首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
碳水化合物对昆虫的能量代谢和物质合成具有重要的作用。本研究选用2种一般性生物碱(氢溴酸东莨菪碱和烟碱)以及2种β-葡萄糖苷类化合物(七叶灵和皂角苷), 研究其在不同浓度下对棉铃虫Helicoverpa armigera (Hübner)幼虫体内海藻糖酶活性及相关碳水化合物代谢的影响。结果表明: 用饲喂法处理3龄幼虫96 h后, 皂角苷对棉铃虫幼虫的活体抑制效果明显, 且随添加物浓度增高, 棉铃虫死亡率上升, 10, 20, 40 g/L浓度下棉铃虫的均重分别是0.194, 0.089和0.034 g, 分别为对照的86.99%, 39.91%和15.24%。对海藻糖酶活性及其相关代谢酶的测定结果表明, 2种苷类化合物显著抑制中肠海藻糖酶活性, 饲喂40 g/L皂角苷的试虫中肠海藻糖酶比活力仅是对照组的54.21%; 饲喂30 g/L七叶灵的试虫中肠海藻糖酶比活力为对照组的83.73%。而2种生物碱类化合物显著抑制血淋巴和脂肪体中海藻糖酶活性, 20 g/L氢溴酸东莨菪碱对棉铃虫血淋巴和脂肪体组织的海藻糖酶活性抑制率分别为7.24%和71.43%; 而20 g/L烟碱对试虫血淋巴和脂肪体组织的海藻糖酶活性抑制率为26.29%和33.44%。用氢溴酸东莨菪碱、 烟碱和七叶灵处理试虫后, 血淋巴海藻糖含量都有所增高。4种化合物能够导致试虫糖原磷酸化酶活性变化, 其中, 皂角苷在中肠和脂肪体表现为显著抑制作用, 而随外源化合物浓度变化, 糖原含量和糖原磷酸化酶活性表现为此消彼长关系。饲喂4种植物源化合物的试虫血淋巴中葡萄糖浓度变化和其海藻糖变化一致。本研究证明β-葡萄糖苷类化合物是海藻糖酶抑制剂, 在作为先导化合物进行农药创制开发方面具有重要意义。  相似文献   

2.
In young females of the black scale, Saissetia oleae, the optimum conditions for invertase activity involve a reaction mixture of pH 5.5 and 2% sucrose at 37°C for 60 min; for amylase, pH 6.0 and 0.5% starch at 37°C for 45 min; and for trehalase, pH 5.5 and 1.5% trehalose at 37°C for 60 min. At optimal conditions and using standard enzyme activity units, both invertase and trehalase activities were much higher (about 8-fold) than that of amylase, indicating the importance of these enzymes in food digestion and energy supply.The enzyme activities were strongly affected by various host plants. Trehalase activity in scales reared on potato sprouts was about 3.5- and 4-fold that obtained in scales reared on oleander and citrus plants, respectively. An increase of about 40% for invertase and 60% amylase activity was obtained in scales reared on potato sprouts as compared with those reared on oleander or citrus plants.A good correlation was observed between enzyme activity-especially of trehalase-and scale development. The duration of one generation of the black scale reared on potato sprouts was 2.5 to 3 months, on oleander 4 to 5 months, and on citrus above 6 months. These results suggest that trehalase and to some extent invertase could be used as parameters to assess the adaptability of the black scale to its host plant.  相似文献   

3.
A novel type of trehalose phosphorylase was found in a basidiomycete. Flammulina velutipes . The enzyme catalyzes both the reversible phosphorolysis of trehalose to form α-glucose 1-phosphate and glucose and also the synthesis of trehalose. Comparison of the specific activity of trehalose phosphorylase with that of trehalase suggested that the function of the former enzyme was more important in the fruit-bodies of this fungus.  相似文献   

4.
The response to moderate salt stress of a Scytonema species isolated from a soil crust in the arid region of central Australia was studied. An increase in intracellular trehalose and sucrose concentrations was detected by NMR and HPLC analysis following salt stress, maximal amounts being produced by exposure to 150 mM NaCl after 48 h. When the organism was subsequently returned to normal growth conditions, the cellular concentrations of these solutes decreased. The biosynthesis of trehalose and sucrose was studied and found, in both cases, to involve both sugar phosphate synthase and phosphatase enzymes. The combined synthase activities and the individual phosphatase activities in cell extracts were increased by salt stress. Trehalose phosphorylase was the only catabolic enzyme detected for trehalose; neither trehalase nor phosphotrehalase activities could be detected. This is the first report of trehalose phosphorylase activity in cyanobacteria. Both trehalose and sucrose phosphorylase activities increased in salt-stressed cells, whereas the activity of invertase did not change.  相似文献   

5.
Extracts of Anisakis simplex third (L3) and fourth (L4) larval stages were assayed for protein content and activity and properties of alpha-amylase, glucoamylase and glycogen phosphorylase. Protein content in L4 was twice that in L3. SDS-PAGE applied to both larval stages revealed 22 protein fractions in each, including five stage-specific fractions in each larval stage. The L3 extracts contained three amylase isoenzymes: alpha 1, alpha 2 and alpha 3; their molecular weights were 64, 29 and 21 kDa, respectively. Only one amylase isoenzyme (64 kDa) was found in the L4 extracts. Glycogen in L3 was found to be broken down mostly by hydrolysis because of low glycogen phosphorylase activity. The alpha-amylase activity in L4 was higher than that in L3 by half and the glycogen phosphorylase activity was ten times higher. In addition, the same enzymes isolated from L3 and L4 were found to differ in their properties. These differences could be manifestations of metabolic adaptations of A. simplex larvae to host switch from fish (L3) to mammals (L4), i.e. adaptations to a new habitat.  相似文献   

6.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

7.
高温对家蚕三品系血淋巴中糖水平的影响(英文)   总被引:1,自引:0,他引:1  
家蚕Bombyx mori的两个二化性品系热耐受型NB4D2和热敏感型CSR2均适合于温带气候,而多化性的PM(Pure Mysore) 品系适合于热带气候,将这3种品系5龄幼虫分别置于32℃和36℃的高温下,观察高温对其5龄幼虫至蛹期血淋巴中糖含量及海藻糖酶活性的影响。结果表明: PM幼虫和蛹的死亡率均小于NB4D2和CSR2。在蜕皮期间血淋巴海藻糖水平较高,而葡萄糖水平及海藻糖酶活性较低。32℃和36℃的高温下,幼虫蜕皮期间血淋巴中糖含量及海藻糖酶活性仅在其各自的水平上表现为小幅度的增加。蜕皮后幼虫血淋巴中海藻糖含量显著下降,而葡萄糖含量和海藻糖酶活性显著上升。在较高温度下,蜕皮后幼虫血淋巴中海藻糖含量下降幅度更大,而葡萄糖含量及海藻糖酶活性上升水平也更加显著。25±1℃下取食幼虫血淋巴中葡萄糖含量显著下降,海藻糖含量显著上升;3℃和36℃下PM 和NB4D2取食幼虫血淋巴葡萄糖和海藻糖含量以及海藻糖酶活性增加,而CSR2均减少或降低。吐丝幼虫血淋巴中葡萄糖含量及海藻糖酶活性显著下降,海藻糖小幅度下降。而在较高温度下,耐热型PM 和NB4D2吐丝家蚕血淋巴糖含量含量和海藻糖酶活性明显增加,而热敏感型CSR2的则明显下降。这3种品系蛹发育期的血淋巴糖含量及海藻糖酶活性均下降。在两较高温度下,PM蛹期血淋巴糖和海藻糖酶活性增加,而NB4D2 36℃时增加幅度小于32℃时。对于CSR2,32℃时观察到其血淋巴葡萄糖含量增加,但当环境温度增加到36℃时其血淋巴葡萄糖含量降至正常水平下。然而,当CSR2的蛹置于32℃和36℃时血淋巴海藻糖含量及其酶活性下降,且36℃时下降幅度更大。因此,桑蚕对高温的适应取决于家蚕的品系及发育阶段,并可通过其血淋巴糖及海藻糖酶活性水平进行验证。  相似文献   

8.
为了揭示病原真菌白僵菌Beauveria侵染昆虫过程中如何利用虫体内糖类物质作为自身营养, 本研究测定了布氏白僵菌Beauveria brongniartii (Sacc.) Petch (2382菌株)感染油松毛虫Dendrolimus tabulaeformis Tsai et Liu幼虫后, 虫体血淋巴中酸性海藻糖降解酶活性及海藻糖和葡萄糖含量的变化。油松毛虫4龄幼虫感染菌株孢子悬浮液后, 血淋巴中酸性海藻糖降解酶的活性明显高于对照组, 感染后第3天酶活性达到最大值(0.2786 U/mg), 此后第4-6 天酶活性逐渐降低; 染菌后的6 d中, 血淋巴中海藻糖含量显著低于对照组, 同样在感染后第4天其含量逐渐降低, 第6天时降到最低值。相比之下, 处理组血淋巴中的葡萄糖含量显著高于对照组; 处理组其含量在第1-3天内呈现快速升高趋势, 在第3天达到最大值(7.7615 mmol/L), 然后逐渐降低。结果说明, 白僵菌侵入昆虫血淋巴后, 菌株代谢产生酸性海藻糖降解酶, 将血淋巴中的海藻糖水解成为葡萄糖, 然后为真菌利用, 破坏了虫体内的血糖平衡, 这是一个相互连接的生理代谢和生化反应过程。  相似文献   

9.
松针瘿蚊越冬幼虫体内酶活性的时序变化   总被引:2,自引:0,他引:2  
李毅平  龚和  朴镐用 《昆虫学报》2000,43(3):227-232
昆虫的越冬耐寒过程与糖酵解、磷酸己糖途径和抗冻保护性物质合成等一些中间代谢有关的酶有关。该文对松针瘿蚊Thecodiplosis japonensis老熟幼虫1998/1999越冬期间体内上述代谢酶活性的变化进行了研究。越冬期间体内糖原磷酸化酶活性明显地增加,糖酵解有关的酶(己糖激酶、乳酸脱氢酶和醛缩酶)活性较低,以保证更多的碳源(糖原)转化成海藻糖。越冬期间,体内葡萄糖-6-磷酸脱氢酶活性增高所产生的还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH),可为细胞在亚低温状态下发挥正常功能以及体内抗冻保护性物质的合成提供还原动力,同时通过调节体内海藻糖酶活性来维持越冬期间较高含量的海藻糖和移除春季体内累积的过多的海藻糖。  相似文献   

10.
Trehalose is a non-reducing disaccharide of glucosewidely distributed in microorganisms, plants and in-sects. It usually functions as a compatible solute in thestabilization of biological structures under several en-vironment stresses[1,2]. Trehalose has proved to be anactive stabilizer of enzymes, proteins, biomasses, pharmaceutical preparations and even organs fortransplantation. Thus much attention has been paid tothe synthesis pathway of trehalose and the develop-ment of novel and economic…  相似文献   

11.
The distribution of α-glucose 1-phosphate forming (α-type) trehalose phosphorylase and trehalase activities in various fungi was surveyed. α-Type phosphorylase occurred in the mycelia and fruit-bodies of Agaricales and Aphyllophorales in the Holobasidiomycetidae, and at least one species of Gasteromycetes, but not in Tremellaceae or Auriculariales of the Phragmobasidiomycetidae, Heterobasidiomycetes or Hemibasidiomycetes. The test fungi in the Ascomycotina and Deuteromycotina, and the yeasts of Basidiomycotina, showed different trehalase activities, but no trehalose phosphorylase activity. The test organisms showed different levels of trehalase activity. The fruit-bodies of most mushrooms showed higher activities of α-type trehalose phosphorylase than did the mycelia.  相似文献   

12.
Trehalase is the enzyme which hydrolyzes the disaccharide trehalose into two alpha-D-glucose molecules. In this article, we present the immobilization of trehalase on aminopropyl glass particles. The enzyme was extracted from Escherichia coli Mph2, a strain harboring the pTRE11 plasmid, which contains the trehalase gene. The partially purified enzyme had a specific activity of 356 U/mg and could be used for quantifying trehalose in the presence of sucrose, maltose, lactose, starch, and glycogen. Partially purified trehalase was immobilized by covalent coupling with retention of its catalytic activity. The support chosen for the majority of the experiments reported was aminopropyl glass, although spherisorb-5NH(2) and chitin were also tested. The immobilized enzyme was assayed continuously for 40 h, at pH 6.0 and 30 degrees C, and no release of enzyme molecules was detected during this procedure. The best condition found for storing the enzyme-support complex was at 4 degrees C in the presence of 25 mM sodium maleate, containing 7 mM beta-mercaptoethanol, 1 mM ethylenediaminetetraacetic acid (EDTA), and 50% glycerol. The enzyme under these conditions was stable, retaining approximately 100% of its initial activity for at least 28 days. The immobilized enzyme can be employed to detect trehalose molecules in micromolar concentration. The optimum pH value found was 4.5 and the K(m) app. 4.9 x 10(-3) M trehalose at pH 4.6 and 30 degrees C, with V(max) of 5.88 mumol glucose . min.(-1), as calculated by a Lineweaver-Burk plot. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 33-39, 1997.  相似文献   

13.
The lack of trehalose accumulation in most plant species has been partly attributed to the presence of an active trehalase. Although trehalose synthesis enzymes are thought to be cytosolic, and previous studies have indicated that trehalase activity is extracellular, the exact location of the enzyme has not yet been established in plant cell. We present evidence that the yet uncharacterised full-length Arabidopsis trehalase is a plasma membrane-bound protein, probably anchored to the membrane through a predicted N-terminal membrane spanning domain. The full-length AtTRE1, when expressed in yeast can functionally substitute for the extracellularly active trehalase Ath1p, by sustaining the growth of an ath1 null mutant strain on trehalose and at pH 4.8. We further demonstrate that AtTRE1 expressed in yeast is plasma membrane-bound as in plant cell. In light of these findings, the regulation of plant cell endogenous trehalose by trehalase is discussed.  相似文献   

14.
Amylase, cellulase, trehalase, aminopeptidase and trypsin were determined using the midgut and trehalose using the haemolymph of starved and of subsequently fed larvae of Rhynchosciara americana. Midgut trehalase activity decreases steadily during starvation and increases again on feeding, whereas haemolymph trehalose titres remain constant, suggesting that trehalase is a true digestive enzyme. The decrease in amylase, cellulase and trypsin activity in the midgut during starvation is of the same order as that recovered from the excreta. Since this finding is exactly what one would expect if enzyme production stops in response to starvation, this supports the hypothesis that synthesis that synthesis of these enzymes is controlled. The excretion rate of amylase, cellulase and trypsin is very low in comparison to their activity inside the peritrophic membrane and the travel time of the food bolus through the gut. It is proposed that the peritrophic membrane separates two extracellular sites for digestion as an adaptation to conserve secreted enzymes. This could be accomplished by the existence of an endo-ectoperitrophic circulation of the enzymes involved in the initial attack on the food and by restricting to the ectoperitrophic fluid the enzymes which participate only in intermediary digestion of food.  相似文献   

15.
Maltose and trehalose catabolic pathways are linked through their common enzyme, beta-phosphoglucomutase, and metabolite, beta-glucose 1-phosphate, in Lactococcus lactis. Maltose is degraded by the concerted action of maltose phosphorylase and beta-phosphoglucomutase, whereas trehalose is assimilated by a novel pathway, including the recently discovered enzyme, trehalose 6-phosphate phosphorylase, and beta-phosphoglucomutase. In the present study, 40 strains of lactic acid bacteria were investigated for utilization of metabolic reactions involving beta-glucose 1-phosphate. All genera of the low G+C content lactic acid bacteria belonging to the clostridial subbranch of Gram-positive bacteria were represented in the study. The strains, which fermented maltose or trehalose, were investigated for beta-phosphoglucomutase, maltose phosphorylase and trehalose 6-phosphate phosphorylase activity, as indications of maltose and trehalose catabolic pathways involving beta-glucose 1-phosphate interconversions. Eighty per cent of all strains fermented maltose and, of these strains, 63% were shown to use a maltose phosphorylase/beta- phosphoglucomutase pathway. One-third of the strains fermenting trehalose were found to harbour trehalose 6-phosphate phosphorylase activity, and these were also shown to possess beta-phosphoglucomutase activity. Mainly L. lactis and Enterococcus faecalis strains were found to harbour the novel trehalose 6-phosphate phosphorylase/beta-phosphoglucomutase pathway. As lower beta-glucose 1-phosphate interconverting enzyme activities were observed in the majority of glucose-cultivated lactic acid bacteria, glucose was suggested to repress the synthesis of these enzymes in most strains. Thus, metabolic reactions involving the beta-anomer of glucose 1-phosphate are frequently found in both maltose- and trehalose-utilizing lactic acid bacteria.  相似文献   

16.
Azuma M  Yamashita O 《Tissue & cell》1985,17(4):539-551
A sorbitol density gradient analysis with the aid of several marker enzymes demonstrated that midgut trehalase of the silkworm larvae. Bombyx mori, was localized in the microsomal membranes, but not in mitochondria, lysosomes and microvilli at the apical surface. Electron microscopic examination showed that trehalase-enriched membrane fraction consisted of heterogeneous mixtures of membrane vesicles derived from the endoplasmic reticulum and plasma membrane parts other than the microvillus membrane. The enzyme-histochemical stains of trehalase activity on the midgut section could be detected only at the basal surface of the epithelium against haemocoel. Such a specific localization was further confirmed by immunohistochemistry with the peroxidase-conjugated antibody technique. Thus, it is concluded that midgut trehalase of silkworm larvae is situated on the plasma membrane at the basal surface of the epithelium. An intact preparation of midgut incubated in vitro in the medium containing [(14)C]trehalose could hydrolyse trehalose into glucose and take it up into the cell, although some glucose was liberated into the medium when incubated for extended periods. These results suggest that midgut trehalase plays a physiological role in utilization of haemolymph trehalose not in nutrient absorption.  相似文献   

17.
Trehalose is a nonreducing disaccharide of glucose (alpha,alpha-1,1-glucosyl-glucose) that is essential for growth and survival of mycobacteria. These organisms have three different biosynthetic pathways to produce trehalose, and mutants devoid of all three pathways require exogenous trehalose in the medium in order to grow. Mycobacterium smegmatis and Mycobacterium tuberculosis also have a trehalase that may be important in controlling the levels of intracellular trehalose. In this study, we report on the purification and characterization of the trehalase from M. smegmatis, and its comparison to the trehalase from M. tuberculosis. Although these two enzymes have over 85% identity throughout their amino acid sequences, and both show an absolute requirement for inorganic phosphate for activity, the enzyme from M. smegmatis also requires Mg(2+) for activity, whereas the M. tuberculosis trehalase does not require Mg(2+). The requirement for phosphate is unusual among glycosyl hydrolases, but we could find no evidence for a phosphorolytic cleavage, or for any phosphorylated intermediates in the reaction. However, as inorganic phosphate appears to bind to, and also to greatly increase the heat stability of, the trehalase, the function of the phosphate may involve stabilizing the protein conformation and/or initiating protein aggregation. Sodium arsenate was able to substitute to some extent for the sodium phosphate requirement, whereas inorganic pyrophosphate and polyphosphates were inhibitory. The purified trehalase showed a single 71 kDa band on SDS gels, but active enzyme eluted in the void volume of a Sephracryl S-300 column, suggesting a molecular mass of about 1500 kDa or a multimer of 20 or more subunits. The trehalase is highly specific for alpha,alpha-trehalose and did not hydrolyze alpha,beta-trelalose or beta,beta-trehalose, trehalose dimycolate, or any other alpha-glucoside or beta-glucoside. Attempts to obtain a trehalase-negative mutant of M. smegmatis have been unsuccessful, although deletions of other trehalose metabolic enzymes have yielded viable mutants. This suggests that trehalase is an essential enzyme for these organisms. The enzyme has a pH optimum of 7.1, and is active in various buffers, as long as inorganic phosphate and Mg(2+) are present. Glucose was the only product produced by the trehalase in the presence of either phosphate or arsenate.  相似文献   

18.
Morchella conica Pers. strains of the study were isolated from fruit bodies collected in ash-mixed forests. At first, the strains were cultured on potato dextrose agar (PDA), then on modified Murashige and Skoog (MS) solid agar media. A normal-growing strain was chosen for the trehalase induction experiments. During the trehalase induction treatment, mycelia were grown in liquid culture containing different concentrations of trehalose. After the induction period of trehalase enzymes, physiological state of the mycelium and the oxidative stress were monitored in the vegetative mycelia by measuring the change of the malondialdehyde content, superoxide dismutase enzyme activity, the fresh and dry weight. The examined Morchella conica strain utilized the trehalose properly. The rising amount of the trehalose triggered the increase of the mycelial trehalase enzyme activity. Our results clearly proved that both neutral and acidic trehalase isoenzyme activity of the Morchella conica mycelium are inducible and are playing important role in the utilization of external trehalose.  相似文献   

19.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

20.
α-Glucosidase activity of whole haemolymph has been investigated in adult males of the American cockroach, Periplaneta americana. Two electrophoretically distinguishable enzymes capable of hydrolysing α-glucosidic linkages are present in the serum component of the haemolymph, and one of these hydrolyses trehalose. Trehalase activity is also present in haemocytes, and the haemocyte enzyme shares an identical electrophoretic mobility and similar pH sensitivity with the serum trehalase. Furthermore, both enzymes are inhibited to the same extent by sodium ethylene diamine tetracetate (EDTA); thus it is suggested that the same enzyme may be responsible for trehalase activity in the two components. The Km of EDTA-inhibited trehalase is 3·3 mM and this value is reduced to 1·8 mM upon activation of the enzyme by calcium ions. The properties of the trehalase are discussed in light of the possible rôle of the enzyme in regulating haemolymph trehalose and glucose concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号