共查询到20条相似文献,搜索用时 0 毫秒
1.
S Umeki 《Life sciences》1990,46(16):1111-1118
Kinetics of activation of the NADPH oxidase in a fully soluble cell-free system from phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system in which Mg2+ and sodium dodecyl sulfate, an anionic detergent required for the activation of NADPH oxidase are contained, cytosol prepared from PMA-stimulated neutrophils failed to activate PMA-stimulated neutrophil oxidase. However, cytosol prepared from resting (control) neutrophils was capable of activating PMA-stimulated neutrophil oxidase in a cell-free system in which its Km for NADPH was almost similar to that of control neutrophil oxidase. Cytosol from PMA-stimulated neutrophils could not activate control neutrophil oxidase, although it did not contain any inhibitors of NADPH oxidase activation. These results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted, and that the affinity for NADPH of PMA-stimulated neutrophil oxidase may be the same as that of control neutrophil oxidase. 相似文献
2.
Sodium dodecyl sulfate (SDS) was shown to elicit NADPH-dependent superoxide (O2-) production by a cell-free system derived from sonically disrupted resting guinea pig macrophages (Bromberg, Y., and Pick, E. (1985) J. Biol. Chem. 260, 13539-13545). O2- production was absolutely dependent on the cooperation between a membrane-associated component, sedimenting with the 48,000 X g pellet and a cytosolic factor, nonsedimentable at 265,000 X g. The present report describes the solubilization and characterization of the membrane-associated component of the SDS-activable O2(-)-forming NADPH oxidase (operationally termed pi). Treatment of the 48,000 X g pellet with 30 mM octyl glucoside resulted in complete transfer of pi to the soluble fraction. The solubilized pellet produced an average of 0.92 mumol of O2-/mg of protein/min upon reduction of octyl glucoside content below the critical micellar concentration and in the presence of cytosol, 100 microM SDS, and 0.2 mM NADPH. The activity of solubilized pellet-cytosol combinations was also expressed as NADPH-dependent, azide-resistant oxygen consumption and hydrogen peroxide production. pi was inactivated by the sulfhydryl reagent p-chloromercuribenzoate. Solubilized pellet contained spectroscopically detectable cytochrome b559 (225.6 +/- 15.0 pmol/mg mg protein). Both pi and cytochrome b559 were bound by Cibacron Blue Sepharose and could be eluted by a gradient of octyl glucoside (0-30 mM) in the presence of 1 M KCl. On high performance gel filtration on Superose 12, both pi and cytochrome b559 eluted in the excluded volume; when 25 mM octyl glucoside was present in the elution buffer, pi was partially dissociated from cytochrome b559. Sequential purification of pi on Blue Sepharose followed by gel filtration on Superose 12 in the presence of 25 mM octyl glucoside lead to complete resolution of pi from cytochrome b559 (pi was found in the Mr = 28,000 - 11,000 range while the bulk of cytochrome b559 eluted in the Mr = 113,000 - 71,000 range). We propose that pi is distinct from cytochrome b559 and represents a membrane-associated component in an amphiphile-activated electron transport chain from NADPH to oxygen. 相似文献
3.
Moskwa P Palicz A Paclet MH Dagher MC Erdos M Maródi L Ligeti E 《Biochimica et biophysica acta》2004,1688(3):197-203
We reported earlier that monocytes and macrophages from patients with type I Gaucher disease have a decreased capacity to generate superoxide anion (O(2)(-)) on stimulation with opsonized S. aureus or formyl-methionyl-leucyl-phenylalanine. In this study, various forms of the cell-free assay system were used to probe the hypothesis that glucocerebroside (GC) accumulating in Gaucher patients' phagocytes may interfere with the activation of NADPH oxidase. Xanthine/xanthine oxidase assay was applied to explore the possibility that GC may scavenge O(2)(-). We found that addition of GC to the crude, semirecombinant or fully purified cell-free systems inhibited activation of NADPH oxidase in a concentration-dependent manner. The inhibitory effect of GC could be overcome by increased concentrations of p47(phox) and p67(phox). In contrast, O(2)(-) generation was not decreased by GC added to the assembled, catalytically active enzyme complex. In the xanthine/xanthine oxidase system, GC had no effect on the generation of O(2)(-). These data indicate that assembly of the respiratory burst oxidase of phagocytic cells may be a possible target of the pathologic actions of GC. 相似文献
4.
Activation of neutrophil NADPH oxidase in a cell-free system. Partial purification of components and characterization of the activation process 总被引:26,自引:0,他引:26
The superoxide-generating enzyme of human neutrophils, NADPH oxidase, is converted from an inactive to an active form upon stimulation of the neutrophil. This activation process was examined using a recently developed cell-free system in which dormant oxidase is activated by arachidonic acid in the presence of a soluble factor from the neutrophil (Curnutte, J. T. (1985) J. Clin. Invest. 75, 1740-1743). NADPH oxidase from unstimulated human neutrophils was detected only in the membrane fraction. The soluble activation factor was localized entirely to the cytosolic fraction and exhibited two peaks of activity when partially purified under nondenaturing conditions: a major peak with a molecular mass of approximately 250 kDa and a variable minor peak with a mass of approximately 40 kDa. Both forms activated NADPH oxidase in a similar manner and did not exhibit synergy when combined. The cytosolic factor is not protein kinase C (or another kinase) as both peaks of factor activity could be resolved from the protein kinase C peak and neither required calcium or ATP to activate the oxidase. Activation of NADPH oxidase did require the simultaneous presence of the membrane fraction, the cytosolic factor, arachidonic acid, and magnesium. Following activation, however, only the membrane fraction was then required for O2- production. Cytosolic factor levels were normal in five patients with either X-linked or autosomal recessive cytochrome b-negative chronic granulomatous disease. In contrast, the membrane fractions from each failed to generate O2-, indicating that the defects in these two genetic forms of chronic granulomatous disease reside either in the oxidase itself or in a membrane component required for activation. 相似文献
5.
The superoxide (O2-)-forming NADPH oxidase of resting macrophages can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). O2- production requires the cooperation of membrane-associated and cytosolic components. The membrane component can be solubilized by octyl glucoside yielding a highly active oxidase preparation. High performance gel filtration of the solubilized oxidase on Superose 12 in the presence of 40 mM octyl glucoside leads to the total loss of enzymatic activity. This can be restored in previously inactive eluate fractions by "reconstitution" with N-ethylmaleimide or heat (60 degrees C)-inactivated total solubilized membrane. Oxidase activity, that becomes evident upon reconstitution, is eluted from Superose 12 with molecules in the Mr range of 300,000-71,000. The material with reconstitutive capacity is completely dissociated from the oxidase, eluting with molecules in the Mr range of 71,000-11,000. The Superose 12 elution profile of the material responsible for reconstitution coincides with that of membrane-derived phospholipid. Also, the reconstitutive capacity of total solubilized membrane and that of the Mr 71,000-11,000 region of the Superose eluate are recovered in a chloroform extract prepared by the method of Bligh and Dyer. It is concluded that loss of oxidase activity by gel filtration at a high octyl glucoside concentration is the consequence of delipidation. NADPH oxidase activity, revealed by reconstitution of Superose 12 fractions with exogenous phospholipid, correlates closely with the elution profile of cytochrome b559. Reconstitution of activity of delipidated oxidase can also be achieved with natural non-macrophage phospholipids and with synthetic phospholipids. Reconstitution of NADPH oxidase activity by lipids is governed by the following rules: (a) phospholipids are effective; lysophospholipids and neutral lipids are not; (b) phospholipids with polar heads represented by choline, ethanolamine, and serine, as well as cardiolipin, are effective; phosphatidylinositol is much less active; (c) phospholipids with unsaturated fatty acid residues are capable of reconstitution while saturated acyl residues do not confer activity; this specificity appears not to be related to the transition temperature of the phospholipids. 相似文献
6.
Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. 总被引:6,自引:0,他引:6
We studied the effect of bilirubin on the NADPH-dependent superoxide production induced by sodium dodecyl sulfate in a cell-free system consisting of the membrane and cytosolic fractions of pig neutrophils. Preincubation of the cytosolic fraction with bilirubin before the addition of sodium dodecyl sulfate resulted in the time- and dose-dependent inhibition of the superoxide production while the preincubation of the membrane fraction with the tetrapyrrole did not result in the inhibition. When the pigment was added after the initiation of the reaction, the ongoing production was not affected by the addition. Other tetrapyrroles, such as hemin, protoporphyrin and biliverdin, also inhibited the production. The results indicate that bilirubin inhibits the activation process of the superoxide producing NADPH oxidase by decreasing the potency of the cytosolic fraction and its inhibitory effect seems to be due to the hydrophobic nature of the tetrapyrrole. 相似文献
7.
A soluble extract of neutrophil granules interfered with activation of the NADPH oxidase in a cell-free system. The extract had no effect on superoxide production by preactivated enzyme. The inhibitory activity was retained during dialysis and was lost upon exposure to proteinase K indicating that the active substance was a protein. The inhibitor exhibited a high stability at elevated temperatures. Chromatography of granules extract on ion exchangers implied that the inhibitor was a positively charged protein eluting from S Sepharose cation exchanger above 0.4M concentration of NaCl. 相似文献
8.
A soluble protein containing very weak NADPH-dependent nitroblue tetrazolium reductase activity was partially purified from the cytosol of dormant human neutrophils by DEAE-5PW ion exchange chromatography. This preparation of cytosolic reductase exhibited three nitroblue tetrazolium-reducing bands with approximate molecular masses of 95, 45, and 40 kDa on non-denaturing gel electrophoresis in the presence of 35 mM n-octyl-glucoside, and two major bands with apparent masses of 45 and 40 kDa along with a few variable minor bands on SDS-polyacrylamide gel electrophoresis. The 45 kDa protein is susceptible to endogenous proteases and is rapidly converted to proteolysis products at 36 degrees C. The partially purified cytosolic protein(s) provided a concentration-dependent activation of NADPH oxidase in the cell-free system composed of the membrane, arachidonate and magnesium ion. In addition, polyclonal antibodies raised against rabbit hepatic NADPH:cytochrome P-450 reductase [EC 1.6.99.1] showed positive immunological reactivity toward cytosolic 45 kDa protein and also caused 30 to 40% inhibition of superoxide anion production in the cell-free system. 相似文献
9.
McAdara Berkowitz JK Catz SD Johnson JL Ruedi JM Thon V Babior BM 《The Journal of biological chemistry》2001,276(22):18855-18862
We have employed a yeast two-hybrid system to screen a B lymphoblast-derived cDNA library, searching for regulatory components of the NADPH oxidase. Using as bait the C-terminal half of p67(phox), which contains both Src homology 3 domains, we have cloned JFC1, a novel human 62-kDa protein. JFC1 possesses two C2 domains in tandem. The C2A domain shows homology with the C2B domain of synaptotagmins. JFC1 mRNA was abundantly expressed in bone marrow and leukocytes. The expression of JFC1 in neutrophils was restricted to the plasma membrane/secretory vesicle fraction. We confirmed JFC1-p67(phox) association by affinity chromatography. JFC1-containing beads pulled down both p67(phox) and p47(phox) subunits from neutrophil cytosol, but when the recombinant proteins were used, only p67(phox) bound to JFC1, indicating that JFC1 binds to the cytosolic complex via p67(phox) without affecting the interaction between p67(phox) and p47(phox). In contrast to synaptotagmins, JFC1 was unable to bind to inositol 1,3,4,5-tetrakisphosphate but did bind to phosphatidylinositol 3,4,5-trisphosphate and to a lesser extent to phosphatidylinositol 3,4-diphosphate. From the data presented here, it is proposed that JFC1 is acting as an adaptor protein between phosphatidylinositol 3-kinase products and the oxidase cytosolic complex. 相似文献
10.
Activation of mitogen-activated protein kinase and its activator by ras in intact cells and in a cell-free system. 总被引:10,自引:0,他引:10
S Hattori M Fukuda T Yamashita S Nakamura Y Gotoh E Nishida 《The Journal of biological chemistry》1992,267(28):20346-20351
Mitogen-activated protein (MAP) kinase is a serine/threonine kinase whose function is thought to be essential for the transduction of mitogenic signals. MAP kinase is activated by phosphorylation induced by a variety of extracellular stimuli, and its direct upstream activator has been identified. Using amphibian and mammalian systems, we show here that ras can activate MAP kinase and its activator. Injection of v-Ha-ras p21 into Xenopus immature oocytes activated both MAP kinase and maturation-promoting factor (MPF) activities. The activation of MAP kinase preceded that of MPF, demonstrating that ras activates MAP kinase in an MPF-independent pathway. Moreover, we found that the MAP kinase activator is also activated in ras-injected oocytes. Activation of MAP kinase and its activator occurred also when the v-Ki-ras gene was conditionally induced in rat fibroblastic 3Y1 cells. Furthermore, we observed that ras activated MAP kinase and its activator in a cell-free system prepared from Xenopus oocytes. Using an antibody against the Xenopus 45-kDa MAP kinase activator, we demonstrated that the 45-kDa activator molecule was activated by ras. These findings suggest that the MAP kinase activator/MAP kinase system may be the downstream components of ras signal transduction pathways. 相似文献
11.
Hou Y Lascola J Dulin NO Ye RD Browning DD 《The Journal of biological chemistry》2003,278(19):16706-16712
The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG. 相似文献
12.
Studies with protein kinase C inhibitors presently available cannot elucidate the role of protein kinase C in the activation of NADPH oxidase 总被引:2,自引:0,他引:2
The effects of various protein kinase C (PKC) inhibitors on NADPH oxidase (NO) activation by the phorbol ester PMA and by the chemotactic peptide FMLP were studied. H-7 reduced the effects of both stimuli in human neutrophils (HN) and HL-60 cells by 13-63%. Polymyxin B did not inhibit NO activation by PMA and FMLP in HN and reduced the effects of both stimuli in HL-60 cells by 27-55%. Retinal and retinoic acid enhanced the effects of PMA and FMLP in HL-60 cells and of FMLP in HN up to 4.5-fold. In contrast, retinoic acid inhibited the effect of PMA in HN. In the presence of cytochalasin B, retinal inhibited the effect of FMLP in HN, whereas retinoic acid inhibited NO activation by FMLP in both cell types. The dual PKC/calmodulin inhibitors trifluoperazine and W-7 abolished NO activation by PMA and FMLP in HN and HL-60 cells. Thus, the effects of PKC inhibitors on NO activation exhibit (1) cell type specificity, (2) stimulus dependency and (3) no correlation with in vitro inhibition of PKC. Our results suggest that studies with PKC inhibitors presently available cannot clarify the role of PKC in NO activation. 相似文献
13.
Different combinations of cloned rat brain subunits of the GABAA receptor were expressed in Xenopus oocytes. The effect of the phorbol ester PMA, an activator of protein kinase C, on the expressed GABA-gated ion current was determined. Ion currents were diminished by beta-PMA, but not by the control substance alpha-PMA, irrespective of the subunit combination studied. The mechanism of current decrease was investigated in more detail for the subunit combination alpha 5 beta 2 gamma 2. The reversal potential of the current remained unaffected, while the maximal current amplitude was decreased and the apparent Ka for GABA-dependent channel gating was shifted to higher concentrations. 相似文献
14.
15.
《Biochemical and biophysical research communications》1986,134(1):305-312
Enucleated, granule-free neutrophil cytoplasts, which in hypotonic media fully release cytosolic components and generate ghosts, have been used to study the cell localization of protein kinase C (PK-C). Treatment of cytoplasts with phorbol myristate acetate, a potent activator of neutrophil functions, triggers translocation of PK-C from the cytosol to the plasma membrane, with an activity recovery of 83 ± 16%. In the ghost fraction, PK-C catalyzes the phosphorylation of polypeptides with an apparent mol. wt. of 115K, 89K, 79K, 62K, 47K and 19K. From the plasma membrane PK-C can be extracted in an active form by Triton X-100 but not by EGTA. Translocation of PK-C is already evident at 5 sec and plateaus at about 50 sec. Activation of plasmalemmal, O2− generating NADPH oxidase by the phorbol ester is delayed by about 20 sec with respect to the activation of PK-C. Dose/response experiments show that the pattern of activation of O2− generation by cytoplasts strictly superimposes with the pattern of PK-C translocation. 相似文献
16.
Caroline Sirichandra Dan Gu Heng-Cheng Hu Sangmee Lee Benoît Valot Jeffrey Leung June M. Kwak 《FEBS letters》2009,583(18):2982-2986
The plant hormone abscisic acid (ABA) triggers production of reactive oxygen species (ROS) in guard cells via the AtrbohD and AtrbohF NADPH oxidases, leading to stomatal closure. The ABA-activated SnRK2 protein kinase open stomata 1 (OST1) (SRK2E/SnRK2.6) acts upstream of ROS in guard cell ABA signaling. Here, we report that OST1 phosphorylates Ser13 and Ser174 on AtrbohF. In addition, substitution of Ser174 to Ala results in a ∼40% reduction in the phosphorylation of AtrbohF by OST1. We also show that OST1 physically interacts with AtrbohF. These results provide biochemical evidence suggesting that OST1 regulates AtrbohF activity.
Structured summary
MINT-7260179, MINT-7260147, MINT-7260165: OST1 (uniprotkb:Q940H6) phosphorylates (MI:0217) ATRBOHF (uniprotkb:O48538) by protein kinase assay (MI:0424)MINT-7260208: OST1 (uniprotkb:Q940H6) and ATRBOHF (uniprotkb:O48538) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809) 相似文献17.
Emanuele Papini Miroslawa Grzeskowiak Paolo Bellavite Filippo Rossi 《FEBS letters》1985,190(2):204-208
A protein of 31.5 kDa belonging to the NADPH oxidase of neutrophils was phosphorylated following stimulation of the cells with phorbol myristate acetate. The same protein was phosphorylated in vitro in the presence ofcytosol and of Ca2+ and phosphatidylserine. The phosphorylation in vitro of the 31.5 kDa protein was increased by phorbol myristate acetate and was inhibited by trifluoperazine. The data are compatible with an involvement of protein kinase C in the activation of NADPH oxidase.
NADPH oxidase Cytochrome b−245 Phosphorylation Protein kinase Neutrophil activation Respiratory burst 相似文献
18.
GTP and GTP-gamma-S enhanced several-fold the NADPH-dependent superoxide production induced by sodium dodecyl sulfate in a cell-free system of pig neutrophils consisting of the membrane fraction and two cytosolic fractions separated by gel filtration. The enhanced activity was decreased by the addition of GDP in a dose-dependent manner, but 70% of the activity in the absence of GTP remained even at 1 mM GDP. Only one cytosol fraction besides the membrane fraction was required for the activation in the presence of GTP. The cytosol fraction was analyzed by chromatography on 2',5'-ADP agarose and two components responsible for the GTP-dependent and independent activation were separated. These results suggest that at least two pathways are available for the activation of superoxide production in the cell-free system of pig neutrophils. 相似文献
19.
P Dieter 《FEBS letters》1992,298(1):17-20
Activation of the superoxide-generating NADPH oxidase by phorbol ester or zymosan induced a cytoplasmic acidification when liver macrophages were incubated in sodium-free media or in the presence of amiloride. Staurosporine or desensitization of protein kinase C inhibited phorbol ester- and zymosan-induced pH changes and generation of superoxide. The intracellular pH remained unchanged in cells incubated in physiological sodium media. Ionomycin and arachidonic acid did not induce a change in intracellular pH or a generation of superoxide. Fluoride, which has been shown to induce a translocation of protein kinase C in these cells, did not elicit superoxide generation but induced a decrease in intracellular pH. These experiments support (1) a role of the Na+/H+ antiporter in macrophages as a metabolic regulator of intracellular pH upon stimulation of the superoxide-generating NADPH oxidase, and (2) suggest an involvement of protein kinase C in this process. 相似文献
20.
R W Erickson P Langel-Peveri A E Traynor-Kaplan P G Heyworth J T Curnutte 《The Journal of biological chemistry》1999,274(32):22243-22250
The superoxide-generating neutrophil NADPH oxidase can be activated in cell-free reconstitution systems by several agonists, most notably arachidonic acid and the detergent sodium dodecyl sulfate. In this study, we show that both phosphatidic acids and diacylglycerols can serve separately as potent, physiologic activators of NADPH oxidase in a cell-free system. Stimulation of superoxide generation by these lipids was dependent upon both Mg(2+) and agonist concentration. Activation of NADPH oxidase by phosphatidic acids did not appear to require their conversion to corresponding diacylglycerols by phosphatidate phosphohydrolase, since diacylglycerols were much slower than phosphatidic acids to activate the system and required the presence of ATP. Stimulation of the oxidase by dioctanoylglycerol proved to be by a means other than the activation of protein kinase C. Instead, dioctanoylglycerol was converted to dioctanoylphosphatidic acid by an endogenous diacylglycerol kinase present in the cell-free reaction system. This conversion was sensitive to the diacylglycerol kinase inhibitor R59949 and explains the markedly slower kinetics of activation and the novel ATP requirement seen with dioctanoylglycerol. The level of dioctanoylphosphatidic acid formed was suboptimal for NADPH oxidase activation but could synergize with the unmetabolized dioctanoylglycerol to activate superoxide generation. 相似文献