首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The progressive accumulation of monocyte-derived cells in the atherosclerotic plaque is a hallmark of atherosclerosis. However, it is now appreciated that monocytes represent a heterogeneous circulating population of cells that differ in functionality. New approaches are needed to investigate the role of monocyte subpopulations in atherosclerosis since a detailed understanding of their differential mobilization, recruitment, survival and emigration during atherogenesis is of particular importance for development of successful therapeutic strategies. We present a novel methodology for the in vivo examination of monocyte subpopulations in mouse models of atherosclerosis. This approach combines cellular labeling by fluorescent beads with multiphoton microscopy to visualize and monitor monocyte subpopulations in living animals. First, we show that multiphoton microscopy is an accurate and timesaving technique to analyze monocyte subpopulation trafficking and localization in plaques in excised tissues. Next, we demonstrate that multiphoton microscopy can be used to monitor monocyte subpopulation trafficking in atherosclerotic plaques in living animals. This novel methodology should have broad applications and facilitate new insights into the pathogenesis of atherosclerosis and other inflammatory diseases.  相似文献   

3.
PURPOSE OF REVIEW: Decades of literature have unambiguously demonstrated regression and remodeling of atherosclerotic lesions, including advanced plaques. Recent insights into underlying mechanisms are reviewed. RECENT FINDINGS: Factors promoting regression include decreased apolipoprotein B-lipoprotein retention within the arterial wall, efflux of cholesterol and other harmful lipids from plaques, and emigration of lesional foam cells followed by entry of healthy phagocytes that remove necrotic debris and other plaque components. Cellular lipid efflux and foam cell emigration can occur surprisingly rapidly once the plaque milieu is improved. Lipid efflux and foam cell emigration each involve specific molecular mediators, many of which have been identified. Necrotic debris removal can be surprisingly comprehensive, with essentially full disappearance documented in animal models. SUMMARY: The essential prerequisite for regression is robust improvement in plaque milieu, meaning large plasma reductions in atherogenic apolipoprotein B-lipoproteins or brisk enhancements in 'reverse' lipid transport from plaque into liver. Importantly, the processes of regression are consistent with rapid correction of features characteristic of the rupture-prone, vulnerable plaques responsible for acute coronary syndromes. New interventions to lower apolipoprotein B-lipoprotein levels and enhance reverse lipid transport may allow regression to become a widespread clinical goal. Strategies based on recent mechanistic insights may facilitate further therapeutic progress.  相似文献   

4.
The mouse L-cell mutant gro29 is defective for egress of herpes simplex virus type 1 (HSV-1) virions and is significantly reduced in HSV-1 glycoprotein export (B. W. Banfield and F. Tufaro, J. Virol. 64:5716-5729, 1990). In this report, we demonstrate that pseudorabies virus (PRV), a distantly related alphaherpesvirus, shows a distinctive set of defects after infection of gro29 cells. Specifically, we identify defects in the rate and extent of viral glycoprotein export, infectious particle formation, plaque formation, and virus egress. The initial rate of viral glycoprotein synthesis was unaffected in gro29 cells, but the extent of export from the endoplasmic reticulum to the Golgi apparatus was impaired and export through the Golgi apparatus became essentially blocked late in infection. Moreover, by using a secreted variant of a viral membrane protein, we found that export from the Golgi apparatus out of the cell was also defective in gro29 cells. PRV does not form plaques on gro29 monolayers. A low level of infectious virus is formed and released early after infection, but further virus egress is blocked. Taken together, these observations suggest that the gro29 phenotype involves either multiple proteins or a single protein used at multiple steps in viral glycoprotein export and virus egress from cells. Moreover, this host cell protein is required by both HSV and PRV for efficient propagation in infected cells.  相似文献   

5.
Herpes simplex virus (HSV) glycoprotein K (gK) is thought to be intimately involved in the process by which infected cells fuse because HSV syncytial mutations frequently alter the gK (UL53) gene. Previously, we characterized gK produced in cells infected with wild-type HSV or syncytial HSV mutants and found that the glycoprotein was localized to nuclear and endoplasmic reticulum membranes and did not reach the cell surface (L. Hutchinson, C. Roop, and D. C. Johnson, J. Virol. 69:4556-4563, 1995). In this study, we have characterized a mutant HSV type 1, denoted F-gK beta, in which a lacZ gene cassette was inserted into the gK coding sequences. Since gK was found to be essential for virus replication, F-gK beta was propagated on complementing cells which can express gK. F-gK beta produced normal plaques bounded by nonfused cells when plated on complementing cells, although syncytia were observed when the cells produced smaller amounts of gK. In contrast, F-gK beta produced only microscopic plaques on Vero cells and normal human fibroblasts (which do not express gK) and these plaques were reduced by 10(2) to 10(6) in number. Further, large numbers of nonenveloped capsids accumulated in the cytoplasm of F-gK beta-infected Vero cells, virus particles did not reach the cell surface, and the few enveloped particles that were produced exhibited a reduced capacity to enter cells and initiate an infection of complementing cells. Overexpression of gK in HSV-infected cells also caused defects in virus egress, although particles accumulated in the perinuclear space and large multilamellar membranous structures juxtaposed with the nuclear envelope were observed. Together, these results demonstrate that gK regulates or facilitates egress of HSV from cells. How this property is connected to cell fusion is not clear. In this regard, gK may alter cell surface transport of viral particles or other viral components directly involved in the fusion process.  相似文献   

6.
Previous genetic and biochemical studies performed with several members of the Alphaherpesvirus subfamily have shown that the UL31 and UL34 proteins are essential components of the molecular machinery that mediates the primary egress of newly assembled capsids across the nuclear membrane. Further, there is substantial evidence that BFLF2 and BFRF1, the respective positional homologs of UL31 and UL34 in the Epstein-Barr virus (EBV) genome, are also their functional homologs, i.e., that the UL31/UL34 pathway is common to distant herpesviruses. However, the low degree of protein sequence identity between UL31 and BFLF2 would argue against such a hypothesis. To further clarify this issue, we have constructed a recombinant EBV strain devoid of BFLF2 (DeltaBFLF2) and show that BFLF2 is crucial for efficient virus production but not for lytic DNA replication or B-cell transformation. This defective phenotype could be efficiently restored by trans complementation with a BFLF2 expression plasmid. Detailed analysis of replicating cells by electron microscopy revealed that, as expected, DeltaBFLF2 viruses not only failed to egress from the nucleus but also showed defective DNA packaging. Nonfunctional primary egress did not, however, impair the production and extracellular release of enveloped but empty viral particles that comprised L particles containing tegument-like structures and a few virus-like particles carrying empty capsids. The DeltaBFLF2 and DeltaUL31 phenotypes therefore only partly overlap, from which we infer that BFLF2 and UL31 have substantially diverged during evolution to fulfil related but distinct functions.  相似文献   

7.
Invariant NKT (iNKT) cells modulate innate and adaptive immune responses through activation of myeloid dendritic cells and macrophages and via enhanced clonogenicity, differentiation, and egress of their shared myeloid progenitors. Because these same progenitors give rise to osteoclasts (OCs), which also mediate the egress of hematopoietic progenitors and orchestrate bone remodeling, we hypothesized that iNKT cells would extend their myeloid cell regulatory role to the development and function of OCs. In this study, we report that selective activation of iNKT cells by α-galactosylceramide causes myeloid cell egress, enhances OC progenitor and precursor development, modifies the intramedullary kinetics of mature OCs, and enhances their resorptive activity. OC progenitor activity is positively regulated by TNF-α and negatively regulated by IFN-γ, but is IL-4 and IL-17 independent. These data demonstrate a novel role of iNKT cells that couples osteoclastogenesis with myeloid cell egress in conditions of immune activation.  相似文献   

8.
Atherosclerotic lesions are characterized by lipid-loaded macrophages (foam cells) and hypoxic regions. Although it is well established that foam cells are produced by uptake of cholesterol from oxidized LDL, we previously showed that hypoxia also promotes foam cell formation even in the absence of exogenous lipids. The hypoxia-induced lipid accumulation results from increased triglyceride biosynthesis but the exact mechanism is unknown. Our aim was to investigate the importance of glucose in promoting hypoxia-induced de novo lipid synthesis in human macrophages. In the absence of exogenous lipids, extracellular glucose promoted the accumulation of Oil Red O-stained lipid droplets in human monocyte-derived macrophages in a concentration-dependent manner. Lipid droplet accumulation was higher in macrophages exposed to hypoxia at all assessed concentrations of glucose. Importantly, triglyceride synthesis from glucose was increased in hypoxic macrophages. GLUT3 was highly expressed in macrophage-rich and hypoxic regions of human carotid atherosclerotic plaques and in macrophages isolated from these plaques. In human monocyte-derived macrophages, hypoxia increased expression of both GLUT3 mRNA and protein, and knockdown of GLUT3 with siRNA significantly reduced both glucose uptake and lipid droplet accumulation. In conclusion, we have shown that hypoxia-induced increases in glucose uptake through GLUT3 are important for lipid synthesis in macrophages, and may contribute to foam cell formation in hypoxic regions of atherosclerotic lesions.  相似文献   

9.
The UL51 gene of herpes simplex virus type 1 (HSV-1) encodes a phosphoprotein whose homologs are conserved throughout the herpes virus family. Recently, we reported that UL51 protein colocalizes with Golgi marker proteins in transfected cells and that targeting of UL51 protein to the Golgi apparatus depends on palmitoylation of its N-terminal cysteine at position 9 (N. Nozawa, T. Daikoku, T. Koshizuka, Y. Yamauchi, T. Yoshikawa, and Y. Nishiyama, J. Virol. 77:3204-3216, 2003). However, its role in the HSV replication cycle was unknown. Here, we generated UL51-null mutants (FDL51) in HSV-1 to uncover the function of UL51 protein. We show that the mutant plaques were much smaller in size and that maximal titers were reduced nearly 100-fold compared to wild-type virus. Electron microscopy indicated that the formation of nucleocapsids was not affected by the deletion of UL51 but that viral egress from the perinuclear space was severely compromised. In FDL51-infected cells, a large number of enveloped nucleocapsids were observed in the perinuclear space, but enveloped mature virions in the cytoplasm, as well as extracellular mature virions, were rarely detected. These defects were fully rescued by reinsertion of the UL51 gene. These results indicate that UL51 protein is involved in the maturation and egress of HSV-1 virus particles downstream of the initial envelopment step.  相似文献   

10.
Herpes simplex virus 1 (HSV-1) viral glycoproteins gD (carboxyl terminus), gE, gK, and gM, the membrane protein UL20, and membrane-associated protein UL11 play important roles in cytoplasmic virion envelopment and egress from infected cells. We showed previously that a recombinant virus carrying a deletion of the carboxyl-terminal 29 amino acids of gD (gDΔct) and the entire gE gene (ΔgE) did not exhibit substantial defects in cytoplasmic virion envelopment and egress (H. C. Lee et al., J. Virol. 83:6115-6124, 2009). The recombinant virus ΔgM2, engineered not to express gM, produced a 3- to 4-fold decrease in viral titers and a 50% reduction in average plaque sizes in comparison to the HSV-1(F) parental virus. The recombinant virus containing all three mutations, gDΔct-ΔgM2-ΔgE, replicated approximately 1 log unit less efficiently than the HSV-1(F) parental virus and produced viral plaques which were on average one-third the size of those of HSV-1(F). The recombinant virus ΔUL11-ΔgM2, engineered not to express either UL11 or gM, replicated more than 1 log unit less efficiently and produced significantly smaller plaques than UL11-null or gM-null viruses alone, in agreement with the results of Leege et al. (T. Leege et al., J. Virol. 83:896-907, 2009). Analyses of particle-to-PFU ratios, relative plaque size, and kinetics of virus growth and ultrastructural visualization of glycoprotein-deficient mutant and wild-type virions indicate that gDΔct, gE, and gM function in a cooperative but not redundant manner in infectious virion morphogenesis. Overall, comparisons of single, double, and triple mutant viruses generated in the same HSV-1(F) genetic background indicated that lack of either UL20 or gK expression caused the most severe defects in cytoplasmic envelopment, egress, and infectious virus production, followed by the double deletion of UL11 and gM.  相似文献   

11.
Developing thymocytes undergo maturation while migrating through the thymus and ultimately emigrate from the organ to populate peripheral lymphoid tissues. The process of thymic emigration is controlled in part via receptor-ligand interactions between the chemokine stromal-derived factor (SDF)-1, and its cognate receptor CXCR4, and sphingosine 1-phosphate (S1P) and its receptor S1PR. The precise mechanism by which S1P/S1PR and CXCR4/SDF-1 contribute to thymic emigration remains unclear. We proposed that S1P-dependent and -independent mechanisms might coexist and involve both S1P-induced chemoattraction and SDF-1-mediated chemorepulsion or fugetaxis of mature thymocytes. We examined thymocyte emigration in thymi from CXCR4-deficient C57BL/6 embryos in a modified assay, which allows the collection of CD62L(high) and CD69(low) recent thymic emigrants. We demonstrated that single-positive (SP) CD4 thymocytes, with the characteristics of recent thymic emigrants, failed to move away from CXCR4-deficient fetal thymus in vitro. We found that the defect in SP CD4 cell emigration that occurred in the absence of CXCR4 signaling was only partially overcome by the addition of the extrathymic chemoattractant S1P and was not associated with abnormalities in thymocyte maturation and proliferative capacity or integrin expression. Blockade of the CXCR4 receptor in normal thymocytes by AMD3100 led to the retention of mature T cells in the thymus in vitro and in vivo. The addition of extrathymic SDF-1 inhibited emigration of wild-type SP cells out of the thymus by nullifying the chemokine gradient. SDF-1 was also shown to elicit a CXCR4-dependent chemorepellent response from fetal SP thymocytes. These novel findings support the thesis that the CXCR4-mediated chemorepellent activity of intrathymic SDF-1 contributes to SP thymocyte egress from the fetal thymus.  相似文献   

12.
Short-term (24–48 h) colonization dynamics of periphytic diatoms on artificial (styrofoam) substrata were examined using fast-flushing, continuous-flow troughs located on the North Thompson River, British Columbia. Two parallel troughs, one exposed to natural light and the other completely darkened, showed significant differences in periphyton biomass, chlorophyll a, and algal taxonomic composition with 24 h. Experiments which commenced at the onset of natural darkness demonstrated that rates of algal immigration during the night were the same in both troughs. Within 2–3 h of sunrise, however, certain diatom species (most notably Hannaea arcus (Ehr.) Pair, and Diatoma tenue Ag.) selectively emigrated from the artificially darkened trough but remained in the trough exposed to natural light. More closely adhering species such as Achnanthes minutissima Kütz, also showed significant emigration from the darkened trough after light deprivation for two photoperiods. Data from adhesion, emigration, and sinking rate experiments indicate that differential egress of cells from the darkened versus the lighted environments is the result of cellular regulation of buoyancy or form resistance.  相似文献   

13.
Herpes simplex virus type 1 (KOS)DeltagK is a mutant virus which lacks glycoprotein K (gK) and exhibits defects in virion egress (S. Jayachandra, A. Baghian, and K. G. Kousoulas, J. Virol. 69:5401-5413, 1997). To further understand the role of gK in virus egress, we constructed recombinant viruses, DeltagKhpd-1, -2, -3, and -4, that specified gK amino-terminal portions of 139, 239, 268, and 326 amino acids, respectively, corresponding to truncations immediately after each of the four putative membrane-spanning domains of gK. DeltagKhpd-1 and DeltagKhpd-2 viruses produced lower yields and smaller plaques than DeltagK. Numerous DeltagKhpd-1 capsids accumulated predominately within large double-membrane vesicles of which the inner membrane appeared to be derived from viral envelopes while the outer membrane appeared to originate from the outer nuclear membrane. The mutant virus DeltagKhpd-3 produced higher yields and larger plaques than the DeltagK virus. The mutant virus DeltagKhpd-4 produced yields and plaques similar to those of the wild-type virus strain KOS, indicating that deletion of the carboxy-terminal 12 amino acids did not adversely affect virus replication and egress. Comparisons of the gK primary sequences specified by alphaherpesviruses revealed the presence of a cysteine-rich motif (CXXCC), located within domain III in the lumen side of gK, and a tyrosine-based motif, YTKPhi (where Phi is any bulky hydrophobic amino acid), located between the second and third hydrophobic domains (domain II) in the cytoplasmic side of gK. The mutant virus gK/Y183S, which was constructed to specify gK with a single-amino-acid change (Y to S) within the YTKPhi motif, replicated less efficiently than the DeltagK virus. The mutant virus gK/C304S-C307S, which was constructed to specify two serine instead of cysteine residues within the cysteine-rich motif (CXXCC changed to SXXSC) of gK domain III, replicated more efficiently than the DeltagK virus. Our data suggests that gK contains domains in its amino-terminal portion that promote aberrant nucleocapsid envelopment and/or membrane fusion between different virion envelopes and contains domains within its domains II and III that function in virus replication and egress.  相似文献   

14.
The mouse L-cell mutant gro29 was selected for its ability to survive infection by herpes simplex virus type 1 (HSV-1) and is defective in the propagation of HSV-1 and vesicular stomatitis virus (F. Tufaro, M. D. Snider, and S. L. McKnight, J. Cell Biol. 105:647-657, 1987). In this report, we show that gro29 cells harbor a lesion that inhibits the egress of HSV-1 virions during infection. We also found that HSV-1 glycoprotein D was slow to traverse the secretory pathway en route to the plasma membrane of infected gro29 cells. The movement of glycoproteins was not blocked entirely, however, and immunofluorescence experiments revealed that infected gro29 cells contained roughly 10% of the expected amount of glycoprotein D on their cell surface at 12 h postinfection. Furthermore, nucleocapsids and virions assembled inside the cells during infection, suggesting that the lesion in gro29 cells impinged on a late step in virion maturation. Electron micrographs of infected cells revealed that many of the intracellular virions were contained in irregular cytoplasmic vacuoles, similar to those that accumulate in HSV-1-infected cells treated with the ionophore monensin. We conclude from these results that gro29 harbors a defect that blocks the egress of HSV-1 virions from the infected cell without seriously impeding the flux of individual glycoproteins to the cell surface. We infer that HSV-1 maturation and egress require a host cell component that is either reduced or absent in gro29 cells and that this lesion, although not lethal to the host cell, cannot be tolerated by HSV-1 during its life cycle.  相似文献   

15.
G Meuret  J Bammert  U Gessner 《Blut》1976,33(6):389-402
Neutrophil marrow egress is governed by several processes. The most important are cell maturation, functional behavior of marrow sinusoids and humoral or neuro-vascular factors. Neutrophil release cannot be observed directly but is reflected in the size, cellular composition and kinetics of the nonproliferating pool of granulocytopoiesis in bone marrow and of blood neutrophil pool. These experimentally determined parameters were used as the basis of a mathematical model study. The model describes two catenated compartments, the nonproliferating pool of granulocytopoiesis in marrow and the total blood granulocyte pool. Cell transit from one pool to the other was assumed to be age-dependent. It was expressed by a positive sloping sigmoidal function that defines the egress potential fo the cells that increases with cell maturation. During maturation granulocytopoietic cells develop intense motility which determines the morphology of the cells on smears. Relationship between cell motility and its morphology was defined by functions determining the age-dependent probabilities of cell fixation as metamyelocytes, band- and segmented forms, respectively. The parameters of this model could be so adjusted that all experimental data were matched within experimental errors. Thus, qualitative and quantitative information on neutrophil marrow egress was obtained for normal and pathological states of granulocytopoiesis.  相似文献   

16.
Newly assembled herpesvirus capsids travel from the nucleus to the plasma membrane by a mechanism that is poorly understood. Furthermore, the contribution of cellular proteins to this egress has yet to be clarified. To address these issues, an in vitro nuclear egress assay that reproduces the exit of herpes simplex virus type 1 (HSV-1) capsids from nuclei isolated from infected cells was established. As expected, the assay has all the hallmarks of intracellular transport assays, namely, a dependence on time, energy, and temperature. Surprisingly, it is also dependent on cytosol and was slightly enhanced by infected cytosol, suggesting an implication of both host and viral proteins in the process. The capsids escaped these nuclei by budding through the inner nuclear membrane, accumulated as enveloped capsids between the two nuclear membranes, and were released in cytosol exclusively as naked capsids, exactly as in intact cells. This is most consistent with the view that the virus escapes by crossing the two nuclear membranes rather than through nuclear pores. Unexpectedly, nuclei isolated at the nonpermissive temperature from cells infected with a U(L)26 thermosensitive protease mutant (V701) supported capsid egress. Although electron microscopy, biochemical, and PCR analyses hinted at a likely reconstitution of capsid maturation, DNA encapsidation could not be confirmed by a traditional SQ test. This assay should prove very useful for identification of the molecular players involved in HSV-1 nuclear egress.  相似文献   

17.
The formation of oxidised low density lipoprotein (LDL) within the atherosclerotic plaque appears to be a factor in the development of advanced atherosclerotic plaques. LDL oxidation is dependent on the balance of oxidants and antioxidants within the intima. In addition to producing various oxidants, human macrophages release 7,8-dihydroneopterin which in vivo is oxidised to the inflammation marker neopterin. Using macrophage-like THP-1 cells and human monocyte-derived macrophages, we demonstrate that 7,8-dihydroneopterin is a potent inhibitor of cell-mediated LDL oxidation. 7,8-Dihydroneopterin scavenges the chain propagating lipid peroxyl radical, inhibiting both lipid and protein hydroperoxide formation. A significant amount of the hydroperoxide formed during cell-mediated LDL oxidation was protein hydroperoxide. 7,8-Dihydroneopterin oxidation to 7,8-dihydroxanthopterin was only observed in the presence of both cells and LDL, showing that 7,8-dihydroneopterin had no effect on initiating oxidant generation by the cells. 7,8-Dihydroneopterin did not regenerate alpha-tocopherol but competed with it for the lipid peroxyl radical. Although stimulation of both cell types with gamma-interferon failed to produce sufficient 7,8-dihydroneopterin to inhibit LDL oxidation in tissue culture, analysis of advanced atherosclerotic plaque removed from patients showed that total neopterin levels could reach low micromolar concentrations. This suggests that 7,8-dihydroneopterin synthesis by macrophages could play a significant role in the development of atherosclerotic plaques.  相似文献   

18.
19.
Multiple amino acid changes within herpes simplex virus type 1 (HSV-1) gB and gK cause extensive virus-induced cell fusion and the formation of multinucleated cells (syncytia). Early reports established that syncytial mutations in gK could not cause cell-to-cell fusion in the absence of gB. To investigate the interdependence of gB, gK, and UL20p in virus-induced cell fusion and virion de-envelopment from perinuclear spaces as well as to compare the ultrastructural phenotypes of the different mutant viruses in a syngeneic HSV-1 (F) genetic background, gB-null, gK-null, UL20-null, gB/gK double-null, and gB/UL20 double-null viruses were constructed with the HSV-1 (F) bacterial artificial chromosome pYEBac102. The gK/gB double-null virus YEbacDeltagBDeltagK was used to isolate the recombinant viruses gBsyn3DeltagK and gBamb1511DeltagK, which lack the gK gene and carry the gBsyn3 or gBamb1511 syncytial mutation, respectively. Both viruses formed small nonsyncytial plaques on noncomplementing Vero cells and large syncytial plaques on gK-complementing cells, indicating that gK expression was necessary for gBsyn3- and gBamb1511-induced cell fusion. Lack of virus-induced cell fusion was not due to defects in virion egress, since recombinant viruses specifying the gBsyn3 or gKsyn20 mutation in the UL19/UL20 double-null genetic background caused extensive cell fusion on UL20-complementing cells. As expected, the gB-null virus failed to produce infectious virus, but enveloped virion particles egressed efficiently out of infected cells. The gK-null and UL20-null viruses exhibited cytoplasmic defects in virion morphogenesis like those of the corresponding HSV-1 (KOS) mutant viruses. Similarly, the gB/gK double-null and gB/UL20 double-null viruses accumulated capsids in the cytoplasm, indicating that gB, gK, and UL20p do not function redundantly in membrane fusion during virion de-envelopment at the outer nuclear lamellae.  相似文献   

20.
Previous studies at our laboratory have shown that an antibody (antiegressin) present in the serum of chronically infected mice is capable of inhibiting the egress of Trypanosoma cruzi from infected BALB/c fibroblasts. We have used this in vitro system to evaluate whether human chagasic serum is also capable of inhibiting T. cruzi egress. BALB/c fibroblasts were infected with tissue culture-derived parasites. Five-percent solutions of the individual human serum samples in culture medium were added to the wells, and the number of parasites released was determined at day 5 after infection. The cells cultured with serum from infected individuals released between 37% and 72% fewer parasites than those cultured with control serum. A similar reduction in parasite egress resulted from incubation with the protein-A purified IgG fraction from 3 of these human samples. Immunocytochemical staining employing antineuraminidase antibodies supported the notion that the reduction in parasite levels is due to inhibition at the point of parasite egress. These results indicate that human serum of individuals infected with T. cruzi is capable of inhibiting release of the parasite from infected tissue culture cells and that the phenomenon of egress-inhibition may be relevant during infection of human subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号