首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Eco R124I, Eco DXXI and Eco prrI are the known members of the type IC family of DNA restriction and modification systems. The first three are carried on large, conjugative plasmids, while Eco prrI is chromosomally encoded. The enzymes are coded by three genes, hsdR , hsdM and hsdS . Analysis of the DNA sequences upstream and downstream of the type IC hsd loci shows that all are highly homologous to each other and also to sequences present in the bacteriophage P1 genome. The upstream sequences include functional phd and doc genes, which encode an addiction system that stabilizes the P1 prophage state, and extend to and beyond pac , the site at which phage DNA packaging begins. Downstream of the hsd loci, P1 DNA sequences begin at exactly the same place for all of the systems. For Eco DXXI and Eco prrI the P1 homology extends for thousands of base pairs while for Eco R124I an IS 1 insertion and an associated deletion have removed most of the P1-homologous sequences. The significance of these results for the evolution of DNA restriction and modification systems is discussed.  相似文献   

2.
Escherichia coli strains K12 and B, and a new strain designated D, each encode a characteristic restriction and modification enzyme. These enzymes (EcoK, EcoB and presumably EcoD) comprise three subunits of which one, that encoded by the so-called specificity gene (hsdS), is responsible for recognition of the DNA sequence specific to that system. The other two subunits, encoded by hsdR and hsdM, are interchangeable between systems, and the available molecular evidence suggests that the hsdR and hsdM genes are highly conserved. The DNA sequence of a segment of the hsd region that includes the hsdS gene has been determined for each of the three strains. The hsdS gene varies in length from 1335 to 1425 base-pairs and the only regions showing obvious homology, one of about 100 base-pairs and a second of about 250 base-pairs, are highly conserved. The remainder of each hsd S gene shares little, or no, homology with either of the other related specificity genes. Thus, the specificity subunits, though components of a family of closely related enzymes with very similar functions, have remarkably dissimilar primary structure.  相似文献   

3.
The hsd locus (host specificity of DNA) was identified in the Neisseria gonorrhoeae genome. The DNA fragment encoding this locus produced an active restriction and modification (R/M) system when cloned into Escherichia coli. This R/M system was designated NgoAV. The cloned genomic fragment (7800 bp) has the potential to encode seven open reading frames (ORFs). Several of these ORFs had significant homology with other proteins found in the databases: ORF1, the hsdM, a methylase subunit (HsdM); ORF2, a homologue of dinD; ORF3, a homologue of hsdS; ORF4, a homologue of hsdS; and ORF5, an endonuclease subunit hsdR. The endonuclease and methylase subunits possessed strongest protein sequence homology to the EcoR124II R/M system, indicating that NgoAV belongs to the type IC R/M family. Deletion analysis showed that only ORF3 imparted the sequence specificity of the RM.NgoAV system, which recognizes an interrupted palindrome sequence (GCAN(8-)TGC). The genetic structure of ORF3 (208 amino acids) is almost identical to the structure of the 5' truncated hsdS genes of EcoDXXI or EcoR124II R/M systems obtained by in vitro manipulation. Genomic sequence analysis allowed us to identify hsd loci with a very high homology to RM.NgoAV in two strains of Neisseria meningitidis. However, significant differences in the organization and structure of the hsdS genes in both these systems suggests that, if functional, they would possess recognition sites that differ from the gonococcus and from themselves.  相似文献   

4.
5.
The genes (hsd A) encoding EcoA, a restriction and modification system first identified in Escherichia coli 15T-, behave in genetic crosses as alleles of the genes (hsd K) encoding the archetypal type I restriction and modification system of E. coli K12. Nevertheless, molecular experiments have failed to detect relatedness between the A and K systems. We have cloned the hsd A genes and have identified, on the basis of DNA homology, related genes (hsd E) conferring a new specificity to a natural isolate of E. coli. We show that the overall organization of the genes encoding EcoA and EcoE closely parallels that for EcoK. Each enzyme is encoded by three genes, of which only one, hsdS, confers the specificity of DNA interaction. The three genes are in the same order as those encoding EcoK, i.e. hsdR, hsdM and hsdS and, similarly, they include a promoter between hsdR and hsdM from which the M and S genes can be transcribed. The evidence indicates that EcoA and EcoE are type I restriction and modification enzymes, but they appear to identify an alternative family to EcoK. For both families, the hsdR polypeptide is by far the largest, but the sizes of the other two polypeptides are reversed, with the smallest polypeptide of EcoK being the product of hsd S, and the smallest for the EcoA family being the product of hsdM. Physiologically, the A restriction and modification system differs from that of K and its relatives, in that A-specific methylation of unmodified DNA is particularly effective.  相似文献   

6.
The hsd (host specificity) genes of E. coli K 12   总被引:28,自引:0,他引:28  
  相似文献   

7.
E Skrzypek  A Piekarowicz 《Plasmid》1989,21(3):195-204
The Escherichia coli plasmid pDXX1 codes for a type I restriction and modification system, EcoDXX1. A 15.5-kb BamHI fragment from pDXX1 has been cloned and contains the hsdR, hsdM, and hsdS genes that encode the EcoDXX1 system. The EcoDXX1 hsd genes can complement the gene products of the EcoR124 and EcoR124/3 hsd systems, but not those of EcoK and EcoB. Hybridization experiments using EcoDXX1 hsd genes as a probe demonstrate homology between EcoDXX1 and EcoR124 and EcoR124/3 restriction-modification systems, but weak or no homology between EcoDXX1 and EcoK or EcoB systems.  相似文献   

8.
The Escherichia coli plasmid R124 codes for a type I restriction and modification system EcoR124 and carries genetic information, most probably in the form of a "silent copy," for the expression of a different R-M specificity R124/3. Characteristic DNA rearrangements have been shown to accompany the switch in specificity from R124 to R124/3 and vice versa. We have cloned a 14.2-kb HindIII fragment from R124 and shown that it contains the hsdR, hsdM, and hsdS genes which code for the EcoR124 R-M system. An equivalent fragment from the plasmid R124/3 following the switch in R-M specificity has also been cloned and shown to contain the genes coding for the EcoR124/3 R-M system. These fragments, however, lack a component present on the wild-type plasmid essential for the switch in specificity. Restriction fragment maps and preliminary heteroduplex analysis indicate the near identity of the genes that encode the two different DNA recognition specificities. Transposon mutagenesis was used to locate the positions of the hsdR, hsdM, and hsdS genes on the cloned fragments in conjunction with complementation tests for gene function. Indirect evidence indicates that hsdR is expressed from its own promoter and that hsdM and hsdS are expressed from a single promoter, unidirectionally.  相似文献   

9.
EcoR124 and EcoR124/3 are type I DNA restriction and modification systems. The EcoR124/3 system arose from the EcoR124 system some 15 years ago and at the electron microscopic DNA heteroduplex level the genes for both systems are still apparently identical. We have shown that the DNA sequences recognized by the two systems are GAA(N6)RTCG for EcoR124 and GAA(N7)RTCG for EcoR124/3. The sequences thus differ only in the length of the non-specific spacer. This difference nevertheless places the two specific domains of the EcoR124/3 recognition sequence 0.34 nm further apart and rotates them 36 degrees with respect to those of EcoR124, which implies major structural differences in the proteins recognizing these sequences. We have now determined the nucleotide sequences of the hsdS and hsdM genes of both systems and of the hsdR gene of EcoR124/3. The hsdS gene products provide DNA sequence specificity in both restriction and modification, the hsdM gene products are necessary for modification and all three hsd gene products are required for restriction. The only difference that we have detected between the two systems is that a 12 base-pair sequence towards the middle of the hsdS gene is repeated twice in the EcoR124 gene and three times in the EcoR124/3 gene. We have deleted one of the repeats in the EcoR124/3 gene and shown that this changes the specificity to that of EcoR124. Thus, the extra four amino acids in the middle of the EcoR124/3 hsdS gene product, which in an alpha-helical configuration would extend 0.6 nm, are sufficient to explain the differences in sequence recognition. We suggest that the EcoR124/3 system was generated by an unequal crossing over and argue that this kind of specificity change should not be rare in Nature.  相似文献   

10.
Salmonella enterica serovar blegdam has a restriction and modification system encoded by genes linked to serB . We have cloned these genes, putative alleles of the hsd locus of Escherichia coli  K-12, and confirmed by the sequence similarities of flanking DNA that the hsd genes of S. enterica serovar blegdam have the same chromosomal location as those of E. coli K-12 and Salmonella enterica serovar typhimurium LT2. There is, however, no obvious similarity in their nucleotide sequences, and while the gene order in S. enterica serovar blegdam is serB hsdM , S and R , that in E. coli K-12 and S. enterica serovar typhimurium LT2 is serB hsdR , M and S . The hsd genes of S. enterica serovar blegdam identify a third family of serB -linked hsd genes (type ID). The polypeptide sequence predicted from the three hsd genes show some similarities (18–50% identity) with the polypeptides of known and putative type I restriction and modification systems; the highest levels of identity are with sequences of Haemophilus influenzae Rd. The HsdM polypeptide has the motifs characteristic of adenine methyltransferases. Comparisons of the HsdR sequence with those for three other families of type I systems and three putative HsdR polypeptides identify two highly conserved regions in addition to the seven proposed DEAD-box motifs.  相似文献   

11.
12.
13.
The Sau1 type I restriction-modification system is found on the chromosome of all nine sequenced strains of Staphylococcus aureus and includes a single hsdR (restriction) gene and two copies of hsdM (modification) and hsdS (sequence specificity) genes. The strain S. aureus RN4220 is a vital intermediate for laboratory S. aureus manipulation, as it can accept plasmid DNA from Escherichia coli. We show that it carries a mutation in the sau1hsdR gene and that complementation restored a nontransformable phenotype. Sau1 was also responsible for reduced conjugative transfer from enterococci, a model of vancomycin resistance transfer. This may explain why only four vancomycin-resistant S. aureus strains have been identified despite substantial selective pressure in the clinical setting. Using a multistrain S. aureus microarray, we show that the two copies of sequence specificity genes (sau1hsdS1 and sau1hsdS2) vary substantially between isolates and that the variation corresponds to the 10 dominant S. aureus lineages. Thus, RN4220 complemented with sau1hsdR was resistant to bacteriophage lysis but only if the phage was grown on S. aureus of a different lineage. Similarly, it could be transduced with DNA from its own lineage but not with the phage grown on different S. aureus lineages. Therefore, we propose that Sau1 is the major mechanism for blocking transfer of resistance genes and other mobile genetic elements into S. aureus isolates from other species, as well as for controlling the spread of resistance genes between isolates of different S. aureus lineages. Blocking Sau1 should also allow genetic manipulation of clinical strains of S. aureus.  相似文献   

14.
E. coli hsd genes were subcloned from lambda 642 (ral+) into lambda L47.1 vector (ral-after replacement). The influence of bacteriophage lambda ral gene on the expression efficiency of hsdS kappa, hsdM kappa genes was investigated. It was shown, that its presence in vitro enhanced the synthesis of beta-subunit, hsdM gene product, and the increase of modification in vivo was observed. It is proposed that the increase of modification rate of lambda phage fully unmodified DNA is connected with the appearance of E. coli DNA methylase consisting of beta- and gamma-subunits but lacking alpha-subunit.  相似文献   

15.
As a result of a frameshift mutation, the hsdS locus of the NgoAV type IC restriction and modification (RM) system comprises two genes, hsdS(NgoAV1) and hsdS(NgoAV2). The specificity subunit, HsdS(NgoAV), the product of the hsdS(NgoAV1) gene, is a naturally truncated form of an archetypal specificity subunit (208 N-terminal amino acids instead of 410). The presence of a homonucleotide tract of seven guanines (poly[G]) at the 3' end of the hsdS(NgoAV1) gene makes the NgoAV system a strong candidate for phase variation, i.e., stochastic addition or reduction in the guanine number. We have constructed mutants with 6 guanines instead of 7 and demonstrated that the deletion of a single nucleotide within the 3' end of the hsdS(NgoAV1) gene restored the fusion between the hsdS(NgoAV1) and hsdS(NgoAV2) genes. We have demonstrated that such a contraction of the homonucleotide tract may occur in vivo: in a Neisseria gonorrhoeae population, a minor subpopulation of cells appeared to have only 6 guanines at the 3' end of the hsdS(NgoAV1) gene. Escherichia coli cells carrying the fused gene and expressing the NgoAVΔ RM system were able to restrict λ phage at a level comparable to that for the wild-type NgoAV system. NgoAV recognizes the quasipalindromic interrupted sequence 5'-GCA(N(8))TGC-3' and methylates both strands. NgoAVΔ recognizes DNA sequences 5'-GCA(N(7))GTCA-3' and 5'-GCA(N(7))CTCA-3', although the latter sequence is methylated only on the complementary strand within the 5'-CTCA-3' region of the second recognition target sequence.  相似文献   

16.
The molecular cloning and sequence analysis of four structurally variant linked genes ( omp1A,B,C,D ) that encode the major outer membrane protein of Dichelobacter nodosus strain VCS1001 are described. The isolation of rearranged copies of omp1A and omp1B , and the identification in the 5' regions of all four genes of short cross-over-site sequences that were similar to the Din family of cross-over-site sequences, suggested that site-specific DNA inversion was involved in omp1 rearrangement. Evidence for site-specific inversion of the 497 bp DNA fragment, which was located between the divergently orientated omp1A and omp1B genes, and which contained the promoter and 5t' coding sequence of omp1 , was obtained by polymerase chain reaction-mediated amplification of inverted forms of these genes. However, to account for all of the omp1 gene copies cloned in this study, a more widespread inversion phenomenon must be involved in the rearrangement of these genes and a model for multiple site-specific DNA inversions at the omp1 locus is described. In this model the four structurally variant omp1 genes can be assembled from one of four structurally variant C-terminal coding regions and a conserved N-terminal coding region and can be expressed from a single promoter. It is postulated that this genetic capability endows D. nodosus with the ability to switch the antigenic specificity of one of its major surface proteins.  相似文献   

17.
Escherichia coli strain PC-7 carries two independent temperature-sensitive mutations, one affecting the restriction and modification (R-M) phenotype and the other the DnaC(D) phenotype. The results of complementation and P1 transduction analysis of the mutation affecting the R-M phenotype implicate a fourth gene, designated hsdX, located close to the hsd three-gene complex. The properties of merodiploids constructed between appropriate recipients and F' elements with different mutations in hsdS, hsdR and hsdM genes might indicate that in strain PC-7 the temperature-sensitive products, determined by hsdR and hsdSK cistrons, are synthesized. The role of the temperature-sensitive dnaC(D) gene product in the formation of the restriction endonuclease was studied and no direct relation was found between the DnaC(D) and R-M phenotypes.  相似文献   

18.
Type II restriction endonucleases (ENases) have served as models for understanding the enzyme-based site-specific cleavage of DNA. Using the knowledge gained from the available crystal structures, a number of attempts have been made to alter the specificity of ENases by mutagenesis. The negative results of these experiments argue that the three-dimensional structure of DNA-ENase complexes does not provide enough information to enable us to understand the interactions between DNA and ENases in detail. This conclusion calls for alternative approaches to the study of structure-function relationships related to the specificity of ENases. Comparative analysis of ENases that manifest divergent substrate specificities, but at the same time are evolutionarily related to each other, may be helpful in this respect. The success of such studies depends to a great extent on the availability of related ENases that recognise partially overlapping nucleotide sequences (e.g. sets of enzymes that bind to recognition sites of increasing length). In this study we report the cloning and sequence analysis of genes for three Type IIS restriction-modification (RM) systems. The genes encoding the ENases Alw26I, Eco31I and Esp3I (whose recognition sequences are 5'-GTCTC-3', 5'-GGTCTC-3' and 5'-CGTCTC-3', respectively) and their accompanying methyltransferases (MTases) have been cloned and the deduced amino acid sequences of their products have been compared. In pairwise comparisons, the degree of sequence identity between Alw26I, Eco31I and Esp3I ENases is higher than that observed hitherto among ENases that recognise partially overlapping nucleotide sequences. The sequences of Alw26I, Eco31I and Esp3I also reveal identical mosaic patterns of sequence conservation, which supports the idea that they are evolutionarily related and suggests that they should show a high level of structural similarity. Thus these ENases represent very attractive models for the study of the molecular basis of variation in the specific recognition of DNA targets. The corresponding MTases are represented by proteins of unusual structural and functional organisation. Both M. Alw26I and M. Esp3I are represented by a single bifunctional protein, which is composed of an m(6)A-MTase domain fused to a m(5)C-MTase domain. In contrast, two separate genes encode the m(6)A-MTase and m(5)C-MTase in the Eco31I RM system. Among the known bacterial m(5)C-MTases, the m(5)C-MTases of M. Alw26I, M. Eco31I and M. Esp3I represent unique examples of the circular permutation of their putative target recognition domains together with the conserved motifs IX and X.  相似文献   

19.
The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5' untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5' untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the lambda integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae.  相似文献   

20.
An invertible DNA element of 6.8 kb, designated the hsd1 locus, was identified in the chromosome of Mycoplasma pulmonis. Infection of host cells with mycoplasma virus P1 revealed that the organism's restriction and modification (R-M) properties are controlled by inversion of hsd1. The nucleotide sequence of hsd1 revealed several genes, the predicted amino acids of which bear striking similarity to the subunits of the type I R-M enzymes previously found only in enteric bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号