首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean 7S globulin, known as β-conglycinin, has been shown to regulate human plasma cholesterol and triglyceride levels. Furthermore, the α′ subunit of β-conglycinin has specifically been shown to possess low-density lipoprotein (LDL)-cholesterol-lowering activity. Therefore, accumulation of the α′ subunit of β-conglycinin in rice seeds could lead to the production of new functional rice that could promote human health. Herein, we used the low-glutelin rice mutant ‘Koshihikari’ (var. a123) and suppressed its glutelins and prolamins, the major seed storage proteins of rice, by RNA interference. The accumulation levels of the α′ subunit in the lines with suppressed glutelin and prolamin levels were >20 mg in 1 g of rice seeds, which is considerably higher than those in previous studies. Oral administration of the transgenic rice containing the α′ subunit exhibited a hypocholesterolemic activity in rats; the serum total cholesterol and LDL cholesterol levels were significantly reduced when compared to those of the control rice (var. a123). The cholesterol-lowering action by transgenic rice accumulating the α′ subunit induces a significant increase in fecal bile acid excretion and a tendency to increase in fecal cholesterol excretion. This is the first report that transgenic rice exhibits a hypocholesterolemic activity in rats in vivo by using the β-conglycinin α′ subunit.  相似文献   

2.
In maturing seed cells, proteins that accumulate in the protein storage vacuoles (PSVs) are synthesized on the endoplasmic reticulum (ER) and transported by vesicles to the PSVs. Vacuolar sorting determinants (VSDs) which are usually amino acid sequences of short or moderate length direct the proteins to this pathway. VSDs identified so far are classified into two types: sequence specific VSDs (ssVSDs) and C-terminal VSDs (ctVSDs). We previously demonstrated that VSDs of α′ and β subunits of β-conglycinin, one of major storage proteins of soybean (Glycine max), reside in the C-terminal ten amino acids. Here we show that both types of VSDs coexist within this region of the α′ subunit. Although ctVSDs can function only at the very C-termini of proteins, the C-terminal ten amino acids of α′ subunit directed green fluorescent protein (GFP) to the PSVs even when they were placed at the N-terminus of GFP, indicating that an ssVSD resides in the sequence. By mutation analysis, it was found that the core sequence of the ssVSD is Ser-Ile-Leu (fifth to seventh residues counted from the C-terminus) which is conserved in the α and β subunits and some vicilin-like proteins. On the other hand, the sequence composed of the C-terminal three amino acids (AFY) directed GFP to the PSVs when it was placed at the C-terminus of GFP, though the function as a VSD was disrupted at the N-terminus of GFP, indicating that the AFY sequence is a ctVSD.  相似文献   

3.
The construction of SP6-derived expression plasmids that encode normal and modified -conglycinin subunits is described. With the exception of an additional methionine at their NH2-terminal ends and the lack of glycans, the normal subunits synthesized at the direction of these plasmids coresponded to mature and subunits isolated from soybean seeds. The subunits assembled into trimers in vitro that were equivalent in size to those formed in vivo. This result shows that the glycans are not required either for protein folding or oligomer assembly. Subunits produced from other plasmids, which had modifications in a highly conserved hydrophobic region in the COOH-terminal end of the subunits, either did not assemble or assembled at an extremely low rate compared to unmodified subunits. Structural changes at the more hydrophilic NH2-terminal end had mixed effects. Several subunits modified in this region assembled into trimers at rates that were either equal or greater than those for normal subunits. Others assembled less completely than the normal subunits. Our results indicate that the in vitro synthesis and assembly assay will be useful in evaluating structure-function relationships in modified -conglycinin subunits. The results also show that structural changes at the NH2-terminal end of the subunits are tolerated to a greater extent than modifications in the hydrophobic conserved region in the COOH-terminal half of the subunits, and this information will be useful in efforts to improve soybean quality.  相似文献   

4.
5.
We have isolated the F0F1-ATP synthase complex from oligomycin-sensitive mitochondria of the green algaChlamydomonas reinhardtii. A pure and active ATP synthase was obtained by eans of sonication, extraction with dodecyl maltoside and ion exchange and gel permeation chromatography in the presence of glycerol, DTT, ATP and-21. The enzyme consists of 14 subunits as judged by SDS-PAGE. A cDNA clone encoding the ATP synthase subunit has been sequenced. The deduced protein sequence contains a presequence of 45 amino acids which is not present in the mature protein. The mature protein is 58–70% identical to corresponding mitochondrial proteins from other organisms. In contrast to the ATP synthase subunit fromC. reinhardtii (Franzen and Falk, Plant Mol Biol 19 (1992) 771–780), the protein does not have a C-terminal extension. However, the N-terminal domain of the mature protein is 15–18 residues longer than in ATP synthase subunits from other organisms. Southern blot analysis indicates that the protein is encoded by a single-copy gene.Abbreviations DM dodecyl--D-maltoside - OSCP oligomycin sensitivity conferring protein - PMSF phenyl-methylsulfonylfluoride - DTT dithiothreitol - EDTA ethylenediaminotetraacetic disodium salt  相似文献   

6.
Summary Three genes which code for variant -conglycinin subunits were identified. Alleles Cgy 1 S and Cgy 2 S were codominant with Cgy 1 and Cgy 2 and produced and subunits, respectively, with reduced electrophoretic mobility. Allele Cgy 3 D increased the mobility of at least one polypeptide in the subunit family and exhibited incomplete dominance. Gene loci Cgy 2/Cgy 2 S and Cgy 3 D /cgy 3 D were linked, whereas Cgy 1/Cgy 1 S / cgy 1 segregated independently of the others. Techniques developed for purification of normal -conglycinin subunits were effective in purifying the altered subunits. Deglycosylated variant proteins from seeds containing the alleles Cgy 1 S , Cgy 2 S , or Cgy 3 D also has altered mobility relative to deglycosylated normal proteins. Therefore, the altered subunits contained changes in their amino acid sequences rather than in their carbohydrate moieties. This interpretation is consistent with the observed codominant or incompletely dominant mode of inheritance for these alleles and suggests that each contains an altered nucleotide sequence in the structural gene. A fourth variant, which exhibited doublet and a electrophoretic bands, was inherited in a recessive fashion. Deglycosylated subunit proteins from this variant were identical in electrophoretic mobility to those of the deglycosylated normal protein. This suggests that the doublet phenotype resulted from an alteration in the carbohydrate moiety of these subunits. The gene or genes which condition this variant presumably are required for normal post-translational modification of the subunit carbohydrates and as such may be useful for investigating these events.Cooperative research of USDA-ARS and the Indiana Agric. Exp. Stn., Purdue Univ., West Lafayette, IN 47907, USA. Indiana Agric. Exp. Stn. Journal Article 10,323. Financial support from the American Soybean Research Foundation is gratefully acknowledged  相似文献   

7.
The 7S globulin, a major ultracentrifugal component with the 11S globulin, was identical with β-conglycinin one of four antigenic components in the reserve proteins of soybean seeds (Glycine max). Double gel immunodiffusion and immunoelectrophoresis in agar gel were used for their identification. In addition, some characteristic properties on ultracentrifugation and in carbohydrate content agreed well between the proteins. Their MWs were ca 180000.  相似文献   

8.
Soybean β-conglycinin is a complex protein possessing health-promoting properties. β-Conglycinin is a trimeric glycoprotein. Little information related to methods for separation of the individual chains forming β-conglycinin has been so far published and it is of great interest. As a consequence, less data on the bioactivities of α, α′ and β subunits of this glycoprotein have been published. The present research aimed to find out new alternative chromatographic conditions to obtain β-conglycinin subunits that are free of contaminating proteins. In the present short communication, we propose the use of a two-step ion exchange chromatographic protocol to achieve this goal. Firstly, β subunit was separated by means of anionic exchange fast protein liquid chromatography. Secondly, α and α′ chains were separated from each other by cationic exchange. Our data indicated the feasibility of proposed fractionation protocol to separate soybean β-conglycinin α and α′ subunits from other contaminating proteins and to obtain enough amounts of the three individual chains forming this glycoprotein for further characterization and application. The procedure may be easily up-scaled.  相似文献   

9.
《Gene》1996,171(2):291-294
We isolated a partial genomic clone encoding ITGAD, a novel β2-integrin α subunit. The ITGAD gene is highly homologous to the three previously known α subunit-encoding genes, that compose the β2 integrin family, in deduced amino acid sequence, intron/exon structure and mapping location (chromosome 16p11).  相似文献   

10.
Alpha prime (α’) subunit of β-conglycinin and Gy4 subunit of glycinin are two important subunits of soybean storage protein which have negative effects on food processing, total amino acid content, and hypersensitivity reactions. It has been possible to reduce or remove some of these problems from soybean by screening or developing mutant lines. The objective of this study was to establish a simple, cheap DNA marker for Gy4 and α’ subunit for use in non-seed destructive, marker-assisted selection (MAS) that can identify these two mutants at the same time in a unique PCR reaction. To achieve this objective, we identified eight of Gy4 mutants from diverse soybean accessions from the USDA Soybean Germplasm Collection and described a multiplex PCR based co-dominant DNA marker for Gy4 subunit of glycinin. Then we crossed one of these Gy4 mutants with Keburi (α’ mutant) for development of double mutant variety and established a multiplex PCR based, co-dominant DNA marker for screening Gy4 and α’ mutants. Thus, using this newly developed marker to identify Gy4 and α’ mutants in breeding programs we could save our time, labor, and resources.  相似文献   

11.
12.
《Gene》1997,186(2):299-304
β4 and α6 integrin subunits dimerize to form an adhesion receptor that is necessary to nucleate hemidesmosomes and to anchor epithelial cells to their basal laminae. β4 is also expressed in Schwann cells (which do not contain hemidesmosomes) in peripheral nerve, where it may function in the formation or maintenance of myelin. The cDNA for β4 integrin has been cloned from epithelia-derived human and mouse tissues. We cloned cDNAs encoding β4 integrin from libraries derived from rat peripheral nerve, and determined the complete nucleotide sequence encoding the signal peptide and mature protein. Comparison of the deduced amino acid (aa) sequence revealed 95.1% and 87.5% identity with the mouse and human epithelia-derived sequences, respectively. The amino acid sequence of postulated signal transduction domains in β4 was 100% identical among rat, mouse, and human. Our cDNA clones included two of the four postulated alternatively spliced variants previously described in epithelial clones. Despite the potentially diverse functions of β4 integrin in Schwann cells and keratinocytes, the cDNAs for nerve-derived β4 integrin are highly similar to those cloned from epithelia.  相似文献   

13.
A library of recombinant plasmids carrying complementary DNA sequences synthesized from bovine lens messenger RNAs was constructed. Clones coding for five different β-crystallin subunits: βB1, βB3, βBp, βs, βA3 (and βA1), were identified by means of hybridization selection, followed by one- and two-dimensional gel electrophoresis of the translational products. Under rather stringent conditions each of these clones hybridizes with its corresponding mRNA and does not show significant cross-hybridization with mRNAs coding for other β-crystallins, except in the case of the homologous βA3 and βA1-crystalline. The βA3 and βA1 subunits seem to be encoded by one mRNA using two different AUG codons as start position for translation. We have also determined the nucleotide sequence of a βB1-crystallin cDNA (pBLβB1) which enabled us to deduce the complete amino acid sequence of the protein. The βB1-crystallin, a characteristic component of the high molecular weight crystallin aggregate (βH), is internally homologous both at DNA and protein level as has been reported for γ-and other β-crystallins. This is in agreement with the idea that these proteins had a common ancestral precursor gene that internally duplicated. The G + C content of the coding sequence of βB1 is very high: 67% overall and even 84.2% for the first 170 nucleotides, due to a remarkable non-random codon usage. A proline/ alanine repetition in the N-terminal domain of the protein is encoded by a repetitive “simple” DNA sequence.  相似文献   

14.
15.
A 7S globulin (γ-conglycinin) which was one of four major antigenic components in soybean globulins was purified and found to be homogeneous on ultracentrifugation, disc electrophoresis, immunoelectrophoresis and disc electrofocusing by gel filtration, preparative-scale disc electrophoresis and two kinds of affinity chromatography. Subsequently, some physico-chemical properties of the protein were determined. The sedimentation coefficient, isoelectric point, MW and diffusion constant were 6·55S, pH 5·80, 104000 and 5·80 × 10?7 cm2/sec, respectively. The protein was a glycoprotein which contained 5·49% total carbohydrate per protein. The protein did not aggregate and dissociate with a change of ionic strength from 0·1 to 0·5.  相似文献   

16.
A recombinant protein with a cDNA that encodes the putative subunit of a rice heterotrimeric G protein was synthesized in Escherichia coli and purified. The recombinant protein (rGrice ) with an apparent molecular mass of 45 kDa was bound with guanosine 5-(3-O-thio)triphosphate with an apparent association constant (kapp) of 0.36. The protein also hydrolyzed GTP and its Kcat was 0.44. rGrice was ADP-ribosylated by activated cholera toxin.Monoclonal antibodies raised against rGrice reacted with a 45 kDa polypeptide localized in the plasma membrane of rice seedlings. The peptide map of this polypeptide after digestion with V8 protease was identical to that of rGrice . A 45 kDa polypeptide in the plasma membrane, as well as rGrice , was ADP-ribosylated by activated cholera toxin. The GTPase activity of the plasma membrane was stimulated 2.5-fold by mastoparan 7 but not mastoparan 17. These properties were similar to those of the subunits of heterotrimeric G proteins in animals, suggesting that the putative subunit is truly the subunit itself.  相似文献   

17.
β-Conglycinin, one of the major soybean (Glycine max) seed storage proteins, is folded and assembled into trimers in the endoplasmic reticulum and accumulated into protein storage vacuoles. Prior experiments have used soybean β-conglycinin extracted using a reducing buffer containing a sulfhydryl reductant such as 2-mercaptoethanol, which reduces both intermolecular and intramolecular disulfide bonds within the proteins. In this study, soybean proteins were extracted from the cotyledons of immature seeds or dry beans under nonreducing conditions to prevent the oxidation of thiol groups and the reduction or exchange of disulfide bonds. We found that approximately half of the α'- and α-subunits of β-conglycinin were disulfide linked, together or with P34, prior to amino-terminal propeptide processing. Sedimentation velocity experiments, size-exclusion chromatography, and two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis, with blue native PAGE followed by sodium dodecyl sulfate-PAGE, indicated that the β-conglycinin complexes containing the disulfide-linked α'/α-subunits were complexes of more than 720 kD. The α'- and α-subunits, when disulfide linked with P34, were mostly present in approximately 480-kD complexes (hexamers) at low ionic strength. Our results suggest that disulfide bonds are formed between α'/α-subunits residing in different β-conglycinin hexamers, but the binding of P34 to α'- and α-subunits reduces the linkage between β-conglycinin hexamers. Finally, a subset of glycinin was shown to exist as noncovalently associated complexes larger than hexamers when β-conglycinin was expressed under nonreducing conditions.  相似文献   

18.
The sequence of a 2782 bp fragment of the chloroplast genome of Chlorella ellipsoidea has been determined. The region includes the entire gene (rbcL) for the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase/oxygenase and a sequence (rpoC-like) similar to part of the gene for the subunit of E. coli RNA polymerase which is oriented in same direction as rbcL. The arrangement is rpoC-like — 446 bp — rbcL. The rbcL gene codes for a polypeptide of 475 amino acids whose sequence shows 88% homology with those of tobacco and spinach, 94% homology with that of Chlamydomonas, and 85% homology with that of Anacystis. The putative rbcL promoter sequence has homology with E. coli promoter sequences and its putative terminator sequence is capable of forming a stem-and-loop structure.  相似文献   

19.
20.
Soybean (Glycine max (L.) Merr.) seeds contain the storage protein -conglycinin, encoded by a multigene family. -Conglycinin consists of three subunits; , , and . A genomic clone for a -subunit of -conglycinin has been characterized by restriction-enzyme mapping and hybrid selected in-vitro translation followed by immunoprecipitation. In order to determine the developmental regulation of this -subunit gene, its expression was studied in seeds of transgenic petunia (Petunia hybrida) and tobacco (Nicotiana tabacum L.) plants. The -subunit expressed in seeds of petunia and tobacco was recognized by anti--conglycinin serum at a relative molecular mass of 53 000, equivalent to that of the native protein. Separation of the petunia-seed proteins by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis showed that multiple isoelectric forms of the -subunit were produced. There was approximately a twofold variation in the accumulation of the -subunit protein in the mature seeds of transgenic petunia plants, each containing a single -subunit gene. However, the level of protein accumulation in mature seeds and the amount of -subunit mRNA in developing seeds was not correlated. Accumulation of the -subunit protein in transgenic seeds was less than the -subunit protein that accumulated in transgenic petunia seeds containing a single -subunit gene and less than the amount of the -subunit in mature soybean seeds which contain 8–13 -subunit genes. In transgenic tobacco plants, the accumulation of the -subunit protein in seeds was generally well correlated with the number of genes that were incorporated in the different transformants.Abbreviations kb kilobase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号