首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in organ printing technology for applications relating to medical interventions and organ replacement are described. Organ printing refers to the placement of various cell types into a soft scaffold fabricated according to a computer-aided design template using a single device. Computer aided scaffold topology design has recently gained attention as a viable option to achieve function and mass transport requirements within tissue engineering scaffolds. An exciting advance pioneered in our laboratory is that of simultaneous printing of cells and biomaterials, which allows precise placement of cells and proteins within 3-D hydrogel structures. This advance raises the possibility of spatially controlling not only the scaffold structure, but also the type of tissue that can be grown within the scaffold and the thickness of the tissue as capillaries and vessels could be constructed within the scaffolds. Here we summarize recent advances in printing cells and materials using the same device.  相似文献   

2.
随着空间生命科学研究的发展,人们将细胞、组织培养技术与微重力环境相结合产生了组织工程研究的一个新领域——微重力组织工程。模拟微重力条件下细胞培养和组织构建研究表明,微重力环境有利于细胞的三维生长,形成具有功能的组织样结构,培养后的三维组织无论从形态上还是基因表达上都更接近于正常的机体组织。这种微重力对细胞的作用效应,将可能为未来组织工程和再生医学研究提供一条新途径。该文概述了近十年来国内外微重力组织工程相关研究的最新进展。  相似文献   

3.
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone, and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues. This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral, and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry and gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering.  相似文献   

4.

Objectives

Rapid prototyping (RP) technology is becoming more affordable, faster, and is now capable of building models with a high resolution and accuracy. Due to technological limitations, 3D printing in biological anthropology has been mostly limited to museum displays and forensic reconstructions. In this study, we compared the accuracy of different 3D printers to establish whether RP can be used effectively to reproduce anthropological dental collections, potentially replacing access to oftentimes fragile and irreplaceable original material.

Methods

We digitized specimens from the Yuendumu collection of Australian Aboriginal dental casts using a high‐resolution white‐light scanning system and reproduced them using four different 3D printing technologies: stereolithography (SLA); fused deposition modeling (FDM); binder‐jetting; and material‐jetting. We compared the deviations between the original 3D surface models with 3D print scans using color maps generated from a 3D metric deviation analysis.

Results

The 3D printed models reproduced both the detail and discrete morphology of the scanned dental casts. The results of the metric deviation analysis demonstrate that all 3D print models were accurate, with only a few small areas of high deviations. The material‐jetting and SLA printers were found to perform better than the other two printing machines.

Conclusions

The quality of current commercial 3D printers has reached a good level of accuracy and detail reproduction. However, the costs and printing times limit its application to produce large sample numbers for use in most anthropological studies. Nonetheless, RP offers a viable option to preserve numerically constraint fragile skeletal and dental material in paleoanthropological collections.
  相似文献   

5.
The impact of additive manufacturing in our lives has been increasing constantly. One of the frontiers in this change is the medical devices. 3D printing technologies not only enable the personalization of implantable devices with respect to patient-specific anatomy, pathology and biomechanical properties but they also provide new opportunities in related areas such as surgical education, minimally invasive diagnosis, medical research and disease models. In this review, we cover the recent clinical applications of 3D printing with a particular focus on implantable devices. The current technical bottlenecks in 3D printing in view of the needs in clinical applications are explained and recent advances to overcome these challenges are presented. 3D printing with cells (bioprinting); an exciting subfield of 3D printing, is covered in the context of tissue engineering and regenerative medicine and current developments in bioinks are discussed. Also emerging applications of bioprinting beyond health, such as biorobotics and soft robotics, are introduced. As the technical challenges related to printing rate, precision and cost are steadily being solved, it can be envisioned that 3D printers will become common on-site instruments in medical practice with the possibility of custom-made, on-demand implants and, eventually, tissue engineered organs with active parts developed with biorobotics techniques.  相似文献   

6.
In this paper, a coaxial jetting methodology is demonstrated as a first example (non‐electric field driven) completely run by aerodynamic forces which are brought about by the application of a differential pressure for the safe handling of primary living organisms by means of jets as encapsulated droplets. Previously this jetting technique in this configuration has only been investigated for processing combinations of liquid‐liquid and liquid‐gas systems. These developmental studies into aerodynamically assisted jets (AAJ) have unearthed a versatile bio‐jetting approach referred to here as coaxial aerodynamically assisted bio‐jetting (CAABJ). In the current work, this flexible approach is demonstrated to handle two primary cell types for drop‐and‐placing onto several different substrates. Furthermore, the study assesses cellular viability of the post‐treated cells in comparison to controls by way of flow cytometry. These first steps demonstrate the promise this protocol has in exploring the creation of biologically viable structures to form encapsulations of cells which would be useful as a direct tissue engineering to the immuno‐hinding methodology in bio‐repair and therapeutics. Therefore, these investigations place CAABJ into the cell jetting pursuit together with bio‐electrosprays, which will undergo an explosive developmental research.  相似文献   

7.
Two major challenges in tissue engineering are mimicking the native cell-cell arrangements of tissues and maintaining viability of three-dimension (3D) tissues thicker than 300 μm. Cell printing and prevascularization of engineered tissues are promising approaches to meet these challenges. However, the printing technologies used in biofabrication must balance the competing parameters of resolution, speed, and volume, which limit the resolution of thicker 3D structures. We suggest that high-resolution conformal printing techniques can be used to print 2D patterns of vascular cells onto biopaper substrates which can then be stacked to form a thicker tissue construct. Towards this end we created 1 cm × 1 cm × 300 μm biopapers to be used as the transferable, stackable substrate for cell printing. 3.6% w/v poly-lactide-co-glycolide was dissolved in chloroform and poured into molds filled with NaCl crystals. The salt was removed with DI water and the scaffolds were dried and loaded with a Collagen Type I or Matrigel. SEM of the biopapers showed extensive porosity and gel loading throughout. Biological laser printing (BioLP) was used to deposit human umbilical vein endothelial cells (HUVEC) in a simple intersecting pattern to the surface of the biopapers. The cells differentiated and stretched to form networks preserving the printed pattern. In a separate experiment to demonstrate "stackability," individual biopapers were randomly seeded with HUVECs and cultured for 1 day. The mechanically stable and viable biopapers were then stacked and cultured for 4 days. Three-dimensional confocal microscopy showed cell infiltration and survival in the compound multilayer constructs. These results demonstrate the feasibility of stackable "biopapers" as a scaffold to build 3D vascularized tissues with a 2D cell-printing technique.  相似文献   

8.
The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue's three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer.  相似文献   

9.
Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three-dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber-based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds.  相似文献   

10.
Three-dimensional (3D) printers are attracting attention as a method for arranging and building cells in three dimensions. Bioprinting technology has potential in tissue engineering for the fabrication of scaffolds, cells, and tissues. However, these various printing technologies have limitations with respect to print resolution and due to the characteristics of bioink such as viscosity. We report a method for constructing of 3D tissues with a “microscopic painting device using a painting needle method” that, when used with the layer-by-layer (LbL) cell coating technique, replaces conventional methods. This method is a technique of attaching the high viscosity bioink to the painting needle tip and arranging it on a substrate, and can construct 3D tissues without damage to cells. Cell viability is the same before and after painting. We used this biofabrication device to construct 3D cardiac tissue (LbL-3D Heart) using human-induced pluripotent stem cell–derived cardiomyocytes. The constructed LbL-3D Heart chips had multiple layers with a thickness of 60 µm, a diameter of 1.1 mm, and showed synchronous beating (50–60 beats per min). The aforementioned device and method of 3D tissue construction can be applied to various kinds of tissue models and would be a useful tool for pharmaceutical applications.  相似文献   

11.
Success of tissue engineered constructs in regenerative medicine is limited by the lack of cellmatrix interactions to guide devleopment of the seeded cells into the desired tissue. This review highlights the most exciting developments in bioconjugation of synthetic hydrogels targeted to tissue engineering. Application of conjugation techniques has resulted in the synthesis of novel biomimetic cell-responsive hydrogels to control the cascade of cell migration, adhesion, survival, differentiation, and maturation to the desired lineage concurrent with matrix remodeling. The future outlook includes developing conjugated patterned hydrogel matrices, developing novel hydrogel matrices to support self-renewal and pluripotency of embryonic and adult stem cells, and merging 3D printing with bioconjugation to fabricate hydrogels with anatomical arrangement of cells and biomolecules.  相似文献   

12.
The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs.  相似文献   

13.
Extrusion‐based bio‐printing has great potential as a technique for manipulating biomaterials and living cells to create three‐dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion‐based bio‐printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio‐printing and manipulation of multiple materials and cells in bio‐printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion‐based bio‐printing for scaffold fabrication, focusing on the prior‐printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to‐date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi‐materials/cells manipulation, and process‐induced cell damage in extrusion‐based bio‐printing. The key issue and challenges for extrusion‐based bio‐printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio‐printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio‐printing. The address of these challenges will significantly enhance the capability of extrusion‐based bio‐printing.  相似文献   

14.
Development of functional tissue-engineering constructs may require that multiple cell types be organized in controlled three-dimensional (3-D) microarchitectures with proper nutrient diffusion and vascularization. In the past few years, a variety of microscale techniques have demonstrated the ability to control protein and cell attachment in defined patterns. Nevertheless, maintenance of these patterns over time has been a significant challenge due to nonspecific protein adsorption and cell migration. To this end, we have investigated the effectiveness of poly(ethylene glycol) (PEG) thin films in maintaining the integrity of 3-D cellular patterns, using human umbilical vein endothelial cells (HUVEC) as a model system. These HUVEC constructs were created using extracellular matrix (ECM)-based microfluidic patterning. Our results indicated that PEG-conjugated substrates improve cell pattern integrity as compared to control silicon. The compliance multifactor (a measure of pattern integrity; higher value means lower pattern integrity) was about 3.66 +/- 0.29 on day 5 for PEG-conjugated surfaces, compared with 8.23 +/- 0.42 for control surfaces ECM-based microfluidic patterning coupled with stable PEG-conjugated surfaces may serve as a vital tool for vascularized tissue engineering.  相似文献   

15.
Tissue engineering has centralized its focus on the construction of replacements for non-functional or damaged tissue. The utilization of three-dimensional bioprinting in tissue engineering has generated new methods for the printing of cells and matrix to fabricate biomimetic tissue constructs. The solid freeform fabrication (SFF) method developed for three-dimensional bioprinting uses an additive manufacturing approach by depositing droplets of cells and hydrogels in a layer-by-layer fashion. Bioprinting fabrication is dependent on the specific placement of biological materials into three-dimensional architectures, and the printed constructs should closely mimic the complex organization of cells and extracellular matrices in native tissue. This paper highlights the use of the Palmetto Printer, a Cartesian bioprinter, as well as the process of producing spatially organized, viable constructs while simultaneously allowing control of environmental factors. This methodology utilizes computer-aided design and computer-aided manufacturing to produce these specific and complex geometries. Finally, this approach allows for the reproducible production of fabricated constructs optimized by controllable printing parameters.  相似文献   

16.
Three‐dimensional (3D) printing techniques are continuously evolving, thus their application fields are also growing very fast. The applications discussed here highlight the use of rapid prototyping in a dedicated biotechnology laboratory environment. The combination of improving prototypes using fused deposition modeling printers and producing useable parts with selective laser sintering printers enables a cost‐ and time‐efficient use of such techniques. Biocompatible materials for 3D printing are already available and the printed parts can directly be used in the laboratory. To demonstrate this, we tested 3D printing materials for their in vitro biocompatibility. To exemplify the versatility of the 3D printing process applied to a biotechnology laboratory, a normal well plate design was modified in silico to include different baffle geometries. This plate was subsequently 3D printed and used for cultivation. In the near future, this design and print possibility will revolutionize the industry. Advanced printers will be available for laboratories and can be used for creating individual labware or standard disposables on demand. These applications have the potential to change the way research is done and change the management of stock‐keeping, leading to more flexibility and promoting creativity of the scientists.  相似文献   

17.
Bottom-up tissue engineering technologies address two of the main limitations of top-down tissue engineering approaches: the control of mass transfer and the fabrication of a controlled and functional histoarchitecture. These emerging technologies encompass mesoscale (e.g. cell sheets, cell-laden hydrogels and 3D printing) and microscale technologies (e.g. inkjet printing and laser-assisted bioprinting), which are used to manipulate and assemble cell-laden building blocks whose thicknesses correspond to the diffusion limit of metabolites, and present the capacity for cell patterning with microscale precision, respectively. Here, we review recent technological advances and further discuss how these technologies are complementary, and could therefore be combined for the biofabrication of organotypic tissues either in vitro, thus serving as realistic tissue models, or within a clinic setting.  相似文献   

18.
Napolitano AP  Dean DM  Man AJ  Youssef J  Ho DN  Rago AP  Lech MP  Morgan JR 《BioTechniques》2007,43(4):494, 496-494, 500
Techniques that allow cells to self-assemble into three-dimensional (3-D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular--especially in fields such as stem cell research, tissue engineering, and cancer biology. Unfortunately, caveats involving scale, expense, geometry, and practicality have hindered the widespread adoption of these techniques. We present an easy-to-use, inexpensive, and scalable technology for production of complex-shaped, 3-D microtissues. Various primary cells and immortal cell lines were utilized to demonstrate that this technique is applicable to many cell types and highlight differences in their self-assembly phenomena. When seeded onto micromolded, nonadhesive agarose gels, cells settle into recesses, the architectures of which optimize the requisite cell-to-cell interactions for spontaneous self-assembly. With one pipeting step, we were able to create hundreds of uniform spheroids whose size was determined by seeding density. Multicellular tumor spheroids (MCTS) were assembled or grown from single cells, and their proliferation was quantified using a modified 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay. Complex-shaped (e.g., honeycomb) microtissues of homogeneous or mixed cell populations can be easily produced, opening new possibilities for 3-D tissue culture.  相似文献   

19.
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号