首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kitada  Yasuyuki 《Chemical senses》1994,19(6):641-650
NiCl2 induces a response to cboline Cl and enhances the responseto CaCl2 in water-sensitiv fibers (water fibers) of the frogglossopharyngeal nerve. The Ni2+-induced choline+ response wasinhibited by Ca2+ ions and, conversely, the enhanced Ca2+ responseby Ni2+ ions was inhibited by choline+ ions. Hence, there existsa mutual antagonism between Ca2+ and choline+ ions. In the presentstudy, the inhibition of the Ni2+-induced choline+ responseby Ca2+ ions was investigated quantitatively. The assumptionwas made that receptors for choline (XCh) exist and that bindingof a choline+ ion to XCh, brings about a neural response. Itwas further assumed that the magnitude of the neural responseis proportional to the amount of choline-XCh, complex minussome constant (the threshold concentration of the choline-XCh,complex). The results from analysis of double-reciprocal plotwere consistent with the hypothesis that Ca2+ ions compete withcholine+ ions for XCh,. The dissociation constants for the choline-XCh,complex and the CaXCh, complex were obtained to be 0.6 M and7.4 x 10-5 M, respectively. This result indicates that the affinitiesof XCh, for choline+ and Ca2+ ions are very different. Furthermore,Mg2+ ions did not affect the Ni2+-induced choline+ response,an indication that the affinity of XCh, is not charge-specific,but is chemically specific. The identification of a competitiveinhibitor of the choline+ response provide* evidence for existenceof a choline-specific receptor at the surface of taste cellsthat are innervated by the water fibers of the frog glossopharyngealnerve. Differences between the features of the response to cholineCl in the chorda tympani nerve of the rat and those in the frogglossopharyngeal nerve are discussed.  相似文献   

2.
Kitada  Yasuyuki 《Chemical senses》1994,19(3):265-277
Fibers of the frog glossopharyngeal nerve (water fibers) thatare sensitive to water also respond to CaCl2, MgCl2 and NaCl.In the present study, interaction among cations (Ca2+, Mg2+and Na+) on taste cell membrane in frogs was studied using transitionmetals (NiCl2, CoCl2 and MnCl2), which themselves are barelyeffective in producing neural response at concentrations below5 mM. Unitary discharges from single water fibers were recordedfrom fungiform papillae with suction electrode. Transition metalions (0.05–5.0 mM) had exclusively enhancing effects onthe responses to 50 mM Ca2+, 100 mM Mg2+ and 500 mM Na+. Theeffects of transition metal ions were always reversible. Therank order of effectiveness of transition metals at 1 mM inthe enhancement of the responses to 50 mM CaCl2, 100 mM MgCl2and 500 mM NaCl was NiCl2 > CoCl2 > MnCl2. The concentrationof transition metal ions effective to enhance salt responsewas almost the same among Ca2+, Mg2+ and Na+ responses. Theresults suggest that a common mechanism is involved in the enhancementof Ca2+, Mg2+ and Na+ taste responses. The enhanced Mg2+ responseand the enhanced Na+ response were greatly inhibited by theaddition of Ca2+ ions, and the enhanced Ca2+ response was inhibitedby the addition of Mg2+ or Na+ ions, suggesting that competitiveantagonism occurs between Ca2+ and Mg2+ ions and between Ca2+and Na+ ions in the presence of Ni2+ ions. Ni2+ ions had a dualeffect on the Ca2+ response induced by low concentration (0.1mM) of CaCl2: enhancement at lower concentrations (0.02–0.1mM) of NiCl2 and inhibition at higher concentrations (0.5–5mM)of NiCl2. The present results suggest that transition metalions do not affect the receptor-antagonist complex, but affectonly the receptor-agonist complex.  相似文献   

3.
Single water fibers of the frog glossopharyngeal nerve respondto relatively high concentrations of NaCl (>80 mM). NiCl2at 1 mM enhanced the Na+ response and reduced the thresholdconcentration for NaCl to 20 mM. CaCl2 at 0.5–1 mM inducedan inhibition of the Ni2+-enhanced response to Na+ ions. A quantitativeexplanations for these results is provided by the hypothesisthat Ni2+ ions secondarily affect a sodium receptor or channel(designated XNa*) that is responsible for the Na+ response andthat Ca2+ ions inhibit the Ni2+-enhanced response to Na+ ionsby competing with Na+ ions for XNa*. Double-reciprocal plotsof the experimental data indicate that the affinity of XNa*for both Na+ ions (agonist) and Ca2+ ions (competitive antagonist)in the presence of 1 mM NiCl2 was five times higher than thepreviously reported values obtained in the absence of NiCl2(Kitada, 1991). Ni2+ ions at 1 mM enhanced the maximal responseto Na+ ions by 190%. It appears that a sodium receptor (or channel)interacts with a Ni2+-binding element that is affected by Ni2+ions and, thus, Ni2+ ions can induce both an increase in theaffinity of the sodium receptor for the respective cations andan enhancement of the Na+ response. Chem Senses 21: 65–73,1996.  相似文献   

4.
Single fibers of the frog glossopharyngeal nerve respond toMgCl2 at concentrations exceeding 10 mM. NiCl2 at 1 mM enhancedthe Mg2+ response. CaCl2 at 0.5–2 mM induced an inhibitionof the Ni2+-enhanced response to Mg2+ ions. A quantitative explanationfor these results is provided by the hypothesis that Ni2+ ionssecondarily affect a magnesium receptor (designated X*Mg) thatis responsible for the Mg2+ response and that Ca2+ ions inhibitthe Ni2+-enhanced response to Mg2+ ions by competing with Mg2+ions for X*Mg. Double-reciprocal plots of the experimental dataindicate that Ni2+ ions do not affect the affinities of X*Mgfor both Mg2+ ions (agonist) and Ca2+ ions (competitive antagonist)appreciably, and that Ni2+ ions at 1 mM enhanced the maximalresponse to Mg2+ ions by 270%. It appears that a magnesium receptorinteracts with an Ni2+-binding element that is affected by Ni2+ions and, thus, Ni2+ ions can induce an enhancement of the Mg2+response. Chem. Senses 22: 613–622,1997.  相似文献   

5.
Kitada  Yasuyuki 《Chemical senses》1994,19(5):401-411
Unitary discharges from single water fibers of the frog glossopharyngealnerve, caused by stimulation with 0.02–5 mM CaSO4, wererecorded from fungiform papillae with a suction electrode. NiSO4at concentrations of 0.2–2 mM, namely, at concentrationsthat are barely effective in producing impulses, had a dualaction on the Ca2+ response: NiSO4 caused both inhibition andenhancement of the Ca2+ response. In the present study, thisdual action of Ni2+ ions on the Ca2+ response was investigatedin detail. Single water fibers yielded a saturation type ofconcentration-response curve for CaSO4, which suggested thatsulfateions do not affect the Ca2+ response. Thus, sulfateswere used as test salts in the present study. At low concentrationsof Ca2+ ions, Ni2+ ions inhibited the Ca2+ response, but athigher concentrations of Co2+ ions they enhanced it. The resultscan be explained quantitatively by the hypothesis that Ni2+ions inhibit the Ca2+ response by competing with Ca2+ ions forthe Ca2+ receptor (Xca) that is responsible for the Ca2+ responseand that Ni2+ ions enhance the Ca2+ response by acting on amembrane element that interacts with Xca. Double-reciprocalplots of the data indicate that the enhancing action of Ni2+ions is saturated at 1–2 mM Ni2+ ions and that Ni2+ ionsat these concentrations increase the maximal response of theCa2+ response by 182%. Dissociation constants for the Ca-Xcacomplex and the Ni-Xca, complex were 4.2 x 10–5 M and7.6 x 10–5 M, respectively. The analysis suggests thatNi2+ ions enhance the Ca2+ response by affecting the Ca-Xcacomplex without altering the affinity of Xca, for Ca2+ ions.  相似文献   

6.
Kitada  Yasuyuki 《Chemical senses》1989,14(4):487-502
In the frog glossopharyngeal nerve, single water fibers respondto low CaCl2 (1–2 mM) and relatively high MgCl2 (100 mM).In the present study, it was found that stimulation by a mixtureof low CaCl2 and relatively high MgCl2 led to a small response.This suggests that the Ca+ response is inhibited by the presenceof Mg2+ and the Mg2+ response is inhibited by the presence ofCa2+. Hence, it is suggested that there are different receptorsites for divalent cations in single water fibers of the frogglossopharyngeal nerve, a calcium receptor site (XCa) responsiblefor the Ca2+ response and a magnesium receptor site (XMg) responsiblefor the Mg2+ response. It has been reported that Mg2+ inhibitsthe Ca2+ response by competing with Ca2+ for XCa (Kitada andShimada, 1980). In the present study, the inhibition of theMg2+ response by Ca2+ was examined quantitatively under theassumption that the magnitude of the neural response is proportionalto the amount of MgXMg complex minus a constant (the thresholdconcentration of the MgXMg complex). The results obtained indicatethat Ca2+ competes with Mg2+ for XMg. The apparent dissociationconstants for MgXMg complex and CaXMg complex, which were obtainedfrom the present study, were 8.0 x 10–2 M and 7.2 x 10–4M, respectively. Thus, competition between Ca+ and Mg2+ forthe distinct receptor sites involved in taste reception wasdemonstrated by the results described in this paper. Since thedivalent cations do not always bring about activation of tastereceptors, the responses to salts in the frog glossopharyngealnerve cannot be explained in terms of changes in the surfacepotential outside the taste cells. The present results suggestthat there exist multiple specific receptor sites for cationsinvolved in salt taste responses, and only the binding of eachseparate cation to its appropriate receptor sites leads to activationof the receptor and the initiation of impulses in sensory nerveendings.  相似文献   

7.
Salivary ions and neural taste responses in the hamster   总被引:2,自引:2,他引:0  
Saliva is a chemically complex fluid that bathes oral surfacesand may affect early events in mammalian gustation. We measuredchorda tympani responses to taste stimuli in hamsters (Mesocricetusauratus) while their tongues were adapted to either water, artificialsaliva or natural saliva. Artificial saliva on the tongue loweredneural responses to taste stimuli that were present in the artificialsaliva and to those stimuli that cross-adated with salivarycomponents. Changing from a water-adapted tongue to one soakedwith pilocarpine-stimulated saliva from donor hamsters led tosignificantly smaller responses to NaCl. Responses to sucrose,NH4Cl and quinine were unaffected. Chemical analysis of hamstersaliva revealed ‘normal’ mammalian levels of K+,Ca2+ and Mg2+, but unexpectedly low levels of Na+ and Cl.  相似文献   

8.
With slight modifications, conventional assay procedures forK+, Na+, Ca2+, Mg2+, Cl, NO3, H2PO4, fructoseand fructose-yielding saccharides, and glucose were applicableto the extract of Phaseolus pulvini. About 10 ml of a hot-waterextract from about 30 mg fresh weight of the pulvini was sufficientfor separate measurement of the ions and saccharides named above. (Received August 7, 1979; )  相似文献   

9.
Water protons in hypocotyl tissues from etiolated seedlingsof Vigna radiata that were exposed to temperature stress showedcharacteristic relaxation behaviors for 1H-NMR. Cold stresstreatment (0C) caused gradual prolongation of NMR relaxationtimes (T1). After exposure of tissues to cold stress for 24h, T1 returned to the initial value as a result of subsequentincubation at normal temperature (20C). By contrast, heat stresstreatment (40C) induced a time-dependent decrease in T1, whichdid not return completely to the initial value upon subsequentincubation at 20C after exposure to heat stress for 4 h. Weexamined changes in various physical factors that influencethe response of T1 to temperature stress, namely, water contentand the concentrations of protein, diamagnetic (K+, Na+, Ca2+and Mg2+) and paramagnetic (Mn2+ and Fe2+) ions in the tissues.From the relationships between T1 and these factors in vitro,we could not interpret the responses of T1 to the temperaturestress only in terms of a change in water content. A synergisticeffect of an Mn2+ -protein complex and pH might be essentialfor the mechanism of changes in T1 that are due to cold stress.The influence of heat stress on structural water in tissuesis discussed in terms of water-protein interactions. (Received December 28, 1992; Accepted May 6, 1993)  相似文献   

10.
Effects of ions on the orientation of cortical micro-lubules(MTs) in Spirogyra cells were studied. After depo-lymerizalionwith amiprophos-methyl (APM), MTs were allowed to reorganizein NaCI solutions of various concentrations. As the concentrationof NaCI increased, the frequency of cells that had oblique MTsincreased. When cells in NaCI solution were transferred intoartificial pond water (APW) and incubated for 6 h, all the MTschanged to become transverse to the longitudinal axis of thecell. KC1 and MgCl2 also had effects on the orientation of MTs.However, NH4Cl, CaCl2;, CoCl2, and Co(NO3)2 did not show anyeffect. These results suggest that Na+, K+, and Mg2+have effectson MT orientation and that NH+4, Ca2+, Co2+, Cl, andNO3 have little effect. When MTs were reorganized ineither NaCl or KCl solutions, all the oblique MTs were organizedinto an S-helix. In contrast, some of the oblique MTs were foundas a Z-helix in the cells incubated in MgCl2 or mannitol solutions.These results suggest that effects of Na+ and K+ on the orientationof MTs are not the same as those of Mg2+ and mannitol. Theseresults provide the first evidence that ions are involved inthe orientation of MTs in algae. (Received January 27, 1998; Accepted August 10, 1998)  相似文献   

11.
Cytoplasmic concentration of Mg2+([Mg2+]i) was measured with a fluorescentindicator furaptra in ventricular myocytes enzymatically dissociatedfrom rat hearts (25°C). To study Mg2+ transport acrossthe cell membrane, cells were treated with ionomycin inCa2+-free (0.1 mM EGTA) and high-Mg2+ (10 mM)conditions to facilitate passive Mg2+ influx. Rate of riseof [Mg2+]i due to the net Mg2+influx was significantly smaller in the presence of 130 mMextracellular Na+ than in its absence. We also tested theextracellular Na+ dependence of the net Mg2+efflux from cells loaded with Mg2+. After[Mg2+]i was raised by ionomycin and highMg2+ to the level 0.5-0.6 mM above the basal value(~0.7 mM), washout of ionomycin and lowering extracellular[Mg2+] to 1.2 mM caused rapid decline of[Mg2+]i in the presence of 140 mMNa+. This net efflux of Mg2+ was completelyinhibited by withdrawal of extracellular Na+ and waslargely attenuated by imipramine, a known inhibitor of Na+/Mg2+ exchange, with 50% inhibition at 79 µM. The relation between the rate of net Mg2+ efflux andextracellular Na+ concentration([Na+]o) had a Hill coefficient of 2 and[Na+]o at half-maximal rate of 82 mM. Theseresults demonstrate the presence of Na+ gradient-dependentMg2+ transport, which is consistent withNa+/Mg2+ exchange, in cardiac myocytes.

  相似文献   

12.
Kitada  Yasuyuki 《Chemical senses》1991,16(1):95-104
Single water fibers of the frog glossopharyngeal nerve respondto low concentrations of CaCl2 (1–2 mM) and to relativelyhigh concentrations of NaCl(>80 mM). However, stimulationby a mixture with a low concentration of CaCl2 and relativelyhigh concentration of NaCl gives rise to only a small response,suggesting that the effects of Ca2+ and Na+ are mutually antagonistic.It has been reported that Na+ inhibits the response to Ca2+by competing with Ca2+ for a calcium receptor site (XCa; Kitadaand Shimada, 1980). In the present study, it was found tha Ca2+inhibited the response to Na+. Therefore, the sodium receptorsite (XNa) responsible for the response to Na is different fromXCa. The inhibition of the response to Na+ by Ca2+ was examinedquantitatively on the assumption that the magnitude of the neuralresponse is proportinal to the amount of NaXNa complex minusa constant (the threshold concentration of the NaXNa complex).The results obtained indicate that Ca2+ competes with Na+ forXNa. The apparent dissociation constants for the NaXNa complexand the CaXNa complex obtained from the present study were 1.0M and 1.2 x 10-3 M, respectively, XNa as proposed here, doesnot represent simply a binding site for cations since therecan be competition for XNa by an antagonistie cation. The highaffinity of XNa for Ca2+ suggests that XNa is a specific receptorsite involved in salt-taste reception. Since Mg2+ did not affectthe response to Na+, the affinity of XNa for cations is notcharge-specific but is, rather, chemically specific. The presentresults indicate that both Ca2+ and Na+ have a dual action,being involved both in excitation and in inhibition, in waterfibers of the frog glossopharyngeal nerve.  相似文献   

13.
H+-translocating ATPase and pyrophosphatase (PPase) associatedwith the tonoplast of Chara corallina were isolated with theaid of a perfusion technique, and the effects of ions on theiractivities were studied. All the alkali metal cations testedstimulated the ATPase and ATPdependent H+ pumping activitiesonly by 10 to 40%. Anions, on the other hand, strongly affectedthe activities. Potassium salts of Cl- and Br- stimulated them,while F- and NO3- inhibited them. By contrast, the H+-translocatingPPase was insensitive to anions but sensitive to cations. Theorder of cation stimulation was Rb+=K+>Cs+>Na+=Li+>choline+.NO3- (50 mil), thought to be a specific inhibitor of the tonoplast-typeH+-ATPase, inhibited the ATPdependent H+ pumping almost completelybut the ATPase activity by only about 50%. Na+ inhibited thePP1-dependent H+ pumping (I5O=5OmM) in the presence of 50 mMKCl but not the ATP-dependent one. The PPase was more sensitiveto F- (I50=400µM) than the ATPase. Both the H+-ATPaseand the H+-PPase required Mg2+ for their activities, althoughan excess was inhibitory to both. The different sensitivitiesof the PP1-dependent and the ATP-dependent H+- pumping enzymesto ions correspond to the tonoplast enzymes of higher plantsand may be used as "markers" to distinguish between these enzymesin characean cells (Received October 2, 1987; Accepted May 18, 1988)  相似文献   

14.
Murata  Takao 《Plant & cell physiology》1976,17(6):1099-1109
Phosphomannomutase [Glazer et al.: Biochim. Biophys. Acta 33:522–625 (1959)] was purified 1700-fold in a 39% yieldfrom cell-free extract of konjak (Amorphophallus konjac C. Koch)corms. The molecular weight of the enzyme as determined by gelfiltration was about 62,000. The enzyme required both Mg2+ and-D-glucose-l,6-bisphosphate for activity, although Mg2+ waspartially replaceable by either Co2+ or Ni2+. An apparent equilibriumconstant, Keq=(mannose-6-phosphate) (mannose-1-phosphate), wasdetermined to be 8.5. Activity was maximal at pH 6.5 to 7.0.Activation energy was 11.1 kcal/mole. The enzyme was the moststable at pH 7.5. The addition of substrate or cofactor markedlyincreased enzyme stability toward heat denaturation. The enzymewas more labile to heat than phosphoglucomutase from konjakcorms. Treatment with various metal ions in Tris buffer inhibited theenzyme. Cu2+ and Zn2+ were the most potent inhibitors amongthe metal ions tested, while Co2+ and Ni2+ were weak. When theenzyme was treated with metal ions in the presence of histidinebuffer, Cu2+ and Zn2+ showed no inhibitory effect on the enzyme,whereas Be2+ inhibited it to an extent similar to that in Trisbuffer. Plots of 1/v versus l/(mannose-l-phosphate) at different fixedconcentrations of glucose-1,6-bisphosphate and 1/v versus 1/(glucose-1,6-bisphosphate)at different fixed concentrations of mannose-1-phosphate wereseries of converging lines. Mannose-1-phosphate at high concentrationswas found to inhibit the enzyme competitively with respect toglucose-l,6-bisphosphate. Apparent Km and K1 values for mannose-1-phosphatewere calculated to be 0.2 mM and 1.2 mM, respectively. The Kmvalue for glucose-1,6-bisphosphate was 1.8 µM. 1This paper constitutes part 5 of a series of studies on konjakmannan biosynthesis. (Received May 24, 1976; )  相似文献   

15.
Inskeletal muscle fibers, the intracellular loop between domains II andIII of the 1-subunit of the dihydropyridine receptor (DHPR) may directly activate the adjacent Ca2+ releasechannel in the sarcoplasmic reticulum. We examined the effects ofsynthetic peptide segments of this loop on Ca2+ release inmechanically skinned skeletal muscle fibers with functional excitation-contraction coupling. In rat fibers at physiological Mg2+ concentration ([Mg2+]; 1 mM), a20-residue skeletal muscle DHPR peptide[AS(20);Thr671-Leu690; 30 µM], shown previously toinduce Ca2+ release in a triad preparation, caused onlysmall spontaneous force responses in ~40% of fibers, although itpotentiated responses to depolarization and caffeine in all fibers. TheCOOH-terminal half of AS(20)[AS(10)] induced much larger spontaneousresponses but also caused substantial inhibition of Ca2+release to both depolarization and caffeine. Both peptides induced orpotentiated Ca2+ release even when the voltage sensors wereinactivated, indicating direct action on the Ca2+ releasechannels. The corresponding 20-residue cardiac DHPR peptide [AC(20);Thr793-Ala812] was ineffective, but itsCOOH-terminal half [AC(10)] had effects similar to AS(20). In the presence of lower[Mg2+] (0.2 mM), exposure to eitherAS(20) or AC(10) (30 µM) induced substantial Ca2+ release. PeptideCS (100 µM), a loop segment reported to inhibit Ca2+ release in triads, caused partial inhibition ofdepolarization-induced Ca2+ release. In toad fibers, eachof the A peptides had effects similar to or greater than those in ratfibers. These findings suggest that the A and C regions of the skeletalDHPR II-III loop may have important roles in vivo.

  相似文献   

16.
Tobacco RuDP carboxylase is completely soluble in 0.07 M NaClor 0.01 M Na2SO2, but is almost completely insoluble in salt-freesolutions at 40°C; the solubility seeming to depend on ionicstrength. Lowering the temperature increased solubility of theprotein. The solubility in 0.01–0.04 M NaCl at 0°Cwas more than double that at 40°C. RuDP solubilized theprotein even in a salt-free medium. The protein became insolubleagain on the addition of various divalent cations. Effectivenessof the metal ions was Zn++> Ni++>Co++>Mn++>Mg++>Ca++.Although most of the metal ions inhibited (Mg++ activated) enzymeactivity, no direct correlation was found between the degreeof solubility depression and the degree of enzyme inhibition. (Received October 4, 1971; )  相似文献   

17.
Osmotic and Ionic Regulation in Chara L-cell Fragments   总被引:1,自引:0,他引:1  
Ion absorption from rather complicated artificial pond water(APW) by cell fragments having a lower osmotic pressure thanthe intact internodal cell (L-cell fragments) was studied. L-cellfragments were prepared by taking advantage of trans cellularosmosis and ligating the cell with thread. The results wereas follows: (1) L-cell fragments absorbed more K+ than Na+ fromaKCL + NaCl mixture in the presence of Ca2+, Mg2+ and SO24 inthe light; (2) the influx of KCI was larger than that of KNO3;(3) the amount of positive charge carried by K+, Na+ and Mg2+across the cell membrane balanced well with the amount of negativecharge carried by Cl in Cl-containing and NO3-free APW; (4) no conclusion could be made as to whether ornot the rule of electro neutrality held for the K+, Na+, Ca2+and NO3 fluxes across the cell membrane, because dilutedKNO3 is unstable; (5) L-cell fragments in KCl-containing APWsurvived longer than those in KNO3-containing and Cl-free APW; (6) after incubation in KNO3-containing and Cl-freeAPW, L-cell fragments absorbed a great amount of KCI immediatelyafter being transferred to KCl-containing and NO3 -freeAPW; and (7) lowering the turgor pressure of the intact cellby raising the external osmotic pressure did not induce ionflux into the cell. Thus, we concluded that the L-cell fragmentsabsorbed ions from the external solution not because of theirlower turgor pressure, but because of the diluted ion concentrationof the cytoplasm and the vacuole. The electroneutrality ruleheld, at least, for K+, Na+, Mg2+ and Cl influxes acrossthe cell membrane inthe KCl-containing and NO3-free APW.These results were analyzed on the basis of an extended poremodel which presumed the existence of ATP-dependent processesin the membrane, and suggested that K+, Na+ and Mg2+ inflowsinto an L-cell fragment are likely to be induced by active Clinflow. (Received May 18, 1987; Accepted September 29, 1987)  相似文献   

18.
We investigated the role of intracellular Mg2+(Mgi2+) on the ATP regulation ofNa+/Ca2+ exchanger in squid axons and bovineheart. In squid axons and nerve vesicles, the ATP-upregulated exchangerremains activated after removal of cytoplasmic Mg2+, evenin the absence of ATP. Rapid and complete deactivation of theATP-stimulated exchange occurs upon readmission ofMgi2+. At constant ATP concentration, the effectof intracellular Mg2+ concentration([Mg2+]i) on the ATP regulation of exchangeris biphasic: activation at low [Mg2+]i,followed by deactivation as [Mg2+]i isincreased. No correlation was found between the above results and thelevels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] measured innerve membrane vesicles. Incorporation ofPtdIns(4,5)P2 into membrane vesicles activates Na+/Ca2+ exchange in mammalian heart but not insquid nerve. Moreover, an exogenous phosphatase prevents MgATPactivation in squid nerves but not in mammalian heart. It is concludedthat 1) Mgi2+ is an essentialcofactor for the deactivation part of ATP regulation of the exchangerand 2) the metabolic pathway of ATP upregulation of theNa+/Ca2+ exchanger is different in mammalianheart and squid nerves.

  相似文献   

19.
Amakawa  Taisaku 《Chemical senses》1978,3(4):413-422
1) Ca+ + (1 to 10 mM) lowered the binding affinity of sugarreceptor-site for sucrose in the labellar sugar receptor ofthe blowfly, Phormia regina, without changing the maximum-responseamplitude. It also elevated the values of the Hill coefficient(nH) in some degrees. 2) Other divalent cations such as Mg+ +, Ba+ + or Cd+ + alsoshowed almost the same property as above. The sequence of theeffect is as follows: Ba+ +, Mg+ + x Ca+ + x Cd+ +. Trivalentcation, La+ + + (1 mM), changed the value of nH from 1 (La++ +-free) to 2. 3) On the contrary, the action of monovalent cations such asK+ or Na+, of which ionic strength was made the same as thatof the divalents hardly suppressed the response. 4) The results obtained do not support the hypothesis, at leaston the sugar receptor of the fly, that the receptor potentialis attributable to a change of the surface potential (zeta potential)as is proposed for the frog sugar receptor.  相似文献   

20.
Stimulation of erythrocyte phosphatidylserine exposure by lead ions   总被引:4,自引:0,他引:4  
Pb+ intoxication causes anemia that is partially due to a decreased life span of circulating erythrocytes. As shown recently, a Ca2+-sensitive erythrocyte scramblase is activated by osmotic shock, oxidative stress, and/or energy depletion, leading to exposure of phosphatidylserine at the erythrocyte surface. Because macrophages are equipped with phosphatidylserine receptors, they bind, engulf, and degrade phosphatidylserine-exposing cells. The present experiments were performed to explore whether Pb+ ions trigger phosphatidylserine exposure of erythrocytes. The phosphatidylserine exposure was estimated on the basis of annexin binding as determined using fluorescence-activated cell sorting (FACS) analysis. Exposure to Pb+ ions [0.1 µM Pb(NO3)2] significantly increased annexin binding. This effect was paralleled by erythrocyte shrinkage, which was apparent on the basis of the decrease in forward scatter in FACS analysis. The effect of Pb+ ions on cell volume was virtually abolished, and the effect of Pb+ ions on annexin binding was blunted after increase of extracellular K+ concentration. Moreover, both effects of Pb+ ions were partially prevented in the presence of clotrimazole (10 µM), an inhibitor of the Ca2+-sensitive K+ channels in the erythrocyte cell membrane. Whole cell patch-clamp experiments disclosed a significant activation of a K+-selective conductance after Pb+ ion exposure, an effect requiring higher (10 µM) concentrations, however. In conclusion, Pb+ ions activate erythrocyte K+ channels, leading to erythrocyte shrinkage, and also activate the erythrocyte scramblase, leading to phosphatidylserine exposure. The effect could well contribute to the reported decreased life span of circulating erythrocytes during Pb+ intoxication. cell volume; annexin; apoptosis; Gardos channel; calcium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号