首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The progression of mammalian gametogenesis requires a precise balance between cell-cycle activities and elimination of defective gametogenic cells to ensure the perpetuation of species. Both spermatogonia and oogonia are stem cell populations committed to meiosis with the aim of generating haploid gametes for fertilization. At puberty, mitotically dividing spermatogonial cell cohorts maintain the ability of cell renewal and occupy niches in the seminiferous tubule. In contrast, mitotically dividing oogonial cell cohorts produced in the fetal ovary, are exclusively committed to meiosis and produce primordial follicles housing a primary oocyte surrounded by somatic follicular cells. A consistent physiological event during mammalian gametogenesis is the disposal of spermatogenic cells by apoptosis and ovarian follicles by atresia. Cyclin-dependent kinases (Cdks) and their cyclin partners coordinate the activities of the cell cycle. An additional cell-cycle regulatory component is the centrosome. The centrosome harbors regulatory proteins controlling the normal progression of the cell cycle. Changes in individual centrosome proteins can lead to cell-cycle arrest and a decrease in the genomic protective function of p53 that promotes apoptosis. Disruption of cyclin A1, Cdk2, and Cdk4 expression in transgenic mice results in infertility and gonadal atrophy. Cdk-cyclin complexes interact with regulatory proteins, which may fine-tune the activities of the complex. One of the many regulatory proteins is p12, a 115 amino acid growth suppressor polypeptide designated p12(CDK2AP1), partner of Cdk2 and with binding affinity to DNA polymerase alpha/primase. Overexpression of p12 is associated with testicular and ovarian atrophy without affecting fertility. Ectopic expression of p12 was driven by the keratin 14 promoter. Keratin 14 is the pairing partner of keratin 5 and both keratins are expressed in testis. The efficiency of keratin promoters in driving ectopic gonadal gene expression, the association of gonadal atrophy with the ectopic expression of a Cdk2 regulatory protein and the centrosome, as a reservoir of cell-cycle regulatory proteins, open new experimental opportunities to address still lingering questions concerning cell differentiation and division during mammalian gametogenesis.  相似文献   

4.
CAK1 encodes an essential protein kinase in Saccharomyces cerevisiae that is required for activation of the Cdc28p Cdk. CAK1 also has several CDC28-independent functions that are unique to meiosis. The earliest of these functions is to induce S phase, which is regulated differently in meiosis than in mitosis. In mitosis, Cdc28p controls its own S-phase-promoting activity by signaling the destruction of its inhibitor, Sic1p. In meiosis, Sic1p destruction is signaled by the meiosis-specific Ime2p protein kinase. Our data show that Cak1p is required to activate Ime2p through a mechanism that requires threonine 242 and tyrosine 244 in Ime2p's activation loop. This activation promotes autophosphorylation and accumulation of multiply phosphorylated forms of Ime2p during meiotic development. Consistent with Cak1p's role in activating Ime2p, cells lacking Cak1p are deficient in degrading Sic1p. Deletion of SIC1 or overexpression of IME2 can partially suppress the S-phase defect in cak1 mutant cells, suggesting that Ime2p is a key target of Cak1p regulation. These data show that Cak1p is required for the destruction of Sic1p in meiosis, as in mitosis, but in meiosis, it functions through a sporulation-specific kinase.  相似文献   

5.
We have identified six protein kinases that belong to the family of cdc2-related kinases in Caenorhabditis elegans. Results from RNA interference experiments indicate that at least one of these kinases is required for cell-cycle progression during meiosis and mitosis. This kinase, encoded by the ncc-1 gene, is closely related to human Cdk1/Cdc2, Cdk2 and Cdk3 and yeast CDC28/cdc2(+). We addressed whether ncc-1 acts to promote passage through a single transition or multiple transitions in the cell cycle, analogous to Cdks in vertebrates or yeasts, respectively. We isolated five recessive ncc-1 mutations in a genetic screen for mutants that resemble larval arrested ncc-1(RNAi) animals. Our results indicate that maternal ncc-1 product is sufficient for embryogenesis, and that zygotic expression is required for cell divisions during larval development. Cells that form the postembryonic lineages in wild-type animals do not enter mitosis in ncc-1 mutants, as indicated by lack of chromosome condensation and nuclear envelope breakdown. However, progression through G1 and S phase appears unaffected, as revealed by expression of ribonucleotide reductase, incorporation of BrdU and DNA quantitation. Our results indicate that C. elegans uses multiple Cdks to regulate cell-cycle transitions and that ncc-1 is the C. elegans ortholog of Cdk1/Cdc2 in other metazoans, required for M phase in meiotic as well as mitotic cell cycles.  相似文献   

6.
In budding yeast, the meiosis-specific protein kinase Ime2 is required for normal meiotic progression.Current evidence suggests that Ime2 is functionally related to Cdc28, the major cyclin-dependent kinase in yeastthat is essential for both cell cycle and meiosis. We have previously reported that a natural target of Ime2 activityis replication protein A (RPA), the cellular single-stranded DNA-binding protein that performs critical functionsduring DNA replication, repair, and recombination. Ime2-dependent RPA phosphorylation first occursearly in meiosis and targets the middle subunit of the RPA heterotrimeric complex (Rfa2). We now demonstratethat Rfa2 serine 27 (S27) is required for Ime2-dependent Rfa2 phosphorylation in vivo. S27 is also required forRfa2 phosphorylation in vitro catalyzed by immunoprecipitated Ime2. In addition, Ime2 mediates in vitro phosphorylationof a short peptide containing Rfa2 amino acids 23 through 29, thereby providing evidence that S27itself is the phosphoacceptor. Phosphorylation site mapping supports this conclusion, as mass spectrometryanalysis has revealed that at least three residues within Rfa2 amino acids 2 through 35 become phosphorylatedspecifically during meiosis. Although S27 is embedded in a motif that is recognized by several protein kinases,this sequence is not a typical target of cyclin-dependent kinases. Therefore, the mechanism underlying Ime2substrate recognition could differ from that of Cdc28.  相似文献   

7.
The cyclin-dependent kinase Cdk1 and the related kinase Ime2 act in concert to trigger progression of the meiotic cell cycle in the yeast Saccharomyces cerevisiae. These kinases share several functions and substrates during meiosis, but their regulation seems to be clearly different. In contrast to Cdk1, no cyclin seems to be involved in the regulation of Ime2 activity. Ime2 is a highly unstable protein, and we aimed to elucidate the relevance of Ime2 instability. We first determined the sequence elements required for Ime2 instability by constructing a set of deletions in the IME2 gene. None of the small deletions in Ime2 affected its instability, but deletion of a 241 amino acid C-terminal region resulted in a highly stabilized protein. Thus, the C-terminal domain of Ime2 is important for mediating protein instability. The stabilized, truncated Ime2 protein is highly active in vivo. Replacement of the IME2 gene with the truncated IME2ΔC241 in diploid strains did not interfere with meiotic nuclear divisions, but caused abnormalities in spore formation, as manifested by the appearance of many asci with a reduced spore number such as triads and dyads. The truncated Ime2 caused a reduction of spore number in a dominant manner. We conclude that downregulation of Ime2 kinase activity mediated by the C-terminal domain is required for the efficient production of normal four-spore asci. Our data suggest a role for Ime2 in spore number control in S. cerevisiae.  相似文献   

8.
Multiple cyclin-dependent kinases (CDKs) control eukaryotic cell division, but assigning specific functions to individual CDKs remains a challenge. During the mammalian cell cycle, Cdk2 forms active complexes before Cdk1, but lack of Cdk2 protein does not block cell-cycle progression. To detect requirements and define functions for Cdk2 activity in human cells when normal expression levels are preserved, and nonphysiologic compensation by other CDKs is prevented, we replaced the wild-type kinase with a version sensitized to specific inhibition by bulky adenine analogs. The sensitizing mutation also impaired a noncatalytic function of Cdk2 in restricting assembly of cyclin A with Cdk1, but this defect could be corrected by both inhibitory and noninhibitory analogs. This allowed either chemical rescue or selective antagonism of Cdk2 activity in vivo, to uncover a requirement in cell proliferation, and nonredundant, rate-limiting roles in restriction point passage and S phase entry.  相似文献   

9.
10.
Activation of growth factor receptors by ligand binding initiates a cascade of events leading to cell growth and division. Progression through the cell cycle is controlled by cyclin-dependent protein kinases (Cdks), but the mechanisms that link growth factor signaling to the cell cycle machinery have not been established. We report here that Ras proteins play a key role in integrating mitogenic signals with cell cycle progression through G1. Ras is required for cell cycle progression and activation of both Cdk2 and Cdk4 until approximately 2 h before the G1/S transition, corresponding to the restriction point. Analysis of Cdk-cyclin complexes indicates that Ras signaling is required both for induction of cyclin D1 and for downregulation of the Cdk inhibitor p27KIP1. Constitutive expression of cyclin D1 circumvents the requirement for Ras signaling in cell proliferation, indicating that regulation of cyclin D1 is a critical target of the Ras signaling cascade.  相似文献   

11.
Mammalian cyclin-dependent kinases   总被引:15,自引:0,他引:15  
  相似文献   

12.
13.
Nuclear pore complexes (NPCs) form channels across the nuclear envelope and provide the sole sites of molecular exchange between the cytoplasm and nucleoplasm. The NPC is a target of a number of post-translational modifications, including phosphorylation, yet the functions of these modifications are ill defined. Here, we have investigated the mitotic specific phosphorylation of a yeast nucleoporin Nup53p. Two kinases were identified that phosphorylate Nup53p: the mitotic kinase Cdk1p/Cdc2p/Cdc28p and the casein kinase Hrr25p. Hrr25p was identified by screening 119 yeast kinases for their ability to phosphorylate Nup53p in vitro. Conditional alleles of Hrr25p support the conclusion that Hrr25p phosphorylates Nup53p in vivo. We further demonstrated using solution binding and affinity purification assays, that Hrr25p directly binds Nup53p in an interaction that is destabilized by the phosphorylation of Nup53p. Consistent with this observation, we observed that Hrr25p moves between distinct locations in the cell during the cell cycle including the nucleus, the cortex of the emerging bud and the spindle pole bodies. Cdk1p also contributes to Nup53p phosphorylation as specific inhibition of Cdk1p or mutation of Cdk1p consensus sites partially blocked its phosphorylation. The ability of nup53 alleles containing Cdk1p site mutations to complement synthetic defects of nup53 Delta nup170 Delta strains is linked to a function for Nup53p in the spindle assembly checkpoint.  相似文献   

14.
The Ime2 protein kinase family in fungi: more duties than just meiosis   总被引:2,自引:0,他引:2  
Ime2 of the budding yeast Saccharomyces cerevisiae belongs to a family of conserved protein kinases displaying sequence similarities to both cyclin-dependent kinases and mitogen-activated protein kinases. Ime2 has a pivotal role for meiosis and sporulation. The involvement of this protein kinase in the regulation of various key events in meiosis, such as the initiation of DNA replication, the expression of meiosis-specific genes and the passage through the two consecutive rounds of nuclear divisions has been characterized in detail. More than 20 years after the identification of the IME2 gene, a recent report has provided the first evidence for a function of this gene outside of meiosis, which is the regulation of pseudohyphal growth. In the last few years, Ime2-related protein kinases from various fungal species were studied. Remarkably, these homologues are not generally required for meiosis, but instead have other specific tasks. In filamentous ascomycete species, Ime2 homologues are involved in the inhibition of fruiting body formation in response to environmental signals. In the pathogenic basidiomycetes Ustilago maydis and Cryptococcus neoformans, members of this kinase family apparently have primary roles in regulating mating. Thus, Ime2-related kinases exhibit an amazing variety in controlling sexual developmental programs in fungi.  相似文献   

15.
Entry into and precise progression through the cell cycle depends on the sequential expression and activation of cyclin dependent kinases (CDK). In accord, CDK dysregulation is a hallmark of many cancers. The function of Cdk2 is still an enigma as in vitro studies revealed that it is required for S phase-entry, whereas in vivo studies showed that Cdk2 is not an essential gene. Moreover, unlike other Cdks, or its cyclin E regulator, Cdk2-overexpressing tumors were reported only in one type of tumor. In this report we used budding yeast as a tool to explore Cdk2 function. We showed that hCdk2 promoted S phase in cells carrying a temperature-sensitive mutation in yCDK1, albeit, only when expressed at low or moderate levels. Overexpression of hCdk2 resulted in a defect in the G1 to S transition and a reduction in viability. The same phenotypes were observed in cells overexpressing its yeast functional homolog, Ime2, which is a meiosis-specific CDK-like kinase. A genetic interaction with the DNA damage checkpoint was demonstrated by showing an increased toxicity of hCdk2 and Ime2 in RAD53-deleted cells, and delayed Rad53 activation in response to MMS treatment in cells overexpressing hCdk2 or Ime2.  相似文献   

16.
17.
18.
The p57(Kip2) cyclin-dependent kinase inhibitor (CDKi) has been implicated in embryogenesis, stem-cell senescence and pathologies, but little is known of its role in cell cycle control. Here, we show that p57(Kip2) is targeted by the p38 stress-activated protein kinase (SAPK). Phosphorylation of p57(Kip2) at T143 by p38 enhances its association with and inhibition of Cdk2, which results in cell-cycle delay upon stress. Genetic inactivation of the SAPK or the CDKi abolishes cell-cycle delay upon osmostress and results in decreased cell viability. Oxidative stress and ionomycin also induce p38-mediated phosphorylation of p57 and cells lacking p38 or p57 display reduced viability to these stresses. Therefore, cell survival to various stresses depends on p57 phosphorylation by p38 that inhibits CDK activity. Together, these findings provide a novel molecular mechanism by which cells can delay cell cycle progression to maximize cell survival upon stress.  相似文献   

19.
Cyclins regulate the cell cycle by binding to and activating cyclin-dependent kinases (Cdks). Phosphorylation of specific targets by cyclin-Cdk complexes sets in motion different processes that drive the cell cycle in a timely manner. In budding yeast, a single Cdk is activated by multiple cyclins. The ability of these cyclins to target specific proteins and to initiate different cell-cycle events might, in some cases, reflect the timing of the expression of the cyclins; in others, it might reflect intrinsic properties of the cyclins that render them better suited to target particular proteins.  相似文献   

20.
K F Cooper  M J Mallory  J B Smith    R Strich 《The EMBO journal》1997,16(15):4665-4675
The ume3-1 allele was identified as a mutation that allowed the aberrant expression of several meiotic genes (e.g. SPO11, SPO13) during mitotic cell division in Saccharomyces cerevisiae. Here we report that UME3 is also required for the full repression of the HSP70 family member SSA1. UME3 encodes a non-essential C-type cyclin (Ume3p) whose levels do not vary through the mitotic cell cycle. However, Ume3p is destroyed during meiosis or when cultures are subjected to heat shock. Ume3p mutants resistant to degradation resulted in a 2-fold reduction in SPO13 mRNA levels during meiosis, indicating that the down-regulation of this cyclin is important for normal meiotic gene expression. Mutational analysis identified two regions (PEST-rich and RXXL) that mediate Ume3p degradation. A third destruction signal lies within the highly conserved cyclin box, a region that mediates cyclin-cyclin-dependent kinase (Cdk) interactions. However, the Cdk activated by Ume3p (Ume5p) is not required for the rapid destruction of this cyclin. Finally, Ume3p destruction was not affected in mutants defective for ubiquitin-dependent proteolysis. These results support a model in which Ume3p, when exposed to heat shock or sporulation conditions, is targeted for destruction to allow the expression of genes necessary for the cell to respond correctly to these environmental cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号