首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Ramanand  M T Balba    J Duffy 《Applied microbiology》1993,59(10):3266-3272
The anaerobic metabolism of chlorinated benzenes and toluenes was evaluated in soil slurry microcosms under methanogenic conditions. A mixture of hexachlorobenzene, pentachlorobenzene, and 1,2,4-trichlorobenzene (TCB) in soil slurries was biotransformed through sequential reductive dechlorination to chlorobenzene (CB). The metabolic pathway for hexachlorobenzene and pentachlorobenzene decay proceeded via 1,2,3,4-tetrachlorobenzene (TTCB)-->1,2,3-TCB + 1,2,4-TCB-->1,2-dichlorobenzene (DCB) + 1,4-DCB-->CB. In a mineral salts medium, the CB-adapted soil microorganisms dehalogenated individual 1,2,4,5-TTCB, 1,2,3,4-TTCB, 1,2,3-TCB, and 1,2,4-TCB but not 1,2,3,5-TTCB or 1,3,5-TCB. Similarly, a mixture of 2,3,6-trichlorotoluene (TCT), 2,5-dichlorotoluene (DCT), and 3,4-DCT was reductively dechlorinated in soil slurries to predominantly toluene and small amounts of 2-, 3-, and 4-chlorotoluene (CT). Toluene was further degraded. When tested individually in a mineral salts medium, the CT-adapted soil microorganisms dechlorinated several TCT and DCT isomers. Key metabolic routes for TCTs followed: 2,3,6-TCT-->2,5-DCT-->2-CT-->toluene; 2,4,5-TCT-->2,5-DCT + 3,4-DCT-->3-CT + 4-CT-->toluene. Among DCTs tested, 2,4-DCT and 3,4-DCT were dechlorinated via the removal of o- and m-chlorine, respectively, to 4-CT and subsequently to toluene via p-chlorine removal. Likewise, 2,5-DCT was dechlorinated via 2-CT to toluene. Evidently, microorganisms capable of removing o-, m-, and p-chlorines are present in the soil system, as reflected by the dechlorination of different isomers of CBs and CTs to CB and toluene, respectively. These findings help clarify the metabolic fate of chlorinated benzenes and toluenes in anaerobic environments.  相似文献   

2.
Hexachlorobenzene (HCB), pentachlorobenzene (QCB), all three isomers of tetrachlorobenzene (TeCB), 1,2,3-trichlorobenzene (1,2,3-TCB), and 1,2,4-TCB were reductively dechlorinated by enrichment cultures in the presence of lactate, glucose, ethanol, or isopropanol as the electron donor. The enrichment cultures originated from percolation columns filled with Rhine River sediment in which dechlorination of TCBs and dichlorobenzenes (DCBs) occurred. A stable consortium obtained by transfer on lactate as the energy and carbon source in the presence of 1,2,3-TCB dechlorinated this isomer stoichiometrically to 1,3-DCB. Dechlorinating activity could only be maintained when an electron donor was added. Lactate, ethanol, and hydrogen appeared to be the best substrates. Optimal temperature and pH for dechlorination were 30 degrees C and 7.2, respectively. The specificity of the enrichment on lactate and 1,2,3-TCB was tested after approximately 60 transfers (after 2.5 years). HCB and QCB were stoichiometrically dechlorinated to 1,3,5-TCB and minor amounts of 1,2,4-TCB. 1,3,5-TCB was the sole product formed from 1,2,3,5-TeCB, while 1,2,3,4-TeCB and 1,2,4,5-TeCB were converted to 1,2,4-TCB. 1,2,4-TCB, 1,3,5-TCB, and the three isomers of DCB were not dechlorinated during 4 weeks of incubation. For further enrichment of the 1,2,3-TCB-dechlorinating bacteria, a two-liquid-phase (hexadecane-water) system was used with hydrogen as the electron donor and 1,2,3-TCB or CO2 as the electron acceptor. Methanogens and acetogens were the major substrate-competing (H2-CO2) microorganisms in the two-liquid-phase system. Inhibition of methanogenesis by 2-bromoethanesulfonic acid did not influence dechlorination, and acetogens which were isolated from the enrichment culture did not have dechlorinating activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Hexachlorobenzene (HCB), pentachlorobenzene (QCB), all three isomers of tetrachlorobenzene (TeCB), 1,2,3-trichlorobenzene (1,2,3-TCB), and 1,2,4-TCB were reductively dechlorinated by enrichment cultures in the presence of lactate, glucose, ethanol, or isopropanol as the electron donor. The enrichment cultures originated from percolation columns filled with Rhine River sediment in which dechlorination of TCBs and dichlorobenzenes (DCBs) occurred. A stable consortium obtained by transfer on lactate as the energy and carbon source in the presence of 1,2,3-TCB dechlorinated this isomer stoichiometrically to 1,3-DCB. Dechlorinating activity could only be maintained when an electron donor was added. Lactate, ethanol, and hydrogen appeared to be the best substrates. Optimal temperature and pH for dechlorination were 30 degrees C and 7.2, respectively. The specificity of the enrichment on lactate and 1,2,3-TCB was tested after approximately 60 transfers (after 2.5 years). HCB and QCB were stoichiometrically dechlorinated to 1,3,5-TCB and minor amounts of 1,2,4-TCB. 1,3,5-TCB was the sole product formed from 1,2,3,5-TeCB, while 1,2,3,4-TeCB and 1,2,4,5-TeCB were converted to 1,2,4-TCB. 1,2,4-TCB, 1,3,5-TCB, and the three isomers of DCB were not dechlorinated during 4 weeks of incubation. For further enrichment of the 1,2,3-TCB-dechlorinating bacteria, a two-liquid-phase (hexadecane-water) system was used with hydrogen as the electron donor and 1,2,3-TCB or CO2 as the electron acceptor. Methanogens and acetogens were the major substrate-competing (H2-CO2) microorganisms in the two-liquid-phase system. Inhibition of methanogenesis by 2-bromoethanesulfonic acid did not influence dechlorination, and acetogens which were isolated from the enrichment culture did not have dechlorinating activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Anaerobic reductive dechlorination of hexachlorobenzene (HCB) and three isomers of tetrachlorobenzene (TeCB) (1,2,3,4-, 1,2,3,5- and 1,2,4,5-TeCB) was investigated in microcosms containing chloroaromatic contaminated river sediment. All chlorobenzenes were dechlorinated to dichlorobenzene (DCB) or monochlorobenzene. From the sediment, a methanogenic sediment-free culture was obtained which dechlorinated HCB, pentachlorobenzene, three TeCB isomers, three trichlorobenzene (TCB) isomers (1,2,3-, 1,2,4- and 1,3,5-TCB) and 1,2-DCB. Dechlorination involved multiple pathways including the removal of doubly flanked, singly flanked and isolated chlorine substituents. 454-pyrosequencing of partial bacterial 16S rRNA genes amplified from selected chlorobenzene dechlorinating sediment-free enrichment cultures revealed the presence of a variety of bacterial species, including Dehalobacter and Dehalococcoides mccartyi, that were previously documented as organohalide respiring bacteria. A genus with apparent close relationship to Desulfitobacterium that also has been associated with organohalide respiration, composed the major fraction of the operational taxonomic units (OTUs). Another major OTU was linked with Sedimentibacter sp., a genus that was previously identified in strict co-cultures of consortia reductively dehalogenating chlorinated compounds. Our data point towards the existence of multiple interactions within highly chlorinated benzene dechlorinating communities.  相似文献   

5.
A microorganism whose growth is linked to the dechlorination of polychlorinated biphenyls (PCBs) with doubly flanked chlorines was identified. Identification was made by reductive analysis of community 16S ribosomal DNA (rDNA) sequences from a culture enriched in the presence of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB), which was dechlorinated at the para position. Denaturing gradient gel electrophoresis (DGGE) analysis of total 16S rDNA extracted from the culture led to identification of three operational taxonomic units (OTUs 1, 2, and 3). OTU 1 was always detected when 2,3,4,5-CB or other congeners with doubly flanked chlorines were present and dechlorinated. Only OTUs 2 and 3 were detected in the absence of PCBs and when other PCBs (i.e., PCBs lacking doubly flanked chlorines) were not dechlorinated. Partial sequences of OTUs 2 and 3 exhibited 98.2% similarity to the sequence of "Desulfovibrio caledoniensis" (accession no. DCU53465). A sulfate-reducing vibrio isolated from the culture generated OTUs 2 and 3. This organism could not dechlorinate 2,3,4,5-CB. From these results we concluded that OTU 1 represents the dechlorinating bacterium growing in a coculture with a Desulfovibrio sp. The 16S rDNA sequence of OTU 1 is most similar to the 16S rDNA sequence of bacterium o-17 (89% similarity), an ortho-PCB-dechlorinating bacterium. The PCB dechlorinator, designated bacterium DF-1, reductively dechlorinates congeners with doubly flanked chlorines when it is supplied with formate or H(2)-CO(2) (80:20).  相似文献   

6.
Reductive dechlorination of perchloroethylene and the role of methanogens   总被引:3,自引:0,他引:3  
Abstract Perchloroethylene (PCE) was reductively dechlorinated to trichloroethylene in a 10% anaerobic sewage sludge. About 80% of the initially added PCE (300 nmol) was dechlorinated within three weeks. The calculated rates were 250 nM and 445 nM · day−1 during the first and second weeks of incubation, respectively. The depletion of PCE varied in sludges obtained from different sources.
The role of methanogenesis in the dechlorination of PCE was evaluated by inhibiting the methanogens by addition of bromoethane sulfonic acid, a potent methanogenic inhibitor. Dechlorination of PCE was significantly inhibited in sludges amended with the inhibitor. Almost 41–48% less PCE was dechlorinated in sludges containing 5 mM BESA, indicating a relation between the two processes (methanogenesis and dechlorination). Direct proof that methanogens can transform chlorinated aliphatic compounds was obtained using axenic cultures of acetate-cleaving methanogens. Methanosarcina sp , originally isolated from a chlorophenol degrading consortium, showed significantly higher dechlorinating activity as compared to Ms. mazei . Based on these studies and other recently reported observations, it appears that methanogens/methanogenesis play an important role in the anaerobic dechlorination of chlorinated aliphatics such as PCE.  相似文献   

7.
Anaerobic cultures capable of reductively dechlorinating 2,3,4,5-tetrachlorobiphenyl (CB) were enriched from three different sediments, one estuarine, one marine and one riverine. Two different electron donors were used in enrichments with the estuarine sediment (elemental iron or a mixture of fatty acids). The removal of doubly flanked meta and para chlorines to form 2,3,5-CB and 2,4,5-CB was observed in all cultures. Bacterial community analysis of PCR-amplified 16S rRNA gene fragments revealed different communities in these cultures, with the exception of one common population that showed a high phylogentic relatedness to Dehalococcoides species. No Dehalococcoides-like populations were ever detected in control cultures to which no PCBs were added. In addition, the dynamics of this Dehalococcoides-like population were strongly correlated with dechlorination. Subcultures of the estuarine sediment culture demonstrated that the Dehalococcoides-like population disappeared when dechlorination was inhibited with 2-bromoethanesulfonate or when 2,3,4,5-CB had been consumed. These results provide evidence that Dehalococcoides-like populations were involved in the removal of doubly flanked chlorines from 2,3,4,5-CB. Furthermore, the successful enrichment of these populations from geographically distant and geochemically distinct environments indicates the widespread presence of these PCB-dechlorinating, Dehalococcoides-like organisms.  相似文献   

8.
Under secondary metabolic conditions, the lignin-degrading basidiomycete Phanerochaete chrysosporium mineralizes 2,4,6-trichlorophenol. The pathway for the degradation of 2,4,6-trichlorophenol has been elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway is initiated by a LiP- or MnP-catalyzed oxidative dechlorination reaction to produce 2,6-dichloro-1,4-benzoquinone. The quinone is reduced to 2,6-dichloro-1,4-dihydroxybenzene, which is reductively dechlorinated to yield 2-chloro-1,4-dihydroxybenzene. The latter is degraded further by one of two parallel pathways: it either undergoes further reductive dechlorination to yield 1,4-hydroquinone, which is ortho-hydroxylated to produce 1,2,4-trihydroxybenzene, or is hydroxylated to yield 5-chloro-1,2,4-trihydroxybenzene, which is reductively dechlorinated to produce the common key metabolite 1,2,4-trihydroxybenzene. Presumably, the latter is ring cleaved with subsequent degradation to CO2. In this pathway, the chlorine at C-4 is oxidatively dechlorinated, whereas the other chlorines are removed by a reductive process in which chlorine is replaced by hydrogen. Apparently, all three chlorine atoms are removed prior to ring cleavage. To our knowledge, this is the first reported example of aromatic reductive dechlorination by a eukaryote.  相似文献   

9.
Estuarine sediment from Charleston Harbor, South Carolina, was used as inoculum for the development of an anaerobic enrichment culture that specifically dechlorinates doubly flanked chlorines (i.e., chlorines bound to carbon that are flanked on both sides by other chlorine-carbon bonds) of polychlorinated biphenyls (PCBs). Dechlorination was restricted to the para chlorine in cultures enriched with 10 mM fumarate, 50 ppm (173 μM) 2,3,4,5-tetrachlorobiphenyl, and no sediment. Initially the rate of dechlorination decreased upon the removal of sediment from the medium. However, the dechlorinating activity was sustainable, and following sequential transfer in a defined, sediment-free estuarine medium, the activity increased to levels near that observed with sediment. The culture was nonmethanogenic, and molybdate, ampicillin, chloramphenicol, neomycin, and streptomycin inhibited dechlorination activity; bromoethanesulfonate and vancomycin did not. Addition of 17 PCB congeners indicated that the culture specifically removes double flanked chlorines, preferably in the para position, and does not attack ortho chlorines. This is the first microbial consortium shown to para or meta dechlorinate a PCB congener in a defined sediment-free medium. It is the second PCB-dechlorinating enrichment culture to be sustained in the absence of sediment, but its dechlorinating capabilities are entirely different from those of the other sediment-free PCB-dechlorinating culture, an ortho-dechlorinating consortium, and do not match any previously published Aroclor-dechlorinating patterns.  相似文献   

10.
A polychlorinated biphenyl (PCB)-dechlorinating anaerobic microbial consortium, developed in a granular form, demonstrated extensive dechlorination of PCBs present in Raisin River sediments at room (20 degrees to 22 degrees C) and at a relatively low (12 degrees C) temperature. Highly chlorinated PCB congeners were dechlorinated and less chlorinated compounds were produced. The homolog comparison showed that tri-, tetra-, penta-, hexa-, and heptachlorobiphenyl compounds decreased significantly, and mono- and dichlorobiphenyl compounds increased. After 32 weeks of incubation at 12 degrees C, the predominant less chlorinated products included 2-, 4-, 2-2/26-, 24-, 2-4-, 24-2-, 26-2-, and 26-4-CB. Among these, 24- and 24-2-CB did not accumulate at room temperature, suggesting a further dechlorination of these congeners. Predominantly meta dechlorination (i.e., pattern M) was catalyzed by the microbial consortium in the granules. Dechlorination in the control studies without granules was not extensive. This study is the first demonstration of enhanced reductive dechlorination of sediment PCBs by an exogenous anaerobic microbial consortium. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 182-190, 1997.  相似文献   

11.
The transformation and toxicity of trichlorophenols (TCPs) were studied with a methanogenic enrichment culture derived from sewage sludge. Transformation of TCPs rapidly resumed after heating of the culture at *) degrees C for 1 h, suggesting that the dechlorinating bacteria are spore-forming anaerobes. 2,4,6-TCP was rapidly dechlorinated via 2,4-dichlorophenol to 4-chlorophenol. During the transformation of 2,4,6-TCP, the most probable number of dechlorinating bacteria increased by 4 orders of magnitude. The most extensive dechlorination was observed in media with complex carbon sources such as yeast extract, peptone, and Casamino Acids, but glucose, galactose, and lactose were also used by the consortium. Experiments using chloramphenicol indicated that the reductive dechlorination of 2,4,6-TCP was regulated by an inducible enzyme system. The highest initial concentration at which dechlorination of 2,4,6-TCP was observed was 400 microM. 2,4,5-TCP and 3,4,5-TCP were dechlorinated to, respectively, 3,4-dichlorophenol and 3-chlorophenol at initial concentrations of less than or equal to 40 microM. Toxicity for the acid-producing and methanogenic bacteria in the consortium was a function of chemical structure, as the inhibition of these activities increased from 2,4,6-TCP, via 2,4,5-TCP, to 3,4,5,-TCP.  相似文献   

12.
Estuarine sediment from Charleston Harbor, South Carolina, was used as inoculum for the development of an anaerobic enrichment culture that specifically dechlorinates doubly flanked chlorines (i.e., chlorines bound to carbon that are flanked on both sides by other chlorine-carbon bonds) of polychlorinated biphenyls (PCBs). Dechlorination was restricted to the para chlorine in cultures enriched with 10 mM fumarate, 50 ppm (173 microM) 2,3,4, 5-tetrachlorobiphenyl, and no sediment. Initially the rate of dechlorination decreased upon the removal of sediment from the medium. However, the dechlorinating activity was sustainable, and following sequential transfer in a defined, sediment-free estuarine medium, the activity increased to levels near that observed with sediment. The culture was nonmethanogenic, and molybdate, ampicillin, chloramphenicol, neomycin, and streptomycin inhibited dechlorination activity; bromoethanesulfonate and vancomycin did not. Addition of 17 PCB congeners indicated that the culture specifically removes double flanked chlorines, preferably in the para position, and does not attack ortho chlorines. This is the first microbial consortium shown to para or meta dechlorinate a PCB congener in a defined sediment-free medium. It is the second PCB-dechlorinating enrichment culture to be sustained in the absence of sediment, but its dechlorinating capabilities are entirely different from those of the other sediment-free PCB-dechlorinating culture, an ortho-dechlorinating consortium, and do not match any previously published Aroclor-dechlorinating patterns.  相似文献   

13.
The transformation and toxicity of trichlorophenols (TCPs) were studied with a methanogenic enrichment culture derived from sewage sludge. Transformation of TCPs rapidly resumed after heating of the culture at *) degrees C for 1 h, suggesting that the dechlorinating bacteria are spore-forming anaerobes. 2,4,6-TCP was rapidly dechlorinated via 2,4-dichlorophenol to 4-chlorophenol. During the transformation of 2,4,6-TCP, the most probable number of dechlorinating bacteria increased by 4 orders of magnitude. The most extensive dechlorination was observed in media with complex carbon sources such as yeast extract, peptone, and Casamino Acids, but glucose, galactose, and lactose were also used by the consortium. Experiments using chloramphenicol indicated that the reductive dechlorination of 2,4,6-TCP was regulated by an inducible enzyme system. The highest initial concentration at which dechlorination of 2,4,6-TCP was observed was 400 microM. 2,4,5-TCP and 3,4,5-TCP were dechlorinated to, respectively, 3,4-dichlorophenol and 3-chlorophenol at initial concentrations of less than or equal to 40 microM. Toxicity for the acid-producing and methanogenic bacteria in the consortium was a function of chemical structure, as the inhibition of these activities increased from 2,4,6-TCP, via 2,4,5-TCP, to 3,4,5,-TCP.  相似文献   

14.
Reductive dechlorination of the ortho moiety of polychlorinated biphenyls (PCBs) as well as of meta and para moieties is shown to occur in anaerobic enrichments of Baltimore Harbor sediments. These estuarine sediments ortho dechlorinated 2,3,5,6-chlorinated biphenyl (CB), 2,3,5-CB, and 2,3,6-CB in freshwater or estuarine media within a relatively short period of 25 to 44 days. ortho dechlorination developed within 77 days in marine medium. High levels of ortho dechlorination (>90%) occurred when harbor sediments were supplied with only 2,3,5-CB. Incubation with 2,3,4,5,6-CB or 2,3,4,5-CB resulted in the formation of the ortho dechlorination product 3,5-CB; however, para dechlorination of these congeners always preceded ortho chlorine removal. ortho dechlorination of PCBs is an exceedingly rare event that has not been reported previously for marine or estuarine conditions. The activity was reproducible and could be sustained through sequential transfers. In contrast, freshwater sediments incubated under the same conditions exhibited only meta and para dechlorinations. The results indicate that unique anaerobic dechlorinating activity is catalyzed by microorganisms in the estuarine sediments from Baltimore Harbor.  相似文献   

15.
Actinobacteria are well-known degraders of toxic materials that have the ability to tolerate and remove organochloride pesticides; thus, they are used for bioremediation. The biodegradation of organochlorines by actinobacteria has been demonstrated in pure and mixed cultures with the concomitant production of metabolic intermediates including γ-pentachlorocyclohexene (γ-PCCH); 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN); 1,2-dichlorobenzene (1,2-DCB), 1,3-dichlorobenzene (1,3-DCB), or 1,4-dichlorobenzene (1,4-DCB); 1,2,3-trichlorobenzene (1,2,3-TCB), 1,2,4-trichlorobenzene (1,2,4-TCB), or 1,3,5-trichlorobenzene (1,3,5-TCB); 1,3-DCB; and 1,2-DCB. Chromatography coupled to mass spectrometric detection, especially GC–MS, is typically used to determine HCH-isomer metabolites. The important enzymes involved in HCH isomer degradation metabolic pathways include hexachlorocyclohexane dehydrochlorinase (LinA), haloalkane dehalogenase (LinB), and alcohol dehydrogenase (LinC). The metabolic versatility of these enzymes is known. Advances have been made in the identification of actinobacterial haloalkane dehydrogenase, which is encoded by linB. This knowledge will permit future improvements in biodegradation processes using Actinobacteria. The enzymatic and genetic characterizations of the molecular mechanisms involved in these processes have not been fully elucidated, necessitating further studies. New advances in this area suggest promising results. The scope of this paper encompasses the following: (i) the aerobic degradation pathways of hexachlorocyclohexane (HCH) isomers; (ii) the important genes and enzymes involved in the metabolic pathways of HCH isomer degradation; and (iii) the identification and quantification of intermediate metabolites through gas chromatography coupled to mass spectrometry (GC–MS).  相似文献   

16.
Summary Granular sludge from an upflow anaerobic sludge blanket (UASB) reactor operated for 18 months on a mineral medium containing pentachlorophenol (PCP), phenol, and glucose was studied. Under methanogenic conditions PCP was dechlorinated to lower chlorinated phenols, primarily di-, and monochlorophenols. The initial dechlorination of PCP and the removal of the intermediate 3,5-dichlorophenol (3,5-DCP), seemed to be rate-limiting. Addition of sulphate was slightly inhibitory for PCP transformation in the presence of glucose but had little or no effect on dechlorination in vials without glucose Nitrate was strongly inhibitory. The consortium had a high affinity for PCP, with an apparent half-saturation constant (K s) value of 580 g/1. Addition of various easily degradable carbon compounds including acetate, butyrate, formate, hydrogen/carbon dioxide, ethanol, and glucose together with extra PCP, to cultures already dechlorinating PCP showed that only glucose had a stimulatory effect on the dechlorination rate. Counts of bacteria from a sample f disintegrated granular sludge showed that the number of dechlorinating organisms was low compared to the numbers of glucose degraders and methanogens. Correspondence to: B. K. Ahring  相似文献   

17.
D Ye  J F Quensen  rd  J M Tiedje    S A Boyd 《Applied microbiology》1992,58(4):1110-1114
A polychlorobiphenyl (PCB)-dechlorinating inoculum eluted from upper Hudson River sediments was treated with either heat or ethanol or both. The treated cultures retained the ability to dechlorinate PCBs (Aroclor 1242) under strictly anaerobic conditions. The dechlorination activity was maintained in serial cultures inoculated with transfers of 1% inoculum when the transferred inoculum was treated each time in the same manner. No methane production was detected in any treated culture, although dechlorination of PCBs in the untreated cultures was always accompanied by methane production. All treated cultures preferentially removed meta chlorines, yielding a dechlorination pattern characterized by accumulation of certain ortho- and para-subsituted congeners such as 2-4-chlorobiphenyl (2-4-CB), 2,4-2-CB, and 2,4-4-CB. In contrast, the untreated cultures showed more extensive dechlorination activities, which almost completely removed both meta and para chlorines from Aroclor 1242. These results suggest that microorganisms responsible for the dechlorination of PCBs in the upper Hudson River sediments can be grouped into two populations according to their responses to the heat and ethanol treatments. Microorganisms surviving the heat and ethanol treatments preferentially remove meta chlorines, while microorganisms lost from the enrichment mainly contribute to the para dechlorination activity. These results indicate that anaerobic sporeformers are at least one of the physiological groups responsible for the reductive dechlorination of PCBs. The selection of a dechlorinating population by such treatments may be an important step in isolation of PCB-dechlorinating microorganisms.  相似文献   

18.
Desulfomonile tiedjei is the key dechlorinating organism in a three-tiered bacterial consortium that grows on the methanogenic degradation of 3-chlorobenzoate. 2,5-Dichlorobenzoate, however, is only converted to 2-chlorobenzoate and is not a methanogenic substrate for the consortium. The dechlorinator uses hydrogen produced from benzoate by the benzoate degrading member of consortium as its source of reducing equivalents for the dechlorination reaction. Incubation of 3-chlorobenzoate grown consortium cells with 2,5-dichlorobenzoate resulted in the consumption of acetate concurrent with the formation of 2-chlorobenzoate indicating that acetate can serve as an alternative source of reducing equivalents for reductive dechlorination. This interpretation was confirmed by the finding that the formation of 14CO2 from 2-14C-labeled acetate was stoichiometric. The addition of hydrogen to 2,5-dichlorobenzoate metabolizing cells resulted in (i) an 2.7-fold increase in the rate of dechlorination, and (ii) a drop in the amount of label recovered as CO2+CH4 from methyl 14C-labeled acetate, indicating that hydrogen was the preferred source of reducing equivalents for reductive dechlorination. Benzoate, an indirect source of H2 in the consortium, also inhibited the oxidation of acetate, while glucose, methanol, and butyrate did not affect labeled gas production and therefore were not suitable electron donors. Concomittant to dechlorination of 2,5-dichlorobenzoate 3- and 4-methoxybenzoate were converted to 3- and 4-hydroxybenzoate respectively. These conversions stimulated the rate of dechlorination 2-fold. Demethylation of 4-methoxybenzoate stimulated, but demethylation of 3-methoxybenzoate inhibited the oxidation of benzoate during the dechlorination of 2,5-dichlorobenzoate, suggesting that these isomers are metabolized through different pathways. Experiments with benzoate, 3-chlorobenzoate and 2,5-dichlorobenzoate metabolizing cells amended with 14CO2 showed that actively dechlorinating cells catalyzed an exchange reaction between CO2 and acetate.  相似文献   

19.
A polychlorobiphenyl (PCB)-dechlorinating inoculum eluted from upper Hudson River sediments was treated with either heat or ethanol or both. The treated cultures retained the ability to dechlorinate PCBs (Aroclor 1242) under strictly anaerobic conditions. The dechlorination activity was maintained in serial cultures inoculated with transfers of 1% inoculum when the transferred inoculum was treated each time in the same manner. No methane production was detected in any treated culture, although dechlorination of PCBs in the untreated cultures was always accompanied by methane production. All treated cultures preferentially removed meta chlorines, yielding a dechlorination pattern characterized by accumulation of certain ortho- and para-subsituted congeners such as 2-4-chlorobiphenyl (2-4-CB), 2,4-2-CB, and 2,4-4-CB. In contrast, the untreated cultures showed more extensive dechlorination activities, which almost completely removed both meta and para chlorines from Aroclor 1242. These results suggest that microorganisms responsible for the dechlorination of PCBs in the upper Hudson River sediments can be grouped into two populations according to their responses to the heat and ethanol treatments. Microorganisms surviving the heat and ethanol treatments preferentially remove meta chlorines, while microorganisms lost from the enrichment mainly contribute to the para dechlorination activity. These results indicate that anaerobic sporeformers are at least one of the physiological groups responsible for the reductive dechlorination of PCBs. The selection of a dechlorinating population by such treatments may be an important step in isolation of PCB-dechlorinating microorganisms.  相似文献   

20.
We have developed sediment-free anaerobic enrichment cultures that dechlorinate a broad spectrum of highly chlorinated polychlorinated biphenyls (PCBs). The cultures were developed from Aroclor 1260-contaminated sediment from the Housatonic River in Lenox, MA. Sediment slurries were primed with 2,6-dibromobiphenyl to stimulate Process N dechlorination (primarily meta dechlorination), and sediment was gradually removed by successive transfers (10%) to minimal medium. The cultures grow on pyruvate, butyrate, or acetate plus H(2). Gas chromatography-electron capture detector analysis demonstrated that the cultures extensively dechlorinate 50 to 500 mug/ml of Aroclor 1260 at 22 to 24 degrees C by Dechlorination Process N. Triplicate cultures of the eighth transfer without sediment dechlorinated 76% of the hexa- through nonachlorobiphenyls in Aroclor 1260 (250 mug/ml) to tri- through pentachlorobiphenyls in 110 days. At least 64 PCB congeners, all of which are chlorinated on both rings and 47 of which have six or more chlorines, were substrates for this dechlorination. To characterize the bacterial diversity in the enrichments, we used eubacterial primers to amplify and clone 16S rRNA genes from DNA extracted from cultures grown on acetate plus H(2). Restriction fragment length polymorphism analysis of 107 clones demonstrated the presence of Thauera-like Betaproteobacteria, Geobacter-like Deltaproteobacteria, Pseudomonas species, various Clostridiales, Bacteroidetes, Dehalococcoides of the Chloroflexi group, and unclassified Eubacteria. Our development of highly enriched, robust, stable, sediment-free cultures that extensively dechlorinate a highly chlorinated commercial PCB mixture is a major and unprecedented breakthrough in the field. It will enable intensive study of the organisms and genes responsible for a major PCB dechlorination process that occurs in the environment and could also lead to effective remediation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号