首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new electrochemical DNA biosensor for bovine papillomavirus (BPV) detection that was based on screen-printed electrodes was comprehensively studied by electrochemical methods of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A BPV probe was immobilised on a working electrode (gold) modified with a polymeric film of poly-L-lysine (PLL) and chitosan. The experimental design was carried out to evaluate the influence of polymers, probe concentration (BPV probe) and immobilisation time on the electrochemical reduction of methylene blue (MB). The polymer poly-L-lysine (PLL), a probe concentration of 1μM and an immobilisation time of 60min showed the best result for the BPV probe immobilisation. With the hybridisation of a complementary target sequence (BPV target), the electrochemical signal decreased compared to a BPV probe immobilised on the modified PLL-gold electrode. Viral DNA that was extracted from cattle with papillomatosis also showed a decrease in the MB electrochemical reduction, which suggested that the decreased electrochemical signal corresponded to a bovine papillomavirus infection. The hybridisation specificity experiments further indicated that the biosensor could discriminate the complementary sequence from the non-complementary sequence. Thus, the results showed that the development of analytical devices, such as a biosensor, could assist in the rapid and efficient detection of bovine papillomavirus DNA and help in the prevention and treatment of papillomatosis in cattle.  相似文献   

2.
A simple and label-free electrochemical sensor for recognition of the DNA hybridization event was prepared based on a new functionalised conducting copolymer, poly[pyrrole-co-4-(3-pyrrolyl) butanoic acid]. This precursor copolymer can be easily electrodeposited on the electrode surface and shows high electroactivity in an aqueous medium. An amino-substituted oligonucleotide (ODN) probe was covalently grafted onto the surface of the copolymer in a one step procedure and tested on hybridization with complementary ODN segments. The cyclic voltammogram of ODN probe-modified copolymer showed very little change when incubated in presence of non-complementary ODN, while a significant, and reproducible, modification of the voltammogram was observed after addition of complementary ODN. The AC impedance spectrum showed an increased charge transfer resistance (Rct) and double layer capacitance of the sensor film after hybridisation. Sensors with thinner films showed higher sensitivity than thicker films, suggesting that hybridisation at or near the surface of the film produces a larger change in electrical properties than that within the body of the film.  相似文献   

3.
Jin Y  Yao X  Liu Q  Li J 《Biosensors & bioelectronics》2007,22(6):1126-1130
In this paper, a label-free, rapid and simple method was proposed to study the hybridization specificity of hairpin DNA probe using methylene blue (MB) as a hybridization indicator. Thiolated hairpin DNA probe was immobilized on the gold electrode by self-assembly. The voltammetric signals of MB were investigated at these modified electrodes by means of cyclic voltammetry (CV) detection. Single-base mutation oligonucleotide and random oligonucleotide can be easily discriminated from complementary target DNA. The effect of mismatch position in target DNA was investigated. Experimental results showed that mutation in the center of target DNA had greatest effect on the hybridization with hairpin DNA probe. The relationship between electrochemical responses and DNA target concentration was also studied. The reduction current of MB intercalation decreased with increasing the concentration of target DNA. Taken together, these experiments demonstrate that the hybridization indicator MB provides great promise for rapid and specific measurement of target DNA.  相似文献   

4.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

5.
DNA electrochemical biosensor based on thionine-graphene nanocomposite   总被引:1,自引:0,他引:1  
A novel protocol for development of DNA electrochemical biosensor based on thionine-graphene nanocomposite modified gold electrode was presented. The thionine-graphene nanocomposite layer with highly conductive property was characterized by scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. An amino-substituted oligonucleotide probe was covalently grafted onto the surface of the thionine-graphene nanocomposite by the cross-linker glutaraldehyde. The hybridization reaction on the modified electrode was monitored by differential pulse voltammetry analysis using an electroactive intercalator daunomycin as the indicator. Under optimum conditions, the proposed biosensor exhibited high sensitivity and low detection limit for detecting complementary oligonucleotide. The complementary oligonucleotide could be quantified in a wide range of 1.0 × 10(-12) to 1.0 × 10(-7)M with a good linearity (R(2)=0.9976) and a low detection limit of 1.26 × 10(-13)M (S/N=3). In addition, the biosensor was highly selective to discriminate one-base or two-base mismatched sequences.  相似文献   

6.
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system''s redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.  相似文献   

7.
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH–ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA.  相似文献   

8.
For the detection of DNA hybridization, a new electrochemical biosensor was developed on the basis of the interaction of hematoxylin with 20-mer deoxyoligonucleotides (from human papilloma virus, HPV). The study was performed based on the interaction of hematoxylin with an alkanethiol DNA probe self-assembled gold electrode (ss-DNA/AuE) and its hybridization form (ds-DNA/AuE). The optimum conditions were found for the immobilization of HPV probe on the gold electrode (AuE) surface and its hybridization with the target DNA. Electrochemical detection of the self-assembled DNA and the hybridization process were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the accumulated hematoxylin at the modified electrode was electroactive. Observing a remarkable difference between the voltammetric signals of the hematoxylin obtained from different hybridization samples (non-complementary, mismatch and complementary DNAs), we confirmed the potential of the developed biosensor in detecting and discriminating the target complementary DNA from non-complementary and mismatch oligonucleotides. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 12.5 nM to 350.0 nM, and the detection limit was 3.8 nM.  相似文献   

9.
In this paper, dendritic gold nanostructure (DenAu) modified electrode was obtained by direct electrodeposition of planar electrode into 2.8 mM HAuCl(4) and 0.1 M H(2)SO(4) solution under a very negative potential of -1.5 V. Scanning electron microscopy was used to characterize the growth evolution of DenAu with time. The whole DNA biosensor fabrication process based on the DenAu modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. The probe DNA immobilization and hybridization with target DNA on the modified electrode could be well distinguished by using methylene blue as an electrochemical hybridization indicator. The DenAu modified electrode could realize an ultra sensitivity of 1 fM toward complementary target DNA and a very wide dynamic detection range (from 1 fM to 1 nM).  相似文献   

10.
Yang X  Lu Y  Ma Y  Liu Z  Du F  Chen Y 《Biotechnology letters》2007,29(11):1775-1779
A novel electrochemical sandwich-type gene sensing system was designed by using a DNA probe (DNA-probe1) immobilized on a gold electrode, the target DNA, and another DNA probe (DNA-probe2) conjugated on a single-walled carbon nanotubes/ferrocene (Fc–SWNT) adduct. In this sandwich-type gene-sensing electrode, the Fc–SWNT adduct could significantly amplify the electrochemical response of the reduction of H2O2. The target DNA could be detected selectively and sensitively based on the much enhanced electrochemical catalytic property of the Fc–SWNT adduct toward H2O2 reduction.  相似文献   

11.
A direct electrochemical DNA biosensor based on zero current potentiometry was fabricated by immobilization of ssDNA onto gold nanoparticles (AuNPs) coated pencil graphite electrode (PGE). One ssDNA/AuNPs/PGE was connected in series between clips of working and counter electrodes of a potentiostat, and then immersed into the solution together with a reference electrode, establishing a novel DNA biosensor for specific DNA detection. The variation of zero current potential difference (ΔE(zcp)) before and after hybridization of the self-assembled probe DNA with the target DNA was used as a signal to characterize and quantify the target DNA sequence. The whole DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. Under the optimized conditions, ΔE(zcp) was linear with the concentrations of the complementary target DNA in the range from 10nM to 1μM, with a detection limit of 6.9nM. The DNA biosensor showed a good reproducibility and selectivity. Prepared DNA biosensor is facile and sensitive, and it eliminates the need of using exogenous reagents to monitor the oligonucleotides hybridization.  相似文献   

12.
Gold electrodes modified by nanogold aggregates (nanogold electrode) were obtained by the electrodeposition of gold nanoparticles onto planar gold electrode. The Electrochemical response of single-stranded DNA (ssDNA) probe immobilization and hybridization with target DNA was measured by cyclic voltammograms (CV) using methylene blue (MB) as an electroactive indicator. An improving method using long sequence target DNA, which greatly enhanced the response signal during hybridization, was studied. Nanogold electrodes could largely increase the immobilization amount of ssDNA probe. The hybridization amount of target DNA could be increased several times for the manifold nanogold electrodes. The detection limit of nanogold electrode for the complementary 16-mer oligonucleotide (target DNA1) and long sequence 55-mer oligonucleotide (target DNA2) could reach the concentration of 10(-9) mol/L and 10(-11) mol/L, respectively, which are far more sensitive than that of the planar electrode.  相似文献   

13.
Ultrasensitive DNA hybridization biosensor based on polyaniline   总被引:1,自引:0,他引:1  
Ultrasensitive DNA hybridization biosensor based on polyaniline (PANI) electrochemically deposited onto Pt disc electrode has been fabricated using biotin-avidin as indirect coupling agent to immobilize single-stranded 5'-biotin end-labeled polydeoxycytidine (BdC) probes and 5'-biotin end-labeled 35 base-long oligonucleotide probe (BdE) to detect complementary target, using both direct electrochemical oxidation of guanine and redox electroactive indicator methylene blue (MB), respectively. These polyaniline-based disc electrodes have been characterized using differential pulse voltammetry (DPV), Fourier transform infrared spectroscopy (FT-IR), impedance measurements and scanning electron microscopy (SEM) techniques, respectively. Compared to direct electrochemical oxidation of guanine, hybridization detection using MB results in the enhanced detection limit by about 100 times. These DNA immobilized PANI electrodes have hybridization response time of about 60 s.  相似文献   

14.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

15.
Herein we report a sensitive electrochemical biosensor for DNA detection by making use of exonuclease III and probe DNA functionalized gold nanoparticles. While probe DNA P1 modified on a gold electrode surface can self-hybridize into a stem-loop structure with an exonuclease III-resistant 3' overhang end, in the presence of target DNA, P1 may also hybridize with the target DNA to form a duplex region. Therefore, exonuclease III may selectively digest P1 from its 3'-hydroxyl termini until the duplex is fully consumed. Since a single target DNA can trigger exonuclease III digestion of numerous P1 strands, the first signal amplification is achieved. On the other hand, since the digested P1, exposing its complementary sequence to probe DNA P2, can further hybridize with P2 that has been previously modified on the surface of gold nanoparticles, many nanoparticles loaded with numerous DNA strands are immobilized onto the electrode surface. Consequently, large amount of electroactive molecules [Ru(NH(3))(6)](3+) can bind with the DNA strands to produce an intense electrochemical response as the second signal amplification. Based on the studies with cyclic voltammetry (CV) and chronocoulometry (CC) techniques, the proposed biosensor can sensitively detect specific target DNA at a picomolar level with high specificity.  相似文献   

16.
A novel reagentless direct electrochemical DNA sensor has been developed using ultrathin films of the conducting polymer polypyrrole doped with an oligonucleotide probe. Our goal was to develop a prototype electrochemical DNA sensor for detection of a biowarfare pathogen, variola major virus. The sensor has been optimized for higher specificity and sensitivity. It was possible to detect 1.6 fmol of complementary oligonucleotide target in 0.1 ml in seconds by using chronoamperometry. The sensitivity of the developed sensor is comparable to indirect electrochemical DNA sensors, which use electrochemical labels and reagent-intensive amplification. The developed sensing electrode is reusable, highly stable and suitable for storage in solution or in dry state.  相似文献   

17.
Xia Q  Chen X  Liu JH 《Biophysical chemistry》2008,136(2-3):101-107
A novel DNA hybridization sensor based on nanoparticle CdS modified glass carbon electrode (GCE) was constructed and characterized coupled with Cyclic Voltammogram (CV) and Differential Pulse Voltammogram (DPV) techniques. The mercapto group-linked probe DNA was covalently immobilized onto the CdS layer and exposed to oligonucleotide (ODN) target for hybridization. The structure of DNA sensor was characterized by X-ray diffraction (XRD), field-emission microscopy (FESEM) and X-ray photoelectron spectra (XPS). Sensitive electrical readout achieved by CV and DPV techniques shown that when the target DNA hybridized with probe CdS-ODN conjugates and the double helix formed on the modified electrode, a significant increased response was observed comparing with the bare electrodes. The selectivity of the sensor was tested using a series of matched and certain-point mismatched sequences with concentration grads ranging from 10(-6) microM to 10(1) microM. The signal was in good linear with the minus logarithm of target oligonucleotide concentration with detection limit <1 pM and the optimized target DNA concentration was 10(-6) microM for the signal amplification. Due to great surface properties, the additional negative charges and space resistance of as-prepared CdS nanoparticles, the sensor was able to robustly discriminate the DNA hybridization responses with good sensitivity and stability.  相似文献   

18.
DNA hybridization and enzymatic digestion for the detection of mutation was investigated on the gold nanoparticles-calf thymus DNA (AuNPs-ctDNA) modified glassy carbon electrode (GCE). The thiol modified probe oligonucleotides (SH-ssDNA) were assembled on the surface of AuNPs-ctDNA modified GCE. The electrochemical response of the electrode was measured by differential pulse voltammetry and cyclic voltammetry. Methylene blue (MB) was used as the electroactive indicator. AuNPs were then dispersed effectively on the GCE surface in the presence of ct-DNA. When hybridization occurred, a decrease in the signal of MB current was observed. The modified electrode was used for the detection of mutations during the enzymatic digestion reaction in DNA. During this reaction, an increase in the signal of MB current was observed. So, the modified SH-ssDNA had a higher electrochemical response on the AuNPs-ctDNA/GCE because of the strong affinity of MB for guanine residues in it. The electrochemical detection of restriction enzyme digestion can provide a simple and practical method for observing single-base mismatches that can help in distinguishing mismatch sequences of DNA from the complementary ones.  相似文献   

19.
The first and most important step in the development and manufacture of a sensitive DNA-biosensor for hybridization detection is the immobilization procedure of the nucleic acid probe on the transducer surface, maintaining its mobility and conformational flexibility. MAC Mode AFM images were used to demonstrate that oligonucleotide (ODN) molecules adsorb spontaneously at the electrode surface. After adsorption, the ODN layers were formed by molecules with restricted mobility, as well as by superposed molecules, which can lead to reduced hybridization efficiency. The images also showed the existence of pores in the adsorbed ODN film that revealed large parts of the electrode surface, and enabled non-specific adsorption of other ODNs on the uncovered areas. Electrostatic immobilization onto a clean glassy carbon electrode surface was followed by hybridization with complementary sequences and by control experiments with non-complementary sequences, studied using differential pulse voltammetry. The data obtained showed that non-specific adsorption strongly influenced the results, which depended on the sequence of the ODNs. In order to reduce the contribution of non-specific adsorbed ODNs during hybridization experiments, the carbon electrode surface was modified. After modification, the AFM images showed an electrode completely covered by the ODN probe film, which prevented the undesirable binding of target ODN molecules to the electrode surface. The changes of interfacial capacitance that took place after hybridization or control experiments showed the formation of a mixed multilayer that strongly depended on the local environment of the immobilized ODN.  相似文献   

20.
The direct detection of oligodeoxynucleotide (ODN) hybridisation using electrochemical impedance spectroscopy was made on interdigitated array (IDA) gold (Au) ultramicroelectrodes manufactured by silicon technology. The immobilisation of single stranded ODNs (ssODNs) was accomplished by self-assembling of thiol-modified ODNs onto an Au-electrode surface. Faradaic impedance was measured in the presence of K(3)[Fe(CN)(6)]. Double strand formation was identified by a decrease of approximately 50% in impedance in the low frequency region in the presence of K(3)[Fe(CN)(6)], compared to the spectrum of single stranded ODN. The frequency dependent diffusion of Fe(CN)(6)(3-) ions through defects in the ODN monolayer determines the impedance of Au-ssODN surface. The influence of DNA intercalator methylene blue on the impedance of both, single and double strands, was examined along with K(3)[Fe(CN)(6)] and confirmed by cyclic voltammetry. The layer densities and the hybridisation have been further corroborated by chronoamperometric redox recycling of para-aminophenol (p-AP) in ELISA like experiments. It can be concluded, that a performed impedance spectroscopy did not change the layer density. The impedance spectroscopy at ultramicroelectrodes combined with faradaic redox reactions enhances the impedimetric detection of DNA hybridisation on IDA platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号