首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intima collagen was obtained from pepsin digests of human placenta in two forms, which differ to some extent in the size of their constituent polypeptide chains (Mr 50 000-70 000). These chains are connected by disulphide bonds to large aggregates. The aggregates are arranged in a triple-helical conformation with a remarkably high thermal stability (Tm 41-62 degrees C) and are resistant to further proteolytic digestion. Reduction of as little as 5% of the disulphide bonds produces mainly monomeric triple helices (Mr about 160 000) with Tm 32 degrees C. Partially reduced material can be separated into triple-helical and non-collagenous domains by proteolysis. Pepsin releases a collagenous component with chains of Mr 38 000. Bacterial collagenase liberates two non-collagenous segments (Mr 15 000-30 000) rich in cystine. Treatment with collagenase before reduction separates intima collagen into a large fragment composed of collagenous (Tm 41 degrees C) and non-collagenous structures and a single non-collagenous segment. The data support the electron-microscopical model of intima collagen [Furthmayr, Wiedemann, Timpl, Odermatt & Engel (1983) Biochem. J. 211, 303-311], indicating that the basic unit of the fragment consists of a continuous triple helix joining two globular domains.  相似文献   

2.
The globular domain of collagen IV was solubilized by collagenase digestion from a mouse tumor, human placenta and bovine aorta and was purified by chromatographic methods. The materials show a unique, mainly non-collagenous amino acid composition and contain small amounts of glucosamine and galactosamine. The globular structures with Mr = 170 000 appear as a hexameric assembly originating from two collagen IV molecules. Subunits of this assembly are two different dimers Da and Db (Mr about 56 000) and monomers (Mr = 28 000). Their N-terminal amino acid sequences start with short triple-helical sequences, which overlap with the C-terminal triple helix of the alpha 1(IV) and alpha 2(IV) chain, demonstrating that the globule originates from the C terminus of collagen IV. Dimers arise from monomers by disulfide cross-linking (form Db) and/or formation of non-reducible cross-links (form Da). Reduction under non-denaturing conditions causes partial dissociation of the globule and of collagen IV dimers, indicating that reducible cross-links are formed between monomers of two different collagen IV molecules. Dissociation of the hexamer into the subunits can be achieved with 8 M urea, sodium dodecyl sulfate or in the pH range 2.5-4. The latter indicates that carboxyl groups are essential for association. Mixtures of the subunits (monomers and dimers) or purified dimers reassemble in neutral buffer into hexamers as shown by ultracentrifugation and electron microscopy. Reconstituted hexamers, however, dissociate in a much broader pH range than the native globules. Circular dichroic spectra indicate that the structure is more completely refolded from acid-treated than from urea-treated material. These data suggest that globules originating from monomers (as existing in single collagen IV molecules) are stabilized by the adjacent triple helix. Covalent cross-link formation stabilizes the globular structure and allows reconstitution in stoichiometric proportions.  相似文献   

3.
Orientation of type VI collagen monomers in molecular aggregates   总被引:3,自引:0,他引:3  
Type VI collagen, prepared from guanidine extracts of human amnion, contains very little monomeric material, the major forms being dimers and tetramers. In order to study the orientation of the molecules in these aggregates, they were digested with pepsin followed by bacterial collagenase. Two fragments were isolated, one containing part of the inner globular domain still attached to part of the triple helix and the other containing large fragments of the outer globular domain. Each fraction was further analyzed; peptides were isolated and their amino-terminal amino acid sequences determined. By comparing the determined sequences with published data, it was found that the outer globular domain contained sequences derived from the amino-terminal domain of all three chains of type VI collagen whereas the inner globular domain contained sequences from the carboxy-terminal domain. This provided direct chemical evidence that dimers and tetramers of type VI collagen are formed by overlapping carboxy-terminal regions of the monomers.  相似文献   

4.
Collagen VI assembly is unique within the collagen superfamily in that the alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains associate intracellularly to form triple helical monomers, and then dimers and tetramers, which are secreted from the cell. Secreted tetramers associate end-to-end to form the distinctive extracellular microfibrils that are found in virtually all connective tissues. Although the precise protein interactions involved in this process are unknown, the N-terminal globular regions, which are composed of multiple copies of von Willebrand factor type A-like domains, are likely to play a critical role in microfibril formation, because they are exposed at both ends of the tetramers. To explore the role of these subdomains in collagen VI intracellular and extracellular assembly, alpha 3(VI) cDNA expression constructs with sequential N-terminal deletions were stably transfected into SaOS-2 cells, producing cell lines that express alpha 3(VI) chains with N-terminal globular domains containing modules N9-N1, N6-N1, N5-N1, N4-N1, N3-N1, or N1, as well as the complete triple helix and C-terminal globular domain (C1-C5). All of these transfected alpha 3(VI) chains were able to associate with endogenous alpha 1(VI) and alpha 2(VI) to form collagen VI monomers, dimers, and tetramers, which were secreted. Importantly, cells that expressed alpha 3(VI) chains containing the N5 subdomain, alpha 3(VI) N9-C5, N6-C5, and N5-C5, formed microfibrils and deposited a collagen VI matrix. In contrast, cells that expressed the shorter alpha 3(VI) chains, N4-C5, N3-C5, and N1-C5, were severely compromised in their ability to form end-to-end tetramer assemblies and failed to deposit a collagen VI matrix. These data demonstrate that the alpha 3(VI) N5 module is critical for microfibril formation, thus identifying a functional role for a specific type A subdomain in collagen VI assembly.  相似文献   

5.
The formation of collagen IV dimers in the extracellular space requires the association of two C-terminal globular domains giving rise to a large hexameric structure NC1 (Mr = 170,000). NC1 hexamer was purified from collagenase digests of a mouse tumor and several human tissues. It was shown by electrophoresis to consist of two kinds of cross-linked, dimeric segments, Da and Db (Mr about 50,000), and monomeric segments in a molar ratio of about 3:1. In the native hexamers free SH groups were detectable by N-[14C]ethylmaleimide and other sulfhydryl reagents. They account for 4-11% of the total number of cysteine residues with some variations between preparations from different sources and in the distribution between monomers and dimers. Reduction with 10 mM dithioerythritol under non-denaturing condition completely converted dimers into monomers and allowed the alkylation of all twelve cysteine residues present in each monomeric NC1 segment. A monomeric intermediate with four to six free SH groups and a higher electrophoretic mobility than the final product was observed. Generation of this intermediate from dimers Da and Db follows apparently different routes proceeding either directly or through a dimeric intermediate respectively. The time course of conversion is best described by a mechanism consisting of two (Db) or three (Da) consecutive steps with pseudo-first-order rate constants ranging from 0.14 ms-1 to 0.5 ms-1. Glutathione-catalyzed reoxidation of completely reduced NC1 in the presence of 2 M urea results in a product indistinguishable from native material by ultracentrifugation and electrophoresis pattern. The data suggest that in situ formation of NC1 structures is catalyzed by a small fraction (5-10%) of intrinsic SH groups leading to the formation and stabilization of dimers by rearrangement of disulfide bonds.  相似文献   

6.
The collagen framework of the intervertebral disc contains two major fibril-forming collagens, types I and II. Smaller amounts of other types of collagen are also present. On examination of the nature and distribution of these minor collagens within bovine disc tissue, type VI collagen was found to be unusually abundant. It accounted for about 20% of the total collagen in calf nucleus pulposus, and about 5% in the annulus fibrosus. It was discovered by serially digesting disc tissue with chondroitin ABC lyase and Streptomyces hyaluronidase that native covalent polymers of type VI collagen could be extracted. Electron micrographs of this material prepared by rotary shadowing revealed the characteristic dimensions of tetramers and double tetramers of type VI molecules, with their central rods and terminal globular domains. Molecular-sieve column chromatography on agarose under non-reducing non-denaturing conditions gave a series of protein peaks with molecular sizes equivalent to the tetramer, double tetramer and higher multimers. On SDS/polyacrylamide-gel electrophoresis after disulphide cleavage, these fractions of type VI collagen all showed a main band at Mr 140,000 and four lesser bands between Mr 180,000 and 240,000. On electrophoresis without disulphide cleavage in agarose/2.4% polyacrylamide only dimeric (six chains) and tetrameric (12 chains) forms of type VI molecules were present. The ability to extract all the type VI collagen of the tissue in 4 M-guanidinium chloride, and absence of aldehyde-mediated cross-linking residues on direct analysis, showed that, in contrast with most matrix collagens, type VI collagen does not function as a covalently cross-linked structural polymer.  相似文献   

7.
R Jander  D Troyer  J Rauterberg 《Biochemistry》1984,23(16):3675-3681
The 140 000-dalton collagenous glycoprotein (CGP) from calf aorta and ligament characterized by Gibson & Cleary (1982) [Gibson, M.A., & Cleary, E.G. (1982) Biochem. Biophys. Res. Commun. 105, 1288-1295] has been studied. In the electron microscope, rotary-shadowed CGP molecules appear similar to the dimers of type VI collagen (short-chain collagen, intima collagen) described by other authors [Furthmayr, H., Wiedemann, H., Timpl, R., Odermatt, E., & Engel, J. (1983) Biochem. J. 211, 303-311] except that they have larger globular domains. As shown by gel electrophoresis, pepsin treatment of CGP at 4 degrees C either before or after reduction releases polypeptide chains corresponding in size to those of type VI collagen. Electron microscopic examination shows that pepsin digestion of nonreduced CGP removes the outer globular domains, reduces the size of the inner ones, and separates the paired central strands. The residual structures look like type VI collagen dimers. When intact CGP is reduced, monomers with two large globular ends are obtained. Pepsin digestion of monomers removes most or all of both globular domains. In immunoblots, CGP and its pepsin-derived fragments react with antibodies directed against type VI collagen. The results indicate that type VI collagen is an integral component of CGP.  相似文献   

8.
Amino acid sequences of human collagen alpha 1(VI) and alpha 2(VI) chains were completed by cDNA sequencing and Edman degradation demonstrating that the mature polypeptides contain 1009 and 998 amino acid residues respectively. In addition, they contain small signal peptide sequences. Both chains show 31% identity in the N-terminal (approximately 235 residues) and C-terminal (approximately 430 residues) globular domains which are connected by a triple helical segment (335-336 residues). Internal alignment of the globular sequences indicates a repetitive 200-residue structure (15-23% identity) occurring three times (N1, C1, C2) in each chain. These repeating subdomains are connected to each other and to the triple helix by short (15-30 residues) cysteine-rich segments. The globular domains possess several N-glycosylation sites but no cell-binding RGD sequences, which are exclusively found in the triple helical segment. Sequencing of alpha 2(VI) cDNA clones revealed two variant chains with a distinct C2 subdomain and 3' non-coding region. The repetitive segments C1, C2 and, to a lesser extent, N1 show significant identity (15-18%) to the collagen-binding A domains of von Willebrand factor (vWF) and they are also similar to some integrin receptors, complement components and a cartilage matrix protein. Since the globular domains of collagen VI come into close contact with triple helical segments during the formation of tissue microfibrils it suggests that the globular domains bind to collagenous structures in a manner similar to the binding of vWF to collagen I.  相似文献   

9.
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.  相似文献   

10.
A number of bacterial collagen‐like proteins with Gly as every third residue and a high Pro content have been observed to form stable triple‐helical structures despite the absence of hydroxyproline (Hyp). Here, the high yield cold‐shock expression system is used to obtain purified recombinant collagen‐like protein (V‐CL) from Streptococcus pyogenes containing an N‐terminal globular domain V followed by the collagen triple‐helix domain CL and the modified construct with two tandem collagen domains V‐CL‐CL. Both constructs and their isolated collagenous domains form stable triple‐helices characterized by very sharp thermal transitions at 35–37°C and by high values of calorimetric enthalpy. Procedures for the formation of collagen SLS crystallites lead to parallel arrays of in register V‐CL‐CL molecules, as well as centrosymmetric arrays of dimers joined at their globular domains. At neutral pH and high concentrations, the bacterial constructs all show a tendency towards aggregation. The isolated collagen domains, CL and CL‐CL, form units of diameter 4–5 nm which bundle together and twist to make larger fibrillar structures. Thus, although this S. pyogenes collagen‐like protein is a cell surface protein with no indication of participation in higher order structure, the triple‐helix domain has the potential of forming fibrillar structures even in the absence of hydroxyproline. The formation of fibrils suggests bacterial collagen proteins may be useful for biomaterials and tissue engineering applications.  相似文献   

11.
Type VII collagen, in the form of an antiparallel dimer, is a major protein component of anchoring fibrils. The ultrastructural appearance of these fibrils suggests that they may serve to anchor the basement membrane zone to the underlying connective tissue matrix. We report here the identification and initial characterization of Type VII procollagen, recovered from the media of epidermoid carcinoma cell cultures. Immunoblotting using monospecific antibodies to Type VII procollagen identifies a single, homogeneous band of at least Mr 320,000 following disulfide bond reduction. This chain contains 170 kDa of collagen triple helix and 150 kDa of non-helical domain at the carboxyl terminus. Pepsin digestion of this material yields Type VII collagen identical to that isolated from whole tissue and a series of quasi-stable peptides derived from the carboxyl-terminal region. Cell extracts contain procollagen chains identical in size to those secreted into the media. There is no evidence for processing of this material in cell culture. Partial purification by velocity sedimentation and transmission electron microscopic observation following rotary shadowing reveals both monomers (426 nm) and dimers (785 nm). Dimers are antiparallel and interact through 60-nm overlap, with amino-terminal globular domains present at the ends of the overlap. The multi-domain carboxyl-terminal region appears as three similar arms originating from a centralized globular region adjacent to the collagen helix. The carboxyl globular domain is present in whole tissue and may participate in the unique fibril form of this collagen. The amino-terminal globule may function in the antiparallel assembly of dimers.  相似文献   

12.
Folding of collagen IV   总被引:5,自引:0,他引:5  
Collagen IV dimers of two collagen IV molecules connected by their C-terminal globular NC1 domains were isolated by limited digestion with bacterial collagenase from mouse Engelbreth-Holm-Swarm (EHS) sarcoma tissue. The collagenous domains were only 300 nm long as compared to 400 nm of intact collagen IV but the disulfide bonds in the N-terminal region of the major triple helix were retained. Unfolding of the collagenous domains as monitored by circular dichroism occurred in a temperature range of 30 to 44 degrees C with a midpoint at 37 degrees C. The transition is significantly broader than that of the continuous triple helices in collagens I, II and III, a feature which can be explained by the frequent non-collagenous interruptions in the triple-helical domain of collagen IV. Refolding at 25 degrees C following complete unfolding at 50 degrees C was monitored by circular dichroism, selective proteolytic digestion of non-refolded segments and by a newly developed method in which the recovered triple-helical segments were visualized by electron microscopy. Triple-helix formation was found to proceed in a zipper-like fashion from the C-terminal NC1 domains towards the N-terminus, indicating that this domain is essential for nucleations. For collagen IV dimers with intact NC1 domains the rate of triple-helix growth was of comparable magnitude to that of collagen III, demonstrating that the non-collagenous interruptions do not slow down the refolding process where the rate-limiting step is the cis-trans isomerization of proline peptide bonds. Refolding was near to 100% and the refolding products were similar to the starting material as judged by thermal stability and electron microscopic appearance. Removal of the NC1 domains by pepsin or dissociation of their hexametric structures by acetic acid led to a loss of the refolding ability. Instead products with randomly dispersed short triple-helical segments were formed in a slow reaction. In no case, even when the disulfide bonds in the N-terminal region of the triple-helical domain were intact, was refolding from the N- towards the C-terminus observed. Taken together with results in other collagens, this suggests that C to N directionality might be an intrinsic property of triple-helix folding.  相似文献   

13.
Collagen VI is an extracellular protein that most often contains the three genetically distinct polypeptide chains, α1(VI), α2(VI), and α3(VI), although three recently identified chains, α4(VI), α5(VI), and α6(VI), may replace α3(VI) in some situations. Each chain has a triple helix flanked by N- and C-terminal globular domains that share homology with the von Willebrand factor type A (VWA) domains. During biosynthesis, the three chains come together to form triple helical monomers, which then assemble into dimers and tetramers. Tetramers are secreted from the cell and align end-to-end to form microfibrils. The precise molecular mechanisms responsible for assembly are unclear. Mutations in the three collagen VI genes can disrupt collagen VI biosynthesis and matrix organization and are the cause of the inherited disorders Bethlem myopathy and Ullrich congenital muscular dystrophy. We have identified a Ullrich congenital muscular dystrophy patient with compound heterozygous mutations in α2(VI). The first mutation causes skipping of exon 24, and the mRNA is degraded by nonsense-mediated decay. The second mutation is a two-amino acid deletion in the C1 VWA domain. Recombinant C1 domains containing the deletion are insoluble and retained intracellularly, indicating that the mutation has detrimental effects on domain folding and structure. Despite this, mutant α2(VI) chains retain the ability to associate into monomers, dimers, and tetramers. However, we show that secreted mutant tetramers containing structurally abnormal C1 VWA domains are unable to associate further into microfibrils, directly demonstrating the critical importance of a correctly folded α2(VI) C1 domain in microfibril formation.  相似文献   

14.
[3H]Diisopropylfluorophosphate was used to label covalently the catalytic subunits of the acetylcholinesterase forms extracted using different solubilization media. The incorporation of radiolabel was specific for true acetylcholinesterase, and SDS-polyacrylamide gel electrophoresis revealed that differences in molecular size existed between low salt-soluble (mol. wt. approximately 76 000), detergent-soluble (69 000) and high salt-soluble (72 000) acetylcholinesterase. These differences could not be attributed solely to an unusual migration behaviour but appeared to reflect differences in primary structure. While the basic unit of the low salt-soluble esterase was a monomer, the detergent-soluble esterase was linked by disulphide bridges to form dimers. The high salt-soluble form existed in large aggregates, whereby disulphide bridges form covalent links between the catalytic and non-catalytic elements. Pronase treatment showed that the differences were confined to the 'outer' structure of these molecules. The active site peptide exhibited homologies indicating that this part is conserved in the different classes of acetylcholinesterase. The results suggest that one can discriminate between at least three distinct esterase classes in the electric organ of Torpedo marmorata.  相似文献   

15.
Extended and globular protein domains in cartilage proteoglycans.   总被引:9,自引:4,他引:5       下载免费PDF全文
Electron microscopy after rotary shadowing and negative staining of the large chondroitin sulphate proteoglycan from rat chondrosarcoma, bovine nasal cartilage and pig laryngeal cartilage demonstrated a unique multidomain structure for the protein core. A main characteristic is a pair of globular domains (diameter 6-8 nm), one of which forms the N-terminal hyaluronate-binding region. They are connected by a 25 nm-long rod-like domain of limited flexibility. This segment is continued by a 280 nm-long polypeptide strand containing most chondroitin sulphate chains (average length 40 nm) in a brush-like array and is terminated by a small C-terminal globular domain. The core protein showed a variable extent of degradation, including the loss of the C-terminal globular domain and sections of variable length of the chondroitin sulphate-bearing strand. The high abundance (30-50%) of the C-terminal domain in some extracted proteoglycan preparations indicated that this structure is present in the cartilage matrix rather than being a precursor-specific segment. It may contain the hepatolectin-like segment deduced from cDNA sequences corresponding to the 3''-end of protein core mRNA [Doege, Fernandez, Hassell, Sasaki & Yamada (1986) J. Biol. Chem. 261, 8108-8111; Sai, Tanaka, Kosher & Tanzer (1986) Proc. Natl. Acad. Sci. 83, 5081-5085; Oldberg, Antonsson & Heinegård (1987) Biochem. J. 243, 255-259].  相似文献   

16.
Various forms of heparan sulfate proteoglycan were solubilized from the mouse Engelbreth-Holm-Swarm (EHS) sarcoma by extraction with 0.5 M NaCl, collagenase digestion and extraction with 4 M guanidine. They could be separated into high (greater than or equal to 1.65 g/ml) and low (1.38 g/ml) buoyant density variants. The high-density form from the NaCl extract and collagenase digest had Mr = 130000 and So20,W = 4.5 S and contained 4-10% protein, indicating Mr = 5 000-12 000 for the protein core. This proteoglycan exhibited polydispersity as shown by rotary shadowing electron microscopy and ultracentrifugation. An average molecule consisted of four heparan sulfate chains (Mr = 29 000) each with a length of 32 +/- 10 nm. The low-density form (Mr about 400 000) could not be completely purified and contained about 50% protein. As shown by radioimmunoassay, the various proteoglycans shared similar protein cores. Labeling of the tumor in vivo or in vitro demonstrated preferential incorporation of radioactive sulfate in the high-density form. The high-density proteoglycan interacted in affinity chromatography by virtue of its heparan sulfate chains with laminin, fibronectin, the globular domain NC1 and the triple helix of collagen IV. These interactions were abolished at moderate concentrations of NaCl (0.1-0.2 M) and in the presence of heparin, chondroitin sulfate or dextran sulfate. Interactions with the globule NC1 could also be demonstrated by velocity band centrifugation in sucrose gradients and a binding constant of about 10(6) M-1 was derived.  相似文献   

17.
Molecular structure of elongated forms of electric eel acetylcholinesterase.   总被引:12,自引:0,他引:12  
Molecular forms of acetylcholinesterase extracted from fresh electric organ tissue of the electric eel are elongated structures in which a multi-subunit head is connected to a fibrous tail. The principal form, 18 S acetylcholinesterase, is of molecular weight approximately 1,050,000, contains about 12 catalytic subunits in its head, has a tail approximately 500 Å long, and aggregates reversibly at low ionic strength. Trypsin converts it to an 11 S globular tetramer devoid of the tail and lacking the capacity to aggregate in low-salt solutions.Amino acid analysis shows that elongated forms of acetylcholinesterase contain significant amounts of hydroxyproline and hydroxylysine, characteristic components of collagen, which are absent from 11 S acetylcholinesterase.Collagenase converts 18 S acetylcholinesterase to a 20 S form which no longer aggregates in low salt. Purified 20 S acetylcholinesterase has about half the hydroxyproline and hydroxylysine contents of the 18 S enzyme, and physicochemical measurements indicate the formation of a more symmetrical molecular structure without marked reduction in molecular weight.Sodium dodecyl sulfate/polyacrylamide gel electrophoresis without reducing agent shows that in 18 S acetylcholinesterase half the catalytic subunits are present as dimers linked by disulfide bonds. The remaining subunits migrate as larger molecular species which contain significant amounts of hydroxylysine, are specifically modified by collagenase and are converted to dimers and monomers by trypsin.Sodium dodecyl sulfate/acrylamide gel electrophoresis with reducing agent reveals, in 18 S acetylcholinesterase, two polypeptides of molecular weights 45,000 and 47,000 which are absent in the 11 S tetramer. They are readily digested by collagenase under conditions which do not affect the catalytic subunits, with concomitant formation of a new 30,000 polypeptide.The above data can be rationalized by a model in which 18 S acetylcholinestorase contains three subunit tetramers, each linked by disulfides to one strand of a collagen triple helix. Sodium dodecyl sulfate detaches those subunit dimers which are not covalently linked to the tail; trypsin attacks the distal portion of the collagen triple helix releasing discrete tetramers, and collagenase specifically attacks the triple helix near its midpoint, producing a shortened structure in which the residual tail still holds the tetramers together, but destroying the capacity for self-association at low ionic strength. This latter property may be related to the postulated role of the tail in anchoring acetylcholinesterase to the fibrillar matrix of the basement membrane.  相似文献   

18.
Characterization of the precursor form of type VI collagen   总被引:10,自引:0,他引:10  
Well characterized monospecific antisera against pepsin-extracted bovine type VI collagen were used to identify and characterize the intact form of type VI collagen. In immunoblotting experiments the antisera reacted with the pepsin-resistant fragments of the alpha 1(VI) and alpha 3(VI) chains, but not with the fragment of the alpha 2(VI) chain. Extracts obtained from uterus and aorta with 6 M guanidine HCl contained two immunoreactive polypeptides of Mr = 190,000 and 180,000 based on globular protein standards. Cleavage of extracts with pepsin generated the previously characterized pepsin-resistant fragments of alpha 1(VI) and alpha 3(VI), indicating that the higher molecular weight polypeptides represent the intact parent chains, alpha 1(VI) and alpha 3(VI). Digestion of extracts with bacterial collagenase released an Mr = 100,000 noncollagenous fragment from the alpha 1(VI) chain. Thus, intact type VI collagen in tissues contains a relatively short triple helical domain and at least one very large globular domain which is sensitive to pepsin but resistant to collagenase digestion. Immunoblotting revealed a polypeptide of Mr = 240,000, which we suggest represents the pro-alpha 1(VI) chain, in the culture medium of bovine fibroblasts. Bands intermediate in molecular weight between 240,000 and 190,000 were identified in cell layers. These findings establish type VI collagen as a protein with very large nontriple helical domains, a property that undoubtedly plays an important role in its function.  相似文献   

19.
Collagen VI has a ubiquitous distribution throughout connective tissues, and has key roles in linking cells and matrix macromolecules. We have generated three-dimensional reconstructions of collagen VI microfibrils using automated electron tomography (AET) in order to obtain new insights into the organisation of collagen VI in assembled microfibrils. Analysis of the reconstruction data has allowed the resolution of the double-beaded structure into smaller subunits. Volume calculations from the tomography data indicate that ten and six A-domains could be packed into the N and C-terminal regions from each monomer, respectively. A putative location for the globular N-terminal regions of the alpha3 chain, important for microfibril assembly and function, has been identified. Some surfaces of the alpha3 chain N-terminal domains appear to be exposed on the surface of a microfibril, where they may provide an interactive surface for molecules. Analysis of the interbead region provides evidence for complex triple helical supercoiling in microfibrils. Frequently, two strands were visualised emerging from the beaded region and merging into a single interbead region. Measurements taken from the AET data show that there is a decrease in periodicity from dimer/tetramer to microfibrils. Molecular combing reverses this effect by mechanically increasing periodicity to give measurements similar to the component dimers/tetramers. Together, these data have provided important new insights into the organisation and function of these large macromolecular assemblies.  相似文献   

20.
A disulfide-cross-linked collagen has been extracted with neutral salt solutions from organ cultures of embryonic chick sternal cartilage. This collagen, which we term pM collagen, is presumed to be the native extracellular precursor molecule to disulfide-cross-linked collagen fragments recently described. Cleavage of pM collagen under native conditions with pepsin gives rise to the collagen fragments M1 and M2, which had also been isolated from pepsin extracts of chick hyaline cartilage [K. von der Mark, M. van Menxel & H. Wiedemann (1982) Eur. J. Biochem. 124, 57-62]. Native pM collagen was purified by DEAE-cellulose chromatography and agarose gel filtration. On agarose and following polyacrylamide gel electrophoresis, the unreduced molecule migrates with an apparent Mr of 300 000. Reduction of disulfide bridges produces two subunits with Mr 80 000 (pMa) and 60 000 (pMb) when compared with collagen standards. Cyanogen bromide cleavage of pMa and pMb, excised from dodecyl sulfate gels, resulted in different peptide maps, indicating that both components are genetically distinct polypeptide chains. The occasional appearance of the unreduced pM collagen as a doublet band on dodecyl sulfate gels and the observation that pMa and pMb occur in non-stoichiometric ratios suggests that pMa and pMb form separate native molecules, although their incorporation into a single pM molecule cannot be excluded. Native pM collagen was completely digested with bacterial collagenase, and contained hydroxyproline and proline in a ratio of 1.15:1, indicating the absence of significant non-collagenous domains. Thus it represents, despite several pepsinlabile sites, more likely a largely triplehelical, processed form of collagen rather than a procollagen-like molecule containing globular domains. Processing of pM collagen to M1 and M2 fragments or other intermediate forms was not observed in cartilage organ culture or in chondrocyte cell cultures within 18 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号