by P. cepacia. The dynamic observations of the ultrastructural features of interaction between P. cepacia and protozoa were made. Even at early stages of this interaction some types of parasitiferous phagosomes containing both intact bacteria capable of multiplication by binary division and Pseudomonas cells exhibiting different degrees of destruction were registered. In several phagosomes morphologically intact bacteria differing in their cell-wall profiles and the density of their cytoplasm and nucleotide were present simultaneously. More dense cells with sinuous cell-wall membranes were more virulent. By hour 18 one giant parasitiferous vacuole was formed by fusion of smaller phagosomes, which subsequently broke up, liberating a new generation of bacteria. In infected cells disturbances in the structure of their mitochondria and macronucleus appeared. During the first 2 days of the joint cultivation of P. cepacia and T. pyriformis the accumulation of bacteria occurred due to the selection and multiplication of digestion-resistant bacterial cells, which ensured the resistance of this Pseudomonas population in association with protozoa.  相似文献   

4.
The mechanisms of interaction between the populations of Yersinia and T. pyriformis have been analyzed on the cellular and subcellular levels. As shown in this investigation, Yersinia, when phagocytized by T. pyriformis, may undergo morphological changes, remain unchanged and also multiply, destroying the host cell in the process.  相似文献   

5.
The electron-microscopic study of the interaction of F. tularensis virulent and attenuated strains with infusoria of the species T. pyriformis was dynamically studied. In this study the structural changes of F. tularensis and T. pyriformis cells, as well as their capacity for survival, were revealed. The data on their ultrastructure correlated with the dynamics of the number of both F. tularensis and T. pyriformis: during the whole term of observation the tendency to a slow decrease in the number of F. tularensis was registered with the concentration of T. pyriformis remaining stable. The interaction of F. tularensis with T. pyriformis may be regarded as a variant of commensal, but not antagonistic interactions.  相似文献   

6.
To understand how macrophages (Mphi) activated with IFN-gamma modulate the adaptive immune response to intracellular pathogens, the interaction of IFN-gamma-treated bone marrow-derived murine Mphi (BMphi) with Legionella pneumophila was investigated. Although Legionella was able to evade phagosome lysosome fusion initially, and was capable of de novo protein synthesis within IFN-gamma-treated BMphi, intracellular growth of Legionella was restricted. It was determined that activated BMphi infected with Legionella suppressed IFN-gamma production by Ag-specific CD4 and CD8 T cells. A factor sufficient for suppression of T cell responses was present in culture supernatants isolated from activated BMphi following Legionella infection. Signaling pathways requiring MyD88 and TLR2 were important for production of a factor produced by IFN-gamma-treated BMphi that interfered with effector T cell functions. Cyclooxygenase-2-dependent production of PGs by IFN-gamma-treated BMphi infected with Legionella was required for inhibition of effector T cell responses. From these data we conclude that activated Mphi can down-modulate Ag-specific T cell responses after they encounter bacterial pathogens through production of PGs, which may be important in preventing unnecessary immune-mediated damage to host tissues.  相似文献   

7.
Bacteria of the genus Legionella are intracellular parasites and major human pathogens. They bind to surface receptors, penetrate eukaryotic cells and initiate complex disorders during phagocytosis. These disorders include inhibition of oxidative burst, a decrease in phagosome acidification, the blocking of phagosome maturation and changes in organelle trafficking. As a result, the microorganisms prevent the bactericidal activity of the phagocyte and transform the phagosome into a niche for their replication. Biological, biochemical and molecular-genetic approaches have been used to identify a panel of bacterial products that may be involved in Legionella virulence. They include cytotoxins, several enzymes and a set of genes thought to encode proteins of the export machinery. However, despite distinct progress in research, the molecular mechanisms underlying intracellular parasitism in Legionella are unclear.  相似文献   

8.
Virulence factors of the family Legionellaceae.   总被引:22,自引:0,他引:22       下载免费PDF全文
Whereas bacteria in the genus Legionella have emerged as relatively frequent causes of pneumonia, the mechanisms underlying their pathogenicity are obscure. The legionellae are facultative intracellular pathogens which multiply within the phagosome of mononuclear phagocytes and are not killed efficiently by polymorphonuclear leukocytes. The functional defects that might permit the intracellular survival of the legionellae have remained an enigma until recently. Phagosome-lysosome fusion is inhibited by a single strain (Philadelphia 1) of Legionella pneumophila serogroup 1, but not by other strains of L. pneumophila or other species. It has been found that following the ingestion of Legionella organisms, the subsequent activation of neutrophils and monocytes in response to both soluble and particulate stimuli is profoundly impaired and the bactericidal activity of these cells is attenuated, suggesting that Legionella bacterial cell-associated factors have an inhibitory effect on phagocyte activation. Two factors elaborated by the legionellae which inhibit phagocyte activation have been described. First, the Legionella (cyto)toxin blocks neutrophil oxidative metabolism in response to various agonists by an unknown mechanism. Second, L. micdadei bacterial cells contain a phosphatase which blocks superoxide anion production by stimulated neutrophils. The Legionella phosphatase disrupts the formation of critical intracellular second messengers in neutrophils. In addition to the toxin and phosphatase, several other moieties that may serve as virulence factors by promoting cell invasion or intracellular survival and multiplication are elaborated by the legionellae. Molecular biological studies show that a cell surface protein named Mip is necessary for the efficient invasion of monocytes. A possible role for a Legionella phospholipase C as a virulence factor is still largely theoretical. L. micdadei contains an unusual protein kinase which catalyzes the phosphorylation of eukaryotic substrates, including phosphatidylinositol and tubulin. Since the phosphorylation of either phosphatidylinositol or tubulin might compromise phagocyte activation and bactericidal functions, this enzyme may well be a virulence factor. Administration of the L. pneumophila exoprotease induces lesions resembling those of Legionella pneumonia and kills guinea pigs, suggesting that this protein plays a role in the pathogenesis of legionellosis. However, recent work with a genetically engineered strain has convincingly shown that the protease is not necessary for intracellular survival or virulence. As might be expected with a complex process like intracellular parasitism, it appears that the capability of Legionella strains to invade and multiply in host phagocytes is multifactorial and that no single moiety which is responsible for the virulence phenotype will be found.  相似文献   

9.
Legionella pneumophila is the Gram-negative bacterial agent of Legionnaires' disease, an acute, often fatal pneumonia. L. pneumophila infects alveolar macrophages, evading the antimicrobial defences of the phagocyte by preventing fusion of the phagosome with lysosomes and avoiding phagosome acidification. The bacteria then modulate the composition of the vacuole so that it takes on the characteristics of the endoplasmic reticulum. Similar events occur when the bacteria infect unicellular protozoa. It is thought that replication in fresh water protozoa provides an environmental reservoir for the organism. Several effector proteins are delivered to the host by the Icm/Dot type IV secretion system (TFSS). Some of these have been shown to participate in the trafficking of the Legionella phagosome. Here we describe the ability of the Icm/Dot TFSS to translocate two effectors, LepA and LepB, that play a role in the non-lytic release of Legionella from protozoa. We report that translocation of the Lep proteins is inhibited by agents that depolymerize actin filaments and that effectors may be secreted into the extracellular medium upon cell contact. Depletion of the Lep proteins by deletion of their genes results in increased ability to lyse red blood cells. In contrast, overexpression of Lep-containing hybrid proteins appears to specifically inhibit the activity of the Icm/Dot TFSS and may prevent the delivery of other effectors that are critical for intracellular multiplication.  相似文献   

10.
In this report, we investigate the intracellular fate of selected members of the genus Legionella within the monocytic cell line Mono Mac 6 cells. By means of electron microscopy and immunocytochemistry, we could show that Legionella pneumophila as well as Legionella longbeachae are able to induce ribosome-studded phagosomes which associate with the rough endoplasmic reticulum (RER), whereas Legionella micdadei remains to be located within smooth phagosomes but also shows signs of RER association. In addition, we could demonstrate a remarkable correlation between the phagosome type and the morphological phenotype of intracellular bacteria: within ribosome-studded phagosomes, bacteria generally lacked the outer coat of low electron density whereas bacteria within the smooth phagosomes still possessed this outer coat. The virulence factors responsible for inhibition of phagosome maturation and their distribution within the genus Legionella as well as the biological significance of the morphological difference of bacteria within smooth and ER-associated phagosomes remain to be investigated.  相似文献   

11.
The road less traveled: transport of Legionella to the endoplasmic reticulum   总被引:12,自引:0,他引:12  
Phagosomes containing the bacterial pathogen Legionella pneumophila are transported to the ER after macrophage internalization. To modulate phagosome transport, Legionella use a specialized secretion system that injects bacterial proteins into eukaryotic cells. This review will focus on recent studies that have identified bacterial proteins and host processes that play a concerted role in transporting Legionella to the ER.  相似文献   

12.
All Legionella longbeachae strains, both serogroups of L. bozemanii, and three strains of L. anisa reproducibly infected washed Tetrahymena pyriformis at 30 degrees C. L. pneumophila serogroup 1 strains infected T. pyriformis less reproducibly than did L. longbeachae. Low-level concentrations of nutrients in cocultures inhibited infection. Four L. micdadei strains and L. anisa ATCC 35292 failed to infect T. pyriformis.  相似文献   

13.
The natural hosts of the bacterial pathogen Legionella pneumophila are amoebae and protozoa. In these hosts, as in human macrophages, the pathogen enters the cell through phagocytosis, then rapidly modifies the phagosome to create a compartment that supports its replication. We have examined L. pneumophila entry and behaviour during early stages of the infection of Dictyostelium discoideum amoebae. Bacteria were labelled with a red fluorescent marker, and selected proteins and organelles in the host were labelled with GFP, allowing the dynamics and interactions of L. pneumophila -containing phagosomes to be tracked in living cells. These studies demonstrated that entry of L. pneumophila is an actin-mediated process, that the actin-binding protein coronin surrounds the nascent phagosome but dissociates immediately after internalization, that ER membrane is not incorporated into a phagosome during uptake, that the newly internalized phagosome is rapidly transported about the cell on microtubules, that association of ER markers with the phagosome occurs in two steps that correlate with distinct changes in phagosome movement, and that the vacuolar H(+)-ATPase does not associate with mature replication vacuoles. These studies have clarified certain aspects of the infection process and provided new insights into the dynamic interactions between the pathogen and its host.  相似文献   

14.
15.
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with approximately 30-35 amino acid tandem Ankyrin repeats that are involved in protein-protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the DeltaankH and DeltaankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post-exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single-cell analyses have shown that upon co-infection of the wild-type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild-type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic-like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic-like ank genes are triggered upon growth transition into post-exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.  相似文献   

16.
Adenylyl cyclase signaling system (ACS) of the higher eukaryotes involves the following main components: receptor, heterotrimeric G protein, adenylyl cyclase (AC), and protein kinase A. At present, these components have been found in cells of different species of the lower eukaryotes. Hence, the signal transduction through ACS of unicellular eukaryotes may have some features in common with those of the higher eukaryotes. We showed earlier that agonists of adrenergic receptors (ARs) regulate AC activity of ciliates Dileptus anser and Tetrahymena pyriformis. The aim of this work was to study molecular mechanisms of AR ligand action on the functional activity of different components of ACS of the ciliates. It has been shown that beta-AR antagonist [3H]-dihydroalprenolol binds membranes of the ciliates with a comparatively lower affinity than those of the higher eukaryotes (Kd for D. anser was 13.4 nM, for T. pyriformis--27 nM). Beta-AR ligands--agonist (-)-isoproterenol and antagonists propranolol and atenolol in competition manner displace [3H]-dihydroalprenolol with IC50 that are 10-100 times higher than corresponding IC50 of beta-AR of the higher eukaryotes. In the presence of GTP, the right shift of competition curves of [3H]-dihydroalprenolol displacement by isoproterenol was obtained, being most considerable in the case of D. anser. Adrenaline and isoproterenol in a dose-dependent manner stimulated GTP-binding in cell cultures of D. anser and T. pyriformis. Suramin (10(-5) M), the inhibitor of heterotrimeric G proteins, completely blocked effects of these hormones. In D. anser culture, adrenaline and isoproterenol in a dose-dependent manner, stimulated AC activity, and its stimulating effects in the presence of beta-AR blockers vanished (propranolol) or decreased to a great extent (atenolol). At the same time the effects were unchanged in the presence of alpha2-AR antagonists yohimbine and idazoxan. These data show the involvement of G protein-coupled beta-AR in signal transduction induced by AR agonists in D. anser cells. In cell culture of T. pyriformis isoproterenol weakly stimulated AC activity, and its effect was completely blocked by beta-AR blockers. Adrenaline in T. pyriformis cells in a dose-dependent manner inhibited AC activity. Inhibiting effect of hormone was decreased in the presence of alpha2-AR blockers. On the basis of the obtained data we concluded that adrenaline in T. pyriformis cells inhibited AC activity through G protein-coupled receptor, being close to alpha2-AR of vertebrate animals.  相似文献   

17.
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates.  相似文献   

18.
Phagocytosis plays a major role during the invasive process of the human intestine by the pathogenic amoeba E. histolytica. This parasite is the etiologic agent causing amoebic dysentery, a worldwide disease causing 50 million of clinical cases leading to about 100,000 deaths annually. The invasive process is characterized by a local acute inflammation and the destruction of the intestinal tissue at the invasion site. The recent sequencing of the E. histolytica genome has opened the way to large-scale approaches to study parasite virulence such as processes involved in human cell phagocytosis. In particular, two different studies have recently described the phagosome proteome, providing new insights into the process of phagocytosis by this pathogenic protozoan. It has been previously described that E. histolytica induces apoptosis and phagocytosis of the human target cells. Induction of apoptosis by the trophozoites is thought to be involved in the close regulation of the inflammatory response occurring during infection. Little is known about the molecular mechanisms responsible for induction of apoptosis or in the recognition of apoptotic cells by E. histolytica. In this review, we comment on the recent data we obtained after isolation of the early phagosomes and the identification of its associated proteins. We focus on the surface molecules potentially involved in human cell recognition. In particular, we propose several parasite molecules, potentially involved in the induction of apoptosis and/or the phagocytosis of human apoptotic cells.  相似文献   

19.
Nonspecific cytotoxic cells (NCC) obtained from channel catfish (Ictalurus punctatus) kill Tetrahymena pyriformis, an opportunistic parasite in fish. Based upon this fact, a new mechanism for nonspecific cellular anti-parasitic immunity in fish is proposed. Optimum in vitro conditions for NCC killing of deciliated T. pyriformis were first obtained. Lysis of T. pyriformis by NCC occurred by 10 hr of cocultivation of effector and target cells. During this time period, 50 to 60% cytotoxicity occurred. Fish anti-T. pyriformis serum enhanced NCC killing of T. pyriformis either by prolonging immobilization (after the cilia regeneration period) or by delaying cilia regeneration. Shared antigenic determinants between T. pyriformis, Ichthyophthirius multifiliis, and NC-37 target cells were demonstrated by binding-depletion experiments. For these studies, NCC were depleted from anterior kidney cells (the hemopoetic organ in fish) by preincubating formalin-treated T. pyriformis, I. multifiliis, or viable NC-37 target cells with NCC for 3 hr. Conjugates of effector and target cells were removed by overlaying on fetal bovine serum. Unconjugated fish anterior kidney cells were tested for cytotoxic activity against NC-37 or T. pyriformis target cells. Cold target inhibition experiments by using a 4-hr 51chromium cytotoxicity assay also demonstrated these shared antigenic determinants. Target-specific antisera, used to mediate the killing of T. pyriformis by NCC, were required only for immobilizing the targets, and did not function in an antibody-dependent cell-mediated (ADCC)-like mechanism. Scanning electron micrographs of NCC-T. pyriformis conjugates additionally demonstrated NCC binding to both cilia and cell surface determinants.  相似文献   

20.
The facultative intracellular pathogen, Legionella pneumophila, multiplies within and kills human monocytes and alveolar macrophages. We show that L. pneumophila strain Philadelphia-1 infects, multiplies within and kills the promyelocyte HL-60 cell line after its differentiation into macrophage-like cells. The characteristics of the interaction between L. pneumophila and differentiated HL-60 cells closely resemble those between L. pneumophila and human peripheral blood monocytes. With both cell types, C receptors and serum C mediate attachment of L. pneumophila, which are taken up by coiling phagocytosis. The replicative phagosome is lined with ribosomes; intracellular multiplication is iron-dependent; and replicating bacteria ultimately destroy the host cell. As in human monocytes, an avirulent mutant derivative of L. pneumophila Philadelphia-1, 25D, does not replicate in and is not cytopathic for differentiated HL-60 cells. Differentiated HL-60 cells therefore provide a convenient and faithful model for the study of L. pneumophila-mononuclear phagocyte interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号