首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cells from neonatal rat livers were unable to maintain DNA-synthetic activity in calcium-deficient medium, but neoplastic hepatocytes from Morris hepatomas 5123 tc and 7795 synthesized DNA and proliferated indefinitely in this calcium-deficient medium. The calcium content of fresh hepatoma tissue from which these cultures were derived was as much as 10 times greater than that of normal liver; but this difference could not account for the insensitivity of neoplastic cells to extracellular calcium because it disappeared during subsequent cultivation in vitro. NRCC No. 16597  相似文献   

2.
A general characteristic of neoplastic cells, but not their non-neoplastic counterparts, is the ability to proliferate in calcium-deficient medium. NRK cells infected with the transformation-defective, temperature-sensitive, ASV mutant, tsLA23, were unable to proliferate in calcium-deficient medium at the non-permissive 40°C, but they very rapidly initiated DNA synthesis (within 1 hour) and resumed proliferation in this medium after being shifted to 36°C, a temperature permissive for the production of active pp60src and for neoplastic transformation. These observations suggest that activated pp60src acts near the G1S transition point in the cell cycle to bypass or stimulate a calcium-dependent mechanism required for the initiation of DNA synthesis, which enables the cells to display the neoplastic property of proliferating in calcium-deficient medium.  相似文献   

3.
To determine whether calcium alters processes important for fertilization in vivo, mouse (+/+) spermatozoa were incubated in medium with 1.0-1.7 mM calcium prior to artificial insemination (AI) into the cervix of hormonally primed females. Spermatozoa from congenic tw32/+ mice were also tested because their flagella are hypersensitive to calcium. As a control, spermatozoa were incubated in calcium-deficient medium prior to AI. Spermatozoa from mice of both genotypes incubated in calcium-containing medium fertilized significantly fewer eggs after AI than did spermatozoa incubated in calcium-deficient medium. In addition, calcium-treated spermatozoa from tw32/+ mice fertilized significantly fewer eggs than calcium-treated +/+ spermatozoa. Pretreatment with calcium also reduced the number of spermatozoa in the oviducts 0.5-4.5 h after AI, and the oviducts of females inseminated with calcium-treated spermatozoa from tw32/+ mice contained significantly fewer spermatozoa than those of females inseminated with calcium-treated +/+ spermatozoa. These results suggest that preincubation in millimolar levels of calcium changes the physiology of epididymal spermatozoa in such a way as to impair sperm transport to the oviduct and fertilization in vivo.  相似文献   

4.
Raising the calcium concentration, or adding the tumor-specific calcium-binding protein oncomodulin (but not a similar, calcium-binding protein such as skeletal muscle parvalbumin) stimulated DNA synthesis in non-neoplastic T51B rat liver cells, whose DNA-synthetic activity had been reduced by incubation in medium containing 0.02 mM calcium instead of the usual 1.8 mM calcium. A calcium: oncomodulin complex was probably the actual stimulator, because oncomodulin action was blocked by further reducing the ionic calcium concentration in the already calcium-deficient medium with EGTA. Oncomodulin was also able to stimulate DNA synthesis in T51B cell cultures, whose response to calcium addition had been blocked by trifluoperazine.  相似文献   

5.
The effects of calcium and temperature on fusion of quail embryonic myoblasts were examined using cells transformed with a temperature-sensitive mutant of Rous sarcoma virus (ts-RSV). The transformed quail myoblasts (QM-RSV) fused to form myotubes at 41 degrees C, the non-permissive temperature, but not at 35.5 degrees C, the permissive temperature. On incubation at 41 degrees C, a period of more than 10 hr was needed for the myoblasts to become fusion-competent, but calcium was not needed for development of fusion-competence. Once the cells had become competent, fusion proceeded even at 35.5 degrees C. These results suggest that the src gene product expressed at 35.5 degrees C may control the fusion of cells in the competent stage by inactivating a component(s) that is associated with fusion-competence. However, fusion of even myoblasts in the competent stage was blocked in calcium-deficient medium, suggesting that calcium is essential for the fusion, probably at a step immediately before membrane union. Unlike fusion, other biochemical processes of differentiation proceeded even in calcium-deficient medium, indicating a distinction of fusion from these other processes during myoblast differentiation.  相似文献   

6.
Chloroplasts were isolated from spinach cultured in calcium-deficient, cerium-chloride-administered calcium-present Hoagland’s media or that of calcium-deficient Hoagland’s media and demonstrated the effects of cerium on distribution of light energy between photosystems II and I and photochemical activities of spinach chloroplast grown in calcium-deficient media. It was observed that calcium deprivation significantly inhibited light absorption, energy transfer from LHCII to photosystemII, excitation energy distribution from PSI to PSII, and transformation from light energy to electron energy and oxygen evolution of chloroplasts. However, cerium treatment to calcium-deficient chloroplasts could obviously improve light absorption and excitation energy distribution from photosystem I to photosystem II and increase activity of whole chain electron transport, photosystems II and I DCPIP photoreduction, and oxygen evolution of chloroplasts. The results suggested that cerium under calcium deficiency condition could substitute for calcium in chloroplasts, maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloroplast, but the mechanisms still need further study.  相似文献   

7.
When retinas from dark-adapted C57BL/6 mice were incubated in the dark for 5 min at 37 degrees C in Earle's medium, they contained 80-120 pmol/mg protein of cGMP and about 13 pmol/mg protein of cAMP. When the incubation in darkness was in calcium-deficient Earle's medium with 3 mM EGTA, a 10-20 fold increase occurred in the cGMP level, peaking at 2-3 min, but no change occurred in cAMP. This elevated level fell in 3 min to normal dark levels on return to normal Earle's medium, but was still about three times that of control levels after 15 min in EGTA-containing solution. Bright light after 2 min of dark incubation of dark-adapted retinas resulted in a 40-50% fall in cGMP, and bright light sharply reduced the elevated dark cGMP level of retinas in calcium-deficient media with 3 mM EDTA. However, no depression of normal dark levels of cGMP has thus far been obtained by increasing external calcium levels, even in the presence of the ionophore A23187. All the above phenomena involving dark cGMP levels and calcium are similar in Earle's medium with 100 mM of K+ substituted for Na+. Congenic rodless (rd/rd) mouse retinas have less than 5% of control cGMP and show only traces of calcium sensitivity. Thus, the above phenomena in controls are likely to be largely occurring in rods. The data suggest a dependency of the dark cGMP level on the calcium level, but that the light-induced fall in cGMP may largely be calcium insensitive.  相似文献   

8.
Incubation in low (0.02 mM)-calcium medium prevented T51B rat liver cells from initiating DNA synthesis. Raising the calcium concentration in the medium from 0.02 to 1.25 mM caused these arrested cells to initiate DNA synthesis 1–2 hours later. The possibility of this rapid DNA-synthetic response to calcium addition being mediated through Ca-calmodulin complexes was suggested by the following observations: It was blocked by the putative Ca-calmodulin blockers chlorpromazine and trifluoperazine; the trifluoperazine-inhibited cells were stimulated by purified rat calmodulin; and purified rat calmodulin itself (10?7 to 10?6 moles/l) mimicked calcium action, unless the already low ionic calcium concentration in the calcium-deficient medium was reduced further by adding the specific calcium chelator EGTA.  相似文献   

9.
Populus plants were grown in a medium lacking calcium and exposedto 14CO2. In contrast to plants in the complete nutrient medium,the percentage amount of 14C-assimilates increased in the leavesof calcium-deficient plants and decreased in the stem and theroots. When plants were grown without potassium or magnesiumno differences in the amount of 14C-label occurred in comparisonwith plants in the complete nutrient medium. Translocation wasrecorded by microautoradiography. It was observed that considerableamounts of labelled photoassimilates were unloaded from thephloem in the middle part of the stem in plants of the completenutrient medium. In contrast, during calcium starvation 14C-labelwas restricted to the phloem of the stem. In addition, the concentrationsof magnesium and phosphorus showed a remarkable increase instem sieve tubes of calcium-deficient plants. When sieve tubesof source leaves from Populus, barley and maize were comparedwith those of sink leaves, the latter showed higher calciumconcentrations. The results suggest that calcium is a necessaryfactor in the regulation of phloem translocation. Key words: Calcium deficiency, phloem translocation, sieve element loading and unloading, X-ray microanalysis  相似文献   

10.
The importance of calcium-dependent sperm processes for fertilization in vitro is well known, but their interaction with sperm transport in vivo is not yet clear. To determine whether exposure to calcium alters sperm physiology after incubation in the uterus, spermatozoa from +/+ mice were incubated in medium with 1.7 mM calcium prior to artificial insemination (AI). Spermatozoa from congenic tw32/+ mice were also tested because their flagella are hypersensitive to calcium. As a control, spermatozoa were incubated in calcium-deficient medium before AI. When recovered from the uterus 60 min post-AI, neither prior exposure to calcium nor genotype affected numbers of spermatozoa, or percentage of motile or acrosome-reacted spermatozoa. However, significantly more calcium-treated spermatozoa were capacitated and significantly fewer were progressively motile than spermatozoa preincubated without calcium. In addition, significantly fewer spermatozoa from tw32/+ mice than from +/+ mice were progressively motile. These results suggest that uterine sperm physiology is changed by prior exposure of sperm to calcium. Since the level of progressive motility of spermatozoa recovered from the uterus was correlated with their ability to reach the oviduct (as determined in a previous study), these data support the hypothesis that progressive motility of uterine spermatozoa is important for passage to the oviduct and fertility.  相似文献   

11.
The main aim of the study was to determine the role of cerium in the amelioration of calcium-deficiency effects in spinach plants. Spinach plants were cultivated in Hoagland’s solution. They were subjected to calcium-deficiency and to cerium chloride administered in the calcium-present Hoagland’s media and calcium-deficient Hoagland’s media. Within 3weeks, young leaves developed distinct calcium-deficient symptoms, and plant growth significantly inhibited to calcium deprivation as would be expected; cerium-treated groups grown in the same conditions did not develop calcium-deficient symptoms; fresh weight, dry weight and chlorophyll content of spinach plants were increased by 35.9, 45 and 64.05% compared to those of plants cultivated in calcium-deficient media. In addition, calcium deprivation in spinach plants caused the reduction of photosynthetic rate, oxygen evolution rate and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. The reduction of activities of nitrate reductase, glutamate dehydrogenase, glutamate synthase and glutamic-pyruvic transaminase was observed under calcium-deficient media. However, cerium treatment under calcium-deficient media could significantly improve photosynthesis and nitrogen metabolism of spinach plants. This is viewed as evidence that cerium added to calcium-deficient media in the spinach plants could substitute for calcium and improve spinach growth.  相似文献   

12.
Summary Extracellular thermostable neutral proteinase was produced byBacillus stearothermophilus strains NCIB 8924 and NRRL B-3880 growing at 55°C. The formation and stabilization of this proteinase was found to be dependent on the concentration of free calcium ions. Therefore, procedures that removed free calcium ions from the medium, such as the use of phosphate buffer, resulted in a lower production of proteinase. The calcium-deficient proteinase was denaturated or adsorbed by calcium phosphate compounds. During the sterilization procedure of the culture medium, the CaCO3 precipitation, caused by the removal of CO2, influenced the amount of proteinase produced in a phosphate buffered medium made with tap water. An improved medium without phosphate buffer was used for 10 and 300 l batch cultivations and the calcium requirement for proteinase formation by the two strains was determined.  相似文献   

13.
A low concentration (10(-11) mol/l) of epidermal growth factor (EGF) and/or an equimolar (10(-14) mol/l) mixture of glucagon and insulin stimulated DNA synthesis in hepatocytes in 4-day-old primary cultures of neonatal rat liver. EGF seems to have acted by inducing quiescent hepatocytes to begin cycling, while the glucagon-insulin combination seems to have acted mainly by shortening the cell cycle time. Incubation in low calcium medium blocked untreated hepatocytes in the G1 phase of their cycle and prevented EGF and the glucagon-insulin mixture from stimulating DNA synthesis. Nevertheless, hepatocytes in calcium-deficient medium did respond to these agents, as they reached a late stage of prereplicative development before being blocked: in fact, they initiated DNA synthesis soon after the addition of calcium. EGF, but not the glucagon-insulin combination, also enabled the already cycling hepatocytes (but not the newly activated ones) to overcome the block imposed by the extracellular calcium deficiency after a delay of several hours.  相似文献   

14.
Reproduction is a period of high calcium demand in vertebrates; therefore, calcium deficiency can limit reproductive output in mammals. Nutritional analyses show that insects are a poor calcium source, suggesting that insectivorous species are more likely to be calcium deficient. During pregnancy, big brown bats Eptesicus fuscus consume between 8 and 18 times less calcium than they are estimated to require. To accommodate calcium demand during pregnancy, many mammals mobilize more calcium from the skeleton, and extensive bone loss has been observed in some bats during pregnancy. A conflict may arise between the female and developing embryo over allocation of limited calcium supplies, which could limit reproductive output with respect to offspring size, mass and number. The effects of calcium deficiency on these three factors were tested by providing pregnant captive big brown bats with either a calcium-deficient diet or a diet providing the daily calcium requirement, as estimated for pregnant big brown bats, from the time of capture until parturition. Neonates were compared between groups for size, mass and number per female, as were the effects of maternal mass and size on neonate mass and size. Maternal mass and litter mass were positively related for the calcium-deficient group, but not for the calcium-supplemented group. This suggests that there is some interaction between maternal mass and calcium availability, most likely due to the relationship between body mass and skeletal mass, and that calcium availability is limiting the overall biomass of young that a female can produce.  相似文献   

15.
  • 1.1. Scale regeneration was examined in Oreochromis niloticus under normal, dietary calcium-deficient, and both dietary and ambient water calcium-deficient conditions.
  • 2.2. Calcium contents of regenerating scales were dependent on the calcium status of the fish, but areal growth of the scales was independent.
  • 3.3. Transient hypocalcemia accompanied with a loss of calcium from original scales was observed in descaled fish in dietary calcium deficiency, and intact and descaled fish in both dietary and ambient water calcium deficiency.
  • 4.4. The results suggested that calcium mobilized from internal sources was insufficient and both water and dietary calcium were necessary for normal calcification of the regenerating scales.
  相似文献   

16.
The phenotypes of calbindin-D9k (CaBP-9k) and -28k (CaBP-28k) single knockout (KO) mice are similar to wild-type (WT) mice due to the compensatory action of other calcium transport proteins. In this study, we generated CaBP-9k/CaBP-28k double knockout (DKO) mice in order to investigate the importance of CaBP-9k and CaBP-28k in active calcium processing. Under normal dietary conditions, DKO mice did not exhibit any changes in phenotype or the expression of active calcium transport genes as compared to WT or CaBP-28k KO mice. Under calcium-deficient dietary conditions, the phenotype and expression of calcium transport genes in CaBP-28k KO mice were similar to WT, whereas in DKO mice, serum calcium levels and bone length were decreased. The intestinal and renal expression of transient receptor potential vanilloid member 6 (TRPV6) mRNA was significantly decreased in DKO mice fed a calcium-deficient diet as compared to CaBP-28k KO or WT mice, and DKO mice died after 4 weeks on a calcium-deficient diet. Body weight, bone mineral density (BMD) and bone length were significantly reduced in all mice fed a calcium and 1,25-(OH)2D3-deficient diet, as compared to a normal diet, and none of the mice survived more than 4 weeks. These results indicate that deletion of CaBP-28k alone does not affect body calcium homeostasis, but that deletion of CaBP-9k and CaBP-28k has a significant effect on calcium processing under calcium-deficient conditions, confirming the importance of dietary calcium and 1,25-(OH)2D3 during growth and development.  相似文献   

17.
Addition of calcium to calcium-deprived cultures of T51B rat liver cells caused brief bursts of cAMP production and cAMP-dependent protein kinase activity which were followed almost immediately by a stimulation of DNA synthesis. PKInh, a specific polypeptide inhibitor of the catalytic subunits of cAMP-dependent protein kinases, inhibited the DNA-synthetic response to calcium addition without stopping the preceding cAMP surge. Addition of cAMP to the calciumdeprived cultures increased protein kinase activity and stimulated DNA synthesis, both of which were inhibited by PKInh. DNA synthesis in these cultures was not stimulated by adding type I cAMP-dependent protein kinase holoenzyme to the calcium-deficient medium, but it was stimulated by type II cAMP-dependent protein kinase holoenzyme or the catalytic subunit from either type I or type II holoenzyme. The stimulatory actions of the type II holoenzyme or the catalytic subunits were inhibited by PKInh. Thus, a burst of cAMP-dependent protein kinase activity was ultimately responsible for the stimulation of DNA synthesis in calcium-deprived T51B cells by calcium or cAMP and it might also be involved in the events leading to initiation of DNA synthesis in many, if not all, normally cycling cells.  相似文献   

18.
The extent of chemically induced injury to isolated hepatocytes has been previously shown to depend on the content of alpha-tocopherol in the cells, the levels of which are influenced by the concentration of extracellular calcium. Investigations into the effect of calcium on the alpha-tocopherol content of nonchemically exposed cells demonstrated that incubation of isolated hepatocytes in a calcium-deficient medium decreased cell calcium content to 10% of initial levels, and resulted in the depletion of endogenous alpha-tocopherol. This loss in alpha-tocopherol was not accounted for by alpha-tocopherylquinone formation. After supplementation of the cell incubation medium with alpha-tocopheryl succinate, the decreased cell calcium content was associated with higher levels of cellular alpha-tocopherol than in calcium-adequate cells. This was the result of greater intracellular hydrolysis of the tocopheryl ester in the calcium-depleted cells, and not an effect of extracellular calcium concentration on the uptake of alpha-tocopheryl succinate into the cells or on the extracellular hydrolysis of the ester. Uptake studies indicated a much greater achievable level of alpha-tocopherol in hepatocytes after incubation with alpha-tocopherol than with the alpha-tocopheryl ester. These data provide substantial support for the hypotheses that the content of extracellular calcium per se is not the determinant in toxic injury to hepatocytes, but that cell calcium content affects the intracellular metabolism of alpha-tocopherol and its esters, which may subsequently govern the outcome of a toxic challenge.  相似文献   

19.
Two separate experiments examining the effects of calcium deficiency on plasma and liver fatty acids in rats were conducted. In Experiment I, weanling male Sprague-Dawley rats were fed a calcium-deficient diet with or without the supplementation of 5 or 20 g/kg calcium for 22 days. There were no significant differences in plasma and liver fatty acid distribution between the two calcium-supplemented groups. However, calcium deficiency significantly elevated the levels of 18:3n-6 in plasma and liver cholesteryl esters and liver phospholipids, while it reduced the levels of 20:3n-6 in plasma cholesteryl esters. In Experiment II, weanling rats were fed a calcium-deficient diet supplemented with 5 g/kg calcium for 22 days. After overnight fast, animals were given by intragastric feeding a dose of 4 g/kg body wt gamma-linolenic acid concentrate (containing 92% 18:3n-6 ethyl ester), and were killed 22 hr later. The levels of 18:3n-6 were significantly higher, whereas the levels of 20:3n-6 were either not changed or lower than those in calcium-supplemented group. In both experiments, the ratios of (20:3n-6 + 20:4n-6)/18:3n-6 in plasma and liver lipids were significantly reduced in calcium-deficient rats. These results suggest that calcium may play an important and specific role in the process of elongation of 18:3n-6 to 20:3n-6.  相似文献   

20.
Geng W  DeMoss DL  Wright GL 《Life sciences》2000,66(24):2309-2321
Female rats were ovariectomized (Ovx) or sham-operated (control) at 18 weeks and the entire skeleton obtained at 24 weeks (baseline) or after an additional 31 day (28 week) interval on a normal (1.0%) or deficient (0.02%) calcium diet. Ovx rats showed a 42% increase in whole body bone resorption (3H-tetracycline loss) in the absence of calcium stress (1.0% calcium diet) and a 70% increase in resorption with morphological evidence of dramatic loss of cancellous bone mass when placed on calcium-deficient (0.02%) diets. Ovx rats kept on the 1.0% calcium diet showed a significant increase in both their body weight (30.2%) and total bone mass (11.6%) compared to baseline sham-operated controls. However, the total skeleton mass of these animals was significantly reduced (-20%) from that predicted by calculations based on body weight. Maintaining animals on calcium-deficient diets had no significant effect on the total skeleton mass of either control or Ovx rats in comparison with age-matched controls on 1.0% diets. It was further determined that an increase in bone mass between 24 and 28 weeks in rats receiving 1.0% dietary calcium occurred in both the axial and appendicular skeleton and was proportionately similar between control and Ovx groups. However, in animals subjected to dietary calcium stress during this interval, the decreased skeletal growth noted was confined primarily to the axial skeleton. The data indicate that ovariectomy or ovariectomy plus calcium stress does not result in loss of total bone mass during the interval of dramatically increased resorption and rapid loss of cancellous bone. The results suggest that the deterioration in individual bone structural and mechanical integrity due to ovariectomy or dietary calcium deficiency may not be attributed to overt loss in total bone mass but may involve a redistribution of bone mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号