首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在利用热带假丝酵母发酵生产长链二元酸的过程中 ,脂肪酸将进入 β 氧化途径 ,代谢产生能量 ,从而降低产物收率。首次以负责运输的肉毒碱乙酰转移酶为改造目标 ,在肉毒碱乙酰转移酶基因中插入潮霉素B抗性基因 ,构建DNA转化质粒 ,并进行一次同源重组 ,得到肉毒碱乙酰转移酶基因单拷贝敲除的基因工程菌。根据摇瓶实验结果 ,该基因工程菌与原始菌株相比 ,十三碳二元酸的产量与摩尔转化率分别提高了 13 0 %和 11 8%。  相似文献   

2.
The synthesis of dicarboxylic acids (DCAs) in Candida tropicalis is thought to be induced by a decrease in fatty acyl-CoA-oxidase activity. However, in the present study we demonstrate that repression of the POX4 gene, encoding fatty acyl-CoA oxidase, does not directly lead to high-level production of DCAs. No fatty acyl-CoA-oxidase activity was detected if the POX4 gene of C. tropicalis strain 1098 (wild-type strain) was disrupted. Furthermore, introduction of the POX4 gene from C. tropicalis strain M1210A3, which is a mutant derived from strain 1098 and is used as an industrial DCA-producing strain, still exhibited low-level fatty acyl-CoA-oxidase activity. Nevertheless, production of DCA was not observed in either case. Furthermore, the increase in acyl-CoA-oxidase activity by expression of the POX4 gene in strain M1210A3 did not reduce high-level production of DCA. These results suggest that alterations in acyl-CoA-oxidase activity are not necessarily related to production of DCA in industrial DCA-producing C. tropicalis M1210A3.  相似文献   

3.
In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid beta-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransferase (Cat) activities. Here we show that the human fungal pathogen Candida albicans lacks peroxisomal Cit, relying exclusively on Cat activity for transport of acetyl units. Deletion of the CAT2 gene encoding the major Cat enzyme in C. albicans resulted in a strain that had lost both peroxisomal and mitochondrion-associated Cat activities, could not grow on fatty acids or C(2) carbon sources (acetate or ethanol), accumulated intracellular acetyl-CoA, and showed greatly reduced fatty acid beta-oxidation activity. The cat2 null mutant was, however, not attenuated in virulence in a mouse model of systemic candidiasis. These observations support our previous results showing that peroxisomal fatty acid beta-oxidation activity is not essential for C. albicans virulence. Biofilm formation by the cat2 mutant on glucose was slightly reduced compared to that by the wild type, although both strains grew at the same rate on this carbon source. Our data show that C. albicans has diverged considerably from S. cerevisiae with respect to the mechanism of intracellular acetyl-CoA transport and imply that carnitine dependence may be an important trait of this human fungal pathogen.  相似文献   

4.
Localization of fatty acid beta-oxidation system in microbodies of Candida tropicalis cells growing on n-alkanes was studied. Microbodies isolated from the yeast cells showed palmitate-dependent activities of NAD reduction, acetyl-CoA formation and oxygen consumption. When sodium azide, an inhibitor of catalase, was added to the system, palmitate-dependent formation of hydrogen peroxide was observed. Stoichiometric study revealed that two moles of NAD were reduced per one mole of oxygen consumed in the absence of sodium azide and the presence of the inhibitor doubled the oxygen consumption by microbodies without an appreciable change in NAD reduction. These results indicate that the yeast microbodies contain beta-oxidation system of fatty acid, and that catalase located in the organelles participates in the degradation of hydrogen peroxide to be formed at the step of dehydrogenation of acyl-CoA.  相似文献   

5.
Long-chain α,ω-dicarboxylic acids (DCAs) are versatile chemical intermediates of industrial importance used as building blocks for the production of polymers, lubricants, or adhesives. The majority of industrial long-chain DCAs is produced from petro-chemical resources. An alternative is their biotechnological production from renewable materials like plant oil fatty acids by microbial fermentation using oleogenious yeasts. Oleogenious yeasts are natural long-chain DCA producers, which have to be genetically engineered for high-yield DCA production. Although, some commercialized fermentation processes using engineered yeasts are reported, bio-based long-chain DCAs are still far from being a mass product. Further progress in bioprocess engineering and rational strain design is necessary to advance their further commercialization. The present article reviews the basic strategies, as well as novel approaches in the strain design of oleogenious yeasts, such as the combination of traditional metabolic engineering with system biology strategies for high-yield long-chain DCA production. Therefore a detailed overview of the involved metabolic processes for the biochemical long-chain DCA synthesis is given.  相似文献   

6.
T Kurihara  M Ueda  A Tanaka 《FEBS letters》1988,229(1):215-218
Two kinds of 3-ketoacyl-CoA thiolases were found in the peroxisomes of Candida tropicalis cells grown on n-alkanes (C10-C13). One was a typical acetoacetyl-CoA thiolase specific only to acetoacetyl-CoA, while another was 3-ketoacyl-CoA thiolase showing high activities on the longer chain substrates. A high level of the latter thiolase activity in alkane-grown cells was similar to that of other enzymes constituting the fatty acid beta-oxidation system in yeast peroxisomes. These facts suggest that the complete degradation of fatty acids to acetyl-CoA is carried out in yeast peroxisomes by the cooperative contribution of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase.  相似文献   

7.
Dicarboxylic acids (DCAs) are omega-oxidation products of monocarboxylic acids. After activation by a dicarboxylyl-CoA synthetase, the dicarboxylyl-CoA esters are shortened via beta-oxidation. Although it has been studied extensively where this beta-oxidation process takes place, the intracellular site of DCA oxidation has remained controversial. Making use of fibroblasts from patients with defined mitochondrial and peroxisomal fatty acid oxidation defects, we show in this paper that peroxisomes, and not mitochondria, are involved in the beta-oxidation of C16DCA. Additional studies in fibroblasts from patients with X-linked adrenoleukodystrophy, straight-chain acyl-CoA oxidase (SCOX) deficiency, d-bifunctional protein (DBP) deficiency, and rhizomelic chondrodysplasia punctata type 1, together with direct enzyme measurements with human recombinant l-bifunctional protein (LBP) and DBP expressed in a fox2 deletion mutant of Saccharomyces cerevisiae, show that the main enzymes involved in beta-oxidation of C16DCA are SCOX, both LBP and DBP, and sterol carrier protein X, possibly together with the classic 3-ketoacyl-CoA thiolase. This is the first indication of a specific function for LBP, which has remained elusive until now.  相似文献   

8.
In the yeast Candida tropicalis, two thiolase isozymes, peroxisomal acetoacetyl-CoA thiolase and peroxisomal 3-ketoacyl-CoA thiolase, participate in the peroxisomal fatty acid beta-oxidation system. Their individual contributions have been demonstrated in cells grown on butyrate, with C. tropicalis able to grow in the absence of either one. In the present study, a lack of peroxisomal 3-ketoacyl-CoA thiolase protein resulted in increased expression (up-regulation) of acetoacetyl-CoA thiolase and other peroxisomal proteins, whereas a lack of peroxisomal acetoacetyl-CoA thiolase produced no corresponding effect. Overexpression of the acetoacetyl-CoA thiolase gene did not suppress the up-regulation or the growth retardation on butyrate in cells without peroxisomal 3-ketoacyl-CoA thiolase, even though large amounts of the overexpressed acetoacetyl-CoA thiolase were detected in most of the peroxisomes of butyrate-grown cells. These results provide important evidence of the greater contribution of 3-ketoacyl-CoA thiolase to the peroxisomal beta-oxidation system than acetoacetyl-CoA thiolase in C. tropicalis and a novel insight into the regulation of the peroxisomal beta-oxidation system.  相似文献   

9.
Techniques, named two-step enrichment and double-time replica-plating method (TEDR), are described that allow a mutated population of Candida tropicalis to be enriched efficiently for mutants deficient in the alkane degradation pathway (Alk(-)) and to be selected easily for mutants increasing in the DCA (dicarboxylic acids) excretion pathway. After C. tropicalis was mutated with ethyl methane sulphonate and ultraviolet, the Alk(-) mutants were enriched (the first step enrichment, up to eightfold in one round of enrichment) by treatment with nystatin in medium SEL1-1. The mutagen-treated cells were then cultured in medium YPD containing chlorpromazine for further enriching (the second-step enrichment, up to threefold in one round) the mutants with an increasing capacity of alpha- and omega-oxidation. On the other hand, the Alk(-) mutants were readily isolated by the SEL1 replica-plating method by using alkane or glucose as the sole carbon source. A total of 43 Alk(-) mutants were isolated from 2x10(8) mutagen-treated cells. In the following steps, by using SEL2 replica plating, the screening studies showed that of the 43 Alk(-) mutants, 11 strains could accumulate DCA greatly from alkane, and strains 1-12 and 1-3, especially, could produce nearly three times as much DCA as the wild-type organism could. The results showed that the strains had more cytochrome P450 activity and a higher converting capacity of alkane.  相似文献   

10.
Effects and mechanisms of H(2)O(2) on production of dicarboxylic acid.   总被引:5,自引:0,他引:5  
The system of producing long chain dicarboxylic acid (DCA) by Candida tropicalis is an aerobic and viscous fermentation system. A method to overcome the gas-liquid transport resistance and to increase oxygen supply is by adding hydrogen peroxide (H(2)O(2)) to the fermentation system. Here we report that the H(2)O(2) not only can enhance the oxygen supply but also change the metabolism by inducing cytochrome P450, the key enzyme of a, o-oxidation. When C. tropicalis was cultivated in a 3-L bioreactor using the combination of aeration and H(2)O(2) feeding, DCA production rates increased by about 10% after a short period of decrease at the beginning. Furthermore, the experiments showed that the maximum activities of P450 could be induced at 2 mM H(2)O(2), and the inducible mechanisms are also discussed. Moreover, we suggest that alkane might be oxidized through the "peroxide shunt pathway" when H(2)O(2) is present. By adding H(2)O(2), the DCA yield in a 22-L bioreactor could increase by 25.3% and reach 153.9 g/L.  相似文献   

11.
When an n-alkane-utilizable yeast, Candida tropicalis pK233, was cultivated on butyrate, the fatty acid of shortest chain-length for beta-oxidation, as the sole source of carbon and energy, catalase and the enzymes of the fatty acid beta-oxidation system were inducibly synthesized at high levels. As in the alkane-grown cells, the proliferation of peroxisomes was harmonized with the induction of peroxisomal enzymes. The results of subcellular fractionation and immunoelectronmicroscopy indicated the localization of these enzymes in peroxisomes, not in mitochondria. It was suggested that only peroxisomes have a role in fatty acid beta-oxidation in the yeast cells, unlike in mammalian cells, in which cooperation between peroxisomes and mitochondria is essential.  相似文献   

12.
十三碳二元羧酸发酵技术的研究   总被引:6,自引:0,他引:6  
以一株热带假丝酵母菌(Candida tropicalis) SP1为出发菌株,经紫外线反复诱变获取一株难以同化烷烃的突变株SPUV56,摇瓶培养5d平均产酸量达72g/L,较出发菌株提高了1.25倍,并利用突变株SPUV56在137L自控罐上扩试,补加醋酸盐发酵,144h产酸量达153g/L,比不加醋酸盐发酵提高了29.7%。采用提 高搅拌混合效果和低溶解氧发酵过程控制方法,可有效地提高菌体的产酸能力,在20m3发酵罐中发酵生产十三碳二元羧酸,总培养时间144h,产酸量可达172g/L,放罐体积15.0m3,产量为2.25t。  相似文献   

13.
14.
液蜡发酵制取混合二元酸的研究   总被引:1,自引:0,他引:1  
A mutant of Candida tropicalis FYD-2 was obtained from its parental strain SFP-1186 by ultraviolet treatments.On shaking flask,the yield of mixed dicarboxylic acid(DCA) by the mutant was 21.4% higher than that by its ancestor.The amount of mixed DCA reached 156g/L for 120h incubation in a 10 L autoconrolled fermentor where the culture medium contained 25% n-paraffin.The process of induced and screening mutant was introduced and the time course of fermentation in 10 L fermentor was discussed.  相似文献   

15.
The location of acetoacetyl-CoA thiolase (T-I) and 3-ketoacyl-CoA thiolase (T-III), enzymes of the fatty acid beta-oxidation system, was studied in n-alkane-grown Candida tropicalis cells by immunoelectron microscopy using a post-embedding method with colloidal gold conjugated IgG. The deposition of gold particles for T-I was detected in the microbodies and cytoplasm and that of gold particles for T-III specifically in the microbodies. The double labeling technique confirmed that T-I and T-III occurred concurrently in a microbody and T-I also in cytoplasm. These results were consistent with the biochemical data based on subcellular fractionation and indicated that the yeast beta-oxidation system operates efficiently only in the microbodies.  相似文献   

16.
We report the isolation and nucleotide (nt) sequence determination of a cDNA encoding the peroxisomal trifunctional beta-oxidation enzyme hydratase-dehydrogenase-epimerase (HDE) from the yeast Candida tropicalis pK233. Poly(A)+RNA isolated from C. tropicalis cells grown in oleic acid medium was used to construct a cDNA library in lambda gt11. The library was screened with a polyclonal antiserum against HDE. A recombinant was confirmed to encode HDE by hybridization-selection translation and immunoprecipitation. The HDE cDNA (HDE) has a single open reading frame of 2718 nt, encoding a protein of 905 amino acids, not including the initiator methionine. The Mr of the protein is 99,350. A partial gene duplication is believed to have occurred in the evolution of the HDE gene. Codon utilization in the gene is not random, with 86.0% of the amino acids specified by 23 preferentially used codons, a situation similar to that found in genes encoding peroxisomal catalase and the various fatty acyl-CoA oxidases from C. tropicalis. The increase in HDE activity in C. tropicalis cells grown in oleic acid medium as opposed to glucose medium is due, at least in part, to increased HDE-specific mRNA levels.  相似文献   

17.
In order to study differences in gamma-decalactone production in yeast, four species of Sporidiobolus were cultivated with 5% of methyl ricinoleate as the lactone substrate. In vivo studies showed different time courses of intermediates of ricinoleic acid breakdown between the four species. In vitro studies of the beta-oxidation system were conducted with crude cell extracts of Sporidiobolus spp. and with ricinoleyl-CoA (RCoA) as substrate. The beta-oxidation was detected by measuring acyl-CoA oxidase, 3-hydroxyacyl-CoA dehydrogenase activities, and acetyl-CoA production. The time courses of the CoA esters resulting from RCoA breakdown by crude extract of Sporidiobolus spp. permit the proposal of different metabolic models in the yeast. These models explained the differences observed during in vivo studies.  相似文献   

18.
We postulate that metabolic conditions that develop systemically during exercise (high blood lactate and high nonesterified fatty acids) are favorable for energy homeostasis of the heart during contractile stimulation. We used working rat hearts perfused at physiological workload and levels of the major energy substrates and compared the metabolic and contractile responses to an acute low-to-high work transition under resting versus exercising systemic metabolic conditions (low vs. high lactate and nonesterified fatty acids in the perfusate). Glycogen preservation, resulting from better maintenance of high-energy phosphates, was a consequence of improved energy homeostasis with high fat and lactate. We explained the result by tighter coupling between workload and total beta-oxidation. Total fatty acid oxidation with high fat and lactate reflected increased availability of exogenous and endogenous fats for respiration, as evidenced by increased long-chain fatty acyl-CoA esters (LCFA-CoAs) and by an increased contribution of triglycerides to total beta-oxidation. Triglyceride turnover (synthesis and degradation) also appeared to increase. Elevated LCFA-CoAs caused high total beta-oxidation despite increased malonyl-CoA. The resulting bottleneck at mitochondrial uptake of LCFA-CoAs stimulated triglyceride synthesis. Our results suggest the following. First, both malonyl-CoA and LCFA-CoAs determine total fatty acid oxidation in heart. Second, concomitant stimulation of peripheral glycolysis and lipolysis should improve cardiac energy homeostasis during exercise. We speculate that high lactate contributes to the salutary effect by bypassing the glycolytic block imposed by fatty acids, acting as an anaplerotic substrate necessary for high tricarbocylic acid cycle flux from fatty acid-derived acetyl-CoA.  相似文献   

19.
H Son  K Min  J Lee  GJ Choi  JC Kim  YW Lee 《Eukaryotic cell》2012,11(9):1143-1153
Fungi have evolved efficient metabolic mechanisms for the exact temporal (developmental stages) and spatial (organelles) production of acetyl coenzyme A (acetyl-CoA). We previously demonstrated mechanistic roles of several acetyl-CoA synthetic enzymes, namely, ATP citrate lyase and acetyl-CoA synthetases (ACSs), in the plant-pathogenic fungus Gibberella zeae. In this study, we characterized two carnitine acetyltransferases (CATs; CAT1 and CAT2) to obtain a better understanding of the metabolic processes occurring in G. zeae. We found that CAT1 functioned as an alternative source of acetyl-CoA required for lipid accumulation in an ACS1 deletion mutant. Moreover, deletion of CAT1 and/or CAT2 resulted in various defects, including changes to vegetative growth, asexual/sexual development, trichothecene production, and virulence. Although CAT1 is associated primarily with peroxisomal CAT function, mislocalization experiments showed that the role of CAT1 in acetyl-CoA transport between the mitochondria and cytosol is important for sexual and asexual development in G. zeae. Taking these data together, we concluded that G. zeae CATs are responsible for facilitating the exchange of acetyl-CoA across intracellular membranes, particularly between the mitochondria and the cytosol, during various developmental stages.  相似文献   

20.
The control of mitochondrial beta-oxidation, including the delivery of acyl moieties from the plasma membrane to the mitochondrion, is reviewed. Control of beta-oxidation flux appears to be largely at the level of entry of acyl groups to mitochondria, but is also dependent on substrate supply. CPTI has much of the control of hepatic beta-oxidation flux, and probably exerts high control in intact muscle because of the high concentration of malonyl-CoA in vivo. beta-Oxidation flux can also be controlled by the redox state of NAD/NADH and ETF/ETFH(2). Control by [acetyl-CoA]/[CoASH] may also be significant, but it is probably via export of acyl groups by carnitine acylcarnitine translocase and CPT II rather than via accumulation of 3-ketoacyl-CoA esters. The sharing of control between CPTI and other enzymes allows for flexible regulation of metabolism and the ability to rapidly adapt beta-oxidation flux to differing requirements in different tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号