首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteoglycan fractions were prepared from pig laryngeal cartilage. The effect of link-protein on the properties of proteoglycan-hyaluronate aggregates was examined by viscometry and analytical ultracentrifugation. Aggregates containing link-protein were more stable than link-free aggregates at neutral pH, at temperatures up to 50 degrees C and in urea (up to 4.0M). Oligosaccharides of hyaluronate were able to displace proteoglycans from link-free aggregates, but not from the link-stabilized aggregates. Both types of aggregate were observed in the ultracentrifuge, but at the concentration investigated (less than 2 mg/ml) the link-free form was partially dissociated and the proportion aggregated varied with the pH and temperature and required more hyaluronate for saturation than did link-stabilized aggregate. The results showed that link-protein greatly strengthened the binding of proteoglycans to hyaluronate and suggest that under physiological conditions it 'locks' proteoglycans on to the hyaluronate chain.  相似文献   

2.
Proteoglycan aggregates free of non-aggregating proteoglycan have been prepared from the annuli fibrosi and nuclei pulposi of intervertebral discs of three human lumbar spines by extraction with 4M-guanidinium chloride, associative density gradient centrifugation, and chromatography on Sepharose CL-2B. The aggregate (A1-2B.V0) was subjected to dissociative density-gradient ultracentrifugation. Three proteins of Mr 38 900, 44 200 and 50 100 found in the fraction of low buoyant density (A1-2B.V0-D4) reacted with antibodies to link protein from newborn human articular cartilage. After reduction with mercaptoethanol, two proteins of Mr 43 000 and two of Mr 20 000 and 14 000 were seen. The A1-2B.V0-D4 fraction, labelled with 125I, coeluted with both hyaluronate and a hyaluronate oligosaccharide (HA14) on a Sepharose CL-2B column. HA10 and HA14 reduced the viscosity of A1 fractions; HA4, HA6 and HA8 did not. HA14 decreased the viscosity of disc proteoglycans less than it did that of bovine cartilage proteoglycans. Thus, although a link protein was present in human intervertebral disc, it stabilized proteoglycan aggregates less well than did the link protein from bovine nasal cartilage.  相似文献   

3.
Turnover of proteoglycans in cultures of bovine articular cartilage   总被引:8,自引:0,他引:8  
Proteoglycans in cultures of adult bovine articular cartilage labeled with [35S]sulfate after 5 days in culture and maintained in medium containing 20% fetal calf X serum had longer half-lives (average 11 days) compared with those of the same tissue maintained in medium alone (average 6 days). The half-lives of proteoglycans in cultures of calf cartilage labeled after 5 days in culture and maintained in medium with serum were considerably longer (average 21 days) compared to adult cartilage. If 0.5 mM cycloheximide was added to the medium of cultures of adult cartilage, or the tissue was maintained at 4 degrees C after labeling, the half-lives of the proteoglycans were greater, 24 and greater than 300 days, respectively. Analyses of the radiolabeled proteoglycans remaining in the matrix of the tissue immediately after labeling the tissue and at various times in culture revealed two main populations of proteoglycans; a large species eluting with Kav of 0.21-0.24 on Sepharose CL-2B, of high bouyant density and able to form aggregates with hyaluronate, and a small species eluting with a Kav of 0.63-0.70 on Sepharose CL-2B, of low buoyant density, containing only chondroitin sulfate chains, and unable to form aggregates with hyaluronate. The larger proteoglycan had shorter half-lives than the smaller proteoglycan; in cartilage maintained with serum, the half-lives were 9.8 and 14.5 days, respectively. Labeling cartilage with both [3H]leucine and [35S]sulfate showed the small proteoglycan to be a separate synthetic product. The size distribution of 35S-labeled proteoglycans lost into the medium was shown to be polydisperse on Sepharose CL-2B, the majority eluting with a Kav of 0.27 to 0.35, of high buoyant density, and unable to aggregate with hyaluronate. The size distribution of glycosaminoglycans from 35S-labeled proteoglycans appearing in the medium did not differ from that associated with labeled proteoglycans remaining in the matrix.  相似文献   

4.
Cultured chondrocytes from the Swarm rat chondrosarcoma incorporate [35S]sulfate into proteoglycans typical of hyaline cartilage. The movement of newly synthesized proteoglycans from inside the cells into the extracellular matrix and, finally, into the culture medium was examined by measuring the distribution of 35S-labeled proteoglycans in the medium, a 4 M guanidine HCl extract of the cell layer, and in the remaining residue for a number of chase times following a 5-min pulse with [35S]sulfate. When hyaluronate oligosaccharides containing greater than or equal to 10 monosaccharides were included in the chase media, a proportion of newly synthesized proteoglycans were displaced from the matrix (4 M extract) into the culture medium. This displacement was greatest when oligomers were in the chase media between 10 and 20 min after the pulse, approximately the time when the molecules are being secreted from the cells. The proportion of link-stabilized aggregate in the medium was examined by Sepharose 2B chromatography after adding an excess of unlabeled monomer which displaces labeled monomer from complexes with hyaluronate which are not link-stabilized. The proportion of link-stabilized aggregate increased from 12% to about 70% between 12 and 120 min of chase. The presence of 40 micron hyaluronate oligosaccharides of 16 monosaccharides in the chase media retarded but did not prevent aggregate formation. Oligomers of about 50 monosaccharides, which are large enough to bind both a monomer proteoglycan and a link protein, almost completely prevented the formation of the large link-stabilized aggregates. The results suggest: (a) newly synthesized proteoglycans are not bound into link-stabilized aggregates at the time of secretion; (b) hyaluronic acid oligomers which are long enough to interact only with the hyaluronic acid-binding site of proteoglycans will retard but not prevent link-stabilized aggregation; and (c) hyaluronic acid oligomers long enough to accommodate additionally a link protein form a link-stabilized ternary complex and prevent aggregation with larger hyaluronic acid molecules.  相似文献   

5.
The structure of the proteoglycans from normal pig nucleus pulposus and relatively normal human annulus fibrosus and nucleus pulposus was investigated in detail and the results were compared with the current structural model of proteoglycans of hyaline cartilage. Like proteoglycans of cartilage, those of intervertebral disc contain keratan sulphate and chondroitin sulphate attached to a protein core; they are able to aggregate to hyaluronic acid; the protein core likewise has three regions, one lacking glycosaminoglycans, another rich in keratan sulphate and a third region rich in chondroitin sulphate. However, disc proteoglycans contain more keratan sulphate and protein and less chondroitin sulphate and are also considerably smaller than cartilage proteoglycans. In proteoglycans of human discs, these differences appeared to be due principally to a shorter region of the core protein bearing the chondroitin sulphate chains, whereas in proteoglycans of pig discs their smaller size and relatively low uronic acid content were due to shorter chondroitin sulphate chains. There were subtle differences between proteoglycans from the nucleus and annulus of human discs. In the latter a higher proportion of proteoglycans was capable of binding to hyaluronate.  相似文献   

6.
The addition of proteinase inhibitors (1 mM phenylmethylsulfonyl fluoride, 10 mM N-ethylmaleimide, 0.25 mM benzamidine hydrochloride, 6.25 mM EDTA, 12.5 mM 6-aminohexanoic acid and 2 mM iodoacetic acid) to explant cultures of adult bovine articular cartilage inhibits proteoglycan synthesis as well as the loss of the macromolecule from the tissue. Those proteoglycans lost to the medium of explant cultures treated with proteinase inhibitors were either aggregates or monomers with functional hyaluronic acid-binding regions, whereas proteoglycans lost from metabolically active tissue also included a population of monomers that were unable to aggregate with hyaluronate. Analysis of the core protein from proteoglycans lost into the medium of inhibitor-treated cultures showed the same size distribution as the core proteins of proteoglycans present in the extracellular matrix of metabolically active cultures. The core proteins of proteoglycans appearing in the medium of metabolically active cultures showed that proteolytic cleavage of these macromolecules occurred as a result of their loss from the tissue. Explant cultures of articular cartilage maintained in medium with proteinase inhibitors were used to investigate the passive loss of proteoglycan from the tissue. The rate of passive loss of proteoglycan from the tissue was dependent on surface area, but no difference in the proportion of proteoglycan aggregate to monomer appearing in the medium was observed. Furthermore, proteoglycans were lost at the same rate from the articular and cut surfaces of cartilage. Proteoglycan aggregates and monomer were lost from articular cartilage over a period of time, which indicates that proteoglycans are free to move through the extracellular matrix of cartilage. The movement of proteoglycans out of the tissue was shown to be temperature dependent, but was different from the change of the viscosity of water with temperature, which indicates that the loss of proteoglycan was not solely due to diffusion. The activation energy for the loss of proteoglycans from articular cartilage was found to be similar to the binding energies for electrostatic and hydrogen bonds.  相似文献   

7.
The synthesis and distribution of hyaluronate and proteoglycan were studied in bovine articular cartilage in short-term explant culture with [3H]acetate and H2(35)SO4 as precursors. The incorporation of [3H]acetate into hyaluronate and sulphated glycosaminoglycans was linear with time, except that hyaluronate synthesis showed a marked lag at the beginning of the incubation. [3H]Hyaluronate represented 4-7% of the total [3H]glycosaminoglycans synthesized over a 6 h period. However, the distributions of [3H]hyaluronate and 3H-labelled sulphated glycosaminoglycans were different: about 50% of the newly synthesized [3H]hyaluronate appeared in the medium, compared with less than 5% of the 3H-labelled sulphated proteoglycans. A pulse-chase experiment revealed that the release of newly synthesized [3H]hyaluronate from cartilage was rapid. No difference was observed in the distribution of [3H]hyaluronate between medium and tissue by cartilage from either the superficial layer or the deep layer of articular cartilage. When articular cartilage was incubated with 0.4 mM-cycloheximide, proteoglycan synthesis was markedly inhibited, whereas the synthesis of hyaluronate was only partially inhibited and resulted in more of the newly synthesized hyaluronate being released into the medium. Analysis of the hydrodynamic size of [3H]hyaluronate isolated from cartilage on Sephacryl-1000 revealed one population that was eluted as a broad peak (Kav. less than 0.7), compared with two populations (Kav. greater than 0.5 and less than 0.5) appearing in the medium of cultures. These data suggest that hyaluronate is synthesized in excess of proteoglycan synthesis and that the hyaluronate that is not complexed with proteoglycans is rapidly lost from the tissue.  相似文献   

8.
M W Lark  L A Culp 《Biochemistry》1983,22(9):2289-2296
Newly formed adhesion sites, left bound to the tissue culture substratum after [ethylenebis(oxyethylenenitrilo)] tetraacetic acid mediated detachment of simian virus 40 transformed Balb/c 3T3 cells, have been extracted with 0.5 M guanidine hydrochloride or Zwittergent (3-12), extractions which identify different subfractions of proteoglycans in these sites. The compositions of these extracts were then compared to similar extracts of "maturing" adhesion sites in an effort to identify structural and metabolic changes which may occur with time and which may play a role in altering adhesion during cell movement. Guanidine hydrochloride (0.5 M) extracts both hyaluronate and chondroitin sulfate proteoglycan from newly formed sites (but which are not complexed in an aggregate similar to that found in cartilage) but only hyaluronate from fully matured sites, indicating that the chondroitin sulfate proteoglycans somehow become resistant to extraction with time. Both high and low molecular weight forms of hyaluronate also accumulate in sites with time. Zwittergent 3-12 solubilizes free chains of heparan sulfate but not heparan sulfate proteoglycan from either class of sites. Most of the heparan sulfate in newly formed sites occurs as a large proteoglycan excludable from Sepharose CL-6B columns under stringent dissociative conditions; however, as adhesion sites "mature", a portion of this proteoglycan appears to be converted by some unknown mechanism to free heparan sulfate chains. This process may very well weaken the close adhesive contacts between the cell and substratum mediated by fibronectin's binding to the highly multivalent heparan sulfate proteoglycans. These studies further indicate that there is considerable metabolism and changing intermolecular associations of proteoglycans within these sites during movement of fibroblasts over this model extracellular matrix.  相似文献   

9.
1. Medium and cell-layer proteoglycans from pig aorta smooth muscle cells in culture were compared. In both compartments, the main proteoglycans contained chondroitin sulfate-dermatan sulfate chains of 40 kDalton. 2. However, cell-layer proteoglycans differed from those of the medium by the presence of: (a) some small-size proteoglycans; (b) a greater amount of heparan sulfate; (c) chondroitin sulfate-dermatan sulfate enriched in iduronate and in 4 sulfate- (instead of 6 sulfate-) residues. 3. During dissociation-reassociation assays of arterial proteoglycans with exogenous hyaluronate or "aggregate" proteoglycans, the in vitro formation of complexes appeared to involve inter-associations between proteoglycans molecules, in addition to aggregation with hyaluronate.  相似文献   

10.
The effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in calf cartilage explants were examined. Pulse-chase experiments showed that conversion of low-affinity monomers to the high-affinity form (that is, to a form capable of forming aggregates with 1.6% hyaluronate on Sephacryl S-1000) occurred with a t1/2 of about 5.7 h in free-swelling discs at pH 7.45. Static compression during chase (in pH 7.45 medium) slowed the conversion, as did incubation in acidic medium (without compression). Both effects were dose-dependent. For example, the t1/2 for conversion was increased to about 11 h by either (1) compression from a thickness of 1.25 mm to 0.5 mm or (2) medium acidification from pH 7.45 to 6.99. Oscillatory compression of 2% amplitude at 0.001, 0.01, or 0.1 cycles/s during chase did not, however, affect the conversion. Changes in the hyaluronate-binding affinity of [35S]proteoglycans in these experiments were accompanied by no marked change in the high percentage (approximately 80%) of monomers which could form aggregates with excess hyaluronate and link protein. Since static tissue compression would result in an increased matrix proteoglycan concentration and thereby a lower intra-tissue pH [Gray, Pizzanelli, Grodzinsky & Lee (1988) J. Orthop. Res. 6, 777-792], it seems likely that matrix pH may influence proteoglycan aggregate assembly by an effect on the hyaluronate-binding affinity of proteoglycan monomer. Such a pH mechanism might have a physiological role, promoting proteoglycan deposition in regions of low proteoglycan concentration.  相似文献   

11.
A peptide with hyaluronic acid-binding properties was isolated from trypsin digests of bovine articular cartilage proteoglycan aggregate. This peptide originated from the N-terminus of the proteoglycan core protein, retained its function of forming complexes with hyaluronate and link protein and contained at least one keratan sulfate chain. Amino acid sequence data demonstrated that the first six amino acid residues of the N-terminus of bovine articular cartilage proteoglycan core protein differed from the same region from the rat chondrosarcoma proteoglycan. Further sequence data indicate areas of considerable sequence homology in the hyaluronic acid-binding regions of proteoglycans from the two species.  相似文献   

12.
Purified proteoglycans extracted from pig laryngeal cartilage in 0.15 M-NaCl and 4 M-guanidinium chloride were analysed and their amino acid compositions determined. Selective modification of amino acid residues on the protein core confirmed that binding to hyaluronate was a function of the protein core, and was dependent on disulphide bridges, intact arginine and tryptophan residues, and epsilon-amino groups of lysine. Fluorescence measurement suggested that tryptophan was not involved in direct subsite interactions with the hyaluronate. The polydispersity in size and heterogeneity in composition of the aggregating proteoglycan was compatible with a structure based on a protein core containing a globular hyaluronate-binding region and an extended region of variable length also containing a variable degree of substitution with chondroitin sulphate chains. The non-aggregated proteoglycan extracted preferentially in 0.15 M-NaCl, which was unable to bind to hyaluronate, contained less cysteine and tryptophan than did other aggregating proteoglycans and may be deficient in the hyaluronate-binding region. Its small average size and low protein and keratan sulphate contents suggest that it may be a fragment of the chondroitin sulphate-bearing region of aggregating proteoglycan produced by proteolytic cleavage of newly synthesized molecules before their secretion from the cell.  相似文献   

13.
When normal adult dog articular cartilage was cultured in the presence of dibutyryl cyclic AMP a higher proportion than normal of newly synthesized 35S-labeled glycosaminoglycans was released from the tissue into the culture medium, although their net synthesis was not affected. In conjunction with this release of sulfated glycosaminoglycans, 24 times more [3H]glucosamine-labeled hyaluronic acid was released from the cartilage into the medium, and net hyaluronate synthesis was enhanced 3-fold. Virtually all of the newly synthesized hyaluronic acid in the medium was associated with proteoglycans. The proteoglycans in the medium of the dibutyryl cyclic AMP treated cultures were normal in hydrodynamic size and interacted normally with hyaluronic acid to form large aggregates. These results suggest that the increase in hyaluronate synthesis caused by dibutyryl cyclic AMP mayt have destabilized the interaction of proteoglycans with the collagen meshwork of the cartilage. The changes seen in normal adult articular cartilage after incubation with dibutyryl cyclic AMP, therefore, are similar to those which are observed in cartilage of osteoarthritic joints.  相似文献   

14.
Proteoglycans were extracted from 14-day chick embryo brains, which had been labelled in vitro with [35S]sulfate or 3H-labelled amino acids. 4.0 M guanidinium chloride (containing proteinase inhibitors) extracted 94% of the 35S-labelled glycoconjugates. Following cesium chloride equilibrium centrifugation, the proteoglycans in each fraction were characterized by chromatography on Sepharose CL-2B. The most dense fraction (D1), which contained no detectable non-proteoglycan proteins, contained a large, aggregating chondroitin sulfate proteoglycan in addition to small chondroitin sulfate and heparan sulfate proteoglycans. The less dense fractions (D2-D6) contained both small chondroitin sulfate and heparan sulfate proteoglycans. Removal of hyaluronate from the D1 sample by digestion with Streptomyces hyaluronidase in the presence of proteinase inhibitors showed that aggregation of the large chondroitin sulfate proteoglycan is hyaluronate-dependent. Aggregation was restored by re-addition of hyaluronate. Reduction and alkylation, which blocked aggregation of a cartilage A1 proteoglycan, did not interfere with aggregation of the large brain proteoglycan.  相似文献   

15.
Proteoglycans exist in cartilage as complexes in which many proteoglycan molecules are bound to a central filament of hyaluronic acid. Many studies have investigated changes taking place in proteoglycan monomer structure during cartilage catabolism usually under the assumption that hyaluronic acid is a relatively inert metabolic component of the complex. In this paper we present organ culture data supporting a new hypothesis that the catabolism of proteoglycans and hyaluronic acid are coordinately regulated by chondrocytes. The data indicates that: 1) newly synthesized hyaluronate and proteoglycan maintain a nearly constant ratio, almost identical to that existing for the total chemical amounts of these two components in cartilage tissue; 2) these two components are catabolized with virtually identical kinetics; and 3) this catabolic relationship in vitro reflects the loss of hyaluronate and proteoglycans from native, undissociated aggregates as isolated from the tissue. We conclude that hyaluronate catabolism is an integral part of the overall mechanism of proteoglycan resorption in cartilage and that further understanding of this process may be key to the elucidation of the regulatory pathways for proteoglycan resorption in health and disease.  相似文献   

16.
When chick limb buds were isolated from stage 22–23 embryos and cultured in chemically defined medium “BGJb,” the explants grew and, after about 9 days, showed good chondrogenesis of recognizable cartilage segments. Cartilage-type proteoglycan (termed PCS-H) was not synthesized during early days of culture, but by Day 9, it became a major proteoglycan constituent of the tissue. Freshly dissociated limb bud cells, when plated as monodispersed cultures at a density of 7 × 106 cells/ml of BGJb, did not undergo chondrogenic differentiation and, instead, assumed the appearance of unhealthy or degenerated cells. During 9 days of culture, even though proteoglycans were synthesized, they were nevertheless of much smaller molecular size than PCS-H. When limb bud cells were cultured as a pellet containing 7 × 106 cells in 1 ml of BGJb, a more tightly packed aggregate of about 2 × 106 cells appeared in an inner region of the pullet during the first 24 hr of culture, and by Day 12 the aggregate had differentiated into a cartilage nodule surrounded by a thin layer of what appear to be ectodermal cells. As the conversion of aggregate into cartilage nodule progressed, newly formed proteoglycans gradually became more like cartilage-type proteoglycans, and by Day 12 they had many chemical and physical characteristics similar to those of the proteoglycans isolated from fully differentiated cartilages. The results indicate that the initial association of limb bud cells is an important factor for the chondrogenesis in BGJb and further suggest that the tight binding of the cell surfaces to one another may directly or indirectly stimulate the mechanism of synthesis of cartilage-type proteoglycans.  相似文献   

17.
Large and small interstitial proteoglycans were purified from different bovine tissues, i.e. cartilage, sclera, tendon, aorta, cornea, and bone. The structure of the molecules was compared using the glycerol spraying/rotary shadowing technique for electron microscopy. Large proteoglycans from sclera and tendon have a core protein with a domain structure similar to that previously reported for cartilage proteoglycans (Paulsson, M., M?rgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D., Hardingham, T., Heineg?rd, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). It is comprised of a pair of globules at one end of the molecule, connected by a short extended segment, followed by a long extended domain which is terminated by a third globular domain. Large aorta proteoglycans show a somewhat different structure, with only one globular domain at each end of a long extended segment. Large sclera and aorta proteoglycans form aggregates with hyaluronate and cartilage link protein in a manner similar to that of large cartilage proteoglycans. The large proteoglycans show considerable tissue variability with regard to number, length, and spacing of glycosaminoglycan side chains. The small proteoglycans reveal a small globular core protein to which one or two glycosaminoglycans are attached. Although the main structural features do not differ, proteoglycans of the S1 class have an average glycosylation close to two glycosaminoglycans/molecule, while that of the S2 class is close to one. Differences in glycosaminoglycan length were observed between tissues and between the S1 and S2 class of proteoglycan derived from a single tissue.  相似文献   

18.
Newly secreted proteoglycans from adult human cartilage do not interact well with hyaluronate, but attain this ability with time in the extracellular matrix. The conversion process occurs in all types of cartilagenous matrix, as newborn cartilage cultures, chondrosarcoma cultures and adult chondrocyte cultures each secreted proteoglycan subunits which exhibited the delayed aggregation phenomenon. However, the rate of conversion is probably dependent upon the structure of the surrounding matrix and the cell type. In vitro, link protein appears to enhance an initial change in the hyaluronate-binding region of the newly secreted proteoglycan subunits to allows stronger interaction with hyaluronate. In a second step, which is pH- and temperature-dependent, the change becomes irreversible. Thus, in addition to its role in stabilizing the interaction of mature proteoglycan subunits with hyaluronate, link protein may also aid in promoting the conversion of the newly synthesized proteoglycan subunit to a form that is capable of strong interaction with hyaluronate.  相似文献   

19.
By using an e.l.i.s.a. method it was demonstrated that the majority of proteoglycans released into the medium of both control and retinoic acid-treated explant cultures of bovine articular cartilage did not contain a hyaluronate-binding region. This supports our previous findings [Campbell & Handley (1987) Arch. Biochem. Biophys. 258, 143-155] that proteoglycans released into the medium of both cultures were of smaller hydrodynamic size, more polydisperse and unable to form aggregates with hyaluronate. Analysis of 35S-labelled core proteins associated with proteoglycans released into the medium of both cultures by using SDS/polyacrylamide-gel electrophoresis and fluorography indicated the presence of a series of core-protein bands (Mr approx. 300,000, 230,000, 215,000, 200,000, 180,000, 140,000, 135,000, 105,000, 85,000 and 60,000) compared with three core proteins derived from the proteoglycans remaining in the matrix (Mr 300,000, 230,000 and 215,000). Further analysis of the core proteins released into the medium indicated that the larger core proteins associated with medium proteoglycans contain both chondroitin sulphate and keratan sulphate glycosaminoglycans whereas the smaller core proteins contain only chondroitin sulphate chains. These experiments provide definitive evidence that the loss of proteoglycans from the matrix involves proteolytic cleavage at various sites along the proteoglycan core protein.  相似文献   

20.
The infrared spectra of normal knee joint cartilage, normal and rheumatoid arthritis-affected human synovial membrane and the same normal bovine tissues were obtained over the region of 400--4000 cm-1. A comparative analysis of the spectra of these tissues and those containing hyaluronate, protein-chondroitin-keratan sulfate aggregates of cartilage proteoglycans and heparin made it possible to identify greater absorption bands of these biopolymers in the tissue spectra. The interpretation of the results obtained is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号