首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Xylose reductase (XR) is a key enzyme in D-xylose metabolism, catalyzing the reduction of D-xylose to xylitol. An NADH-preferring XR was purified to homogeneity from Candida parapsilosis KFCC-10875, and the xyl1 gene encoding a 324-amino-acid polypeptide with a molecular mass of 36,629 Da was subsequently isolated using internal amino acid sequences and 5' and 3' rapid amplification of cDNA ends. The C. parapsilosis XR showed high catalytic efficiency (kcat/Km = 1.46 s(-1) mM(-1)) for D-xylose and showed unusual coenzyme specificity, with greater catalytic efficiency with NADH (kcat/Km = 1.39 x 10(4) s(-1) mM(-1)) than with NADPH (kcat/Km = 1.27 x 10(2) s(-1) mM(-1)), unlike all other aldose reductases characterized. Studies of initial velocity and product inhibition suggest that the reaction proceeds via a sequentially ordered Bi Bi mechanism, which is typical of XRs. Candida tropicalis KFCC-10960 has been reported to have the highest xylitol production yield and rate. It has been suggested, however, that NADPH-dependent XRs, including the XR of C. tropicalis, are limited by the coenzyme availability and thus limit the production of xylitol. The C. parapsilosis xyl1 gene was placed under the control of an alcohol dehydrogenase promoter and integrated into the genome of C. tropicalis. The resulting recombinant yeast, C. tropicalis BN-1, showed higher yield and productivity (by 5 and 25%, respectively) than the wild strain and lower production of by-products, thus facilitating the purification process. The XRs partially purified from C. tropicalis BN-1 exhibited dual coenzyme specificity for both NADH and NADPH, indicating the functional expression of the C. parapsilosis xyl1 gene in C. tropicalis BN-1. This is the first report of the cloning of an xyl1 gene encoding an NADH-preferring XR and its functional expression in C. tropicalis, a yeast currently used for industrial production of xylitol.  相似文献   

2.
Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)(-1)), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L(-1) h(-1) and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L(-1) h(-1); yield 59%).  相似文献   

3.
A yeast strain, Candida tropicalis PBR-2, isolated from soil, is capable of carrying out the enantioselective reduction of N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine to (S)-N,N-dimethyl-3-hydroxy-3-(2-thienyl)-1-propanamine, a key intermediate in the synthesis of the chiral drug (S)-Duloxetine. The organism produced the enantiopure (S)-alcohol with a good yield (>80%) and almost absolute enantioselectivity, with an enantiomeric excess (ee) >99%. Parameters of the bioreduction reaction were optimized and the optimal temperature and pH for the reduction were found to be 30°C and 7.0, respectively. The optimized substrate and the resting cell concentration were 1 g/l and 250 g/l, respectively. The preparative-scale reaction using resting cells of C. tropicalis yielded the (S)-alcohol at 84–88% conversion and ee >99%.  相似文献   

4.
Ninety isolates of microorganisms belonging to different taxonomical groups (30 bacteria, 20 yeast, and 40 fungi) were previously isolated from various samples. These isolates were screened as reducing agents for acetophenone 1a to phenylethanol 2a . It was found that the isolate EBK‐10 was the most effective biocatalyst for the enantioselective bioreduction of acetophenone. This isolate was identified as Rhodotorula glutinis by the VITEK 2 Compact system. The various parameters (pH 6.5, temperature 32°C, and agitation 200 rpm) of the bioreduction reaction was optimized, which resulted in conversions up to 100% with >99% enantiomeric excesses (ee) of the S‐configuration. The preparative scale bioreduction of acetophenone 1a by R. glutinis EBK‐10 gave (S)‐1‐phenylethanol 2a in 79% yield, complete conversion, and >99% ee. In addition, R.glutinis EBK‐10 successfully reduced various substituted acetophenones. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
【目的】通过定点突变技术,改变近平滑假丝酵母短链羰基还原酶Ⅱ(SCRⅡ)催化苯乙酮衍生物的功能,为数种手性芳香醇的生产提供一种高效、安全的新型制备方法。【方法】通过氨基酸序列和蛋白结构比对的方法,选择SCRⅡ的底物结合域中关键氨基酸位点E228实施突变,构建相应的突变株Escherichia coliBL21/pET28a-E228S;以苯乙酮衍生物为底物,对突变株的酶活和生物转化功能进行了分析。【结果】酶活测定结果表明:突变株E.coli BL21/pET28a-E228S催化原始底物2-羟基苯乙酮的酶活仅为原始酶活的25%左右;而催化苯乙酮、4’-甲基苯乙酮、4’-氯苯乙酮的酶活是突变前的7-20倍。突变株E.coli BL21/pET28a-E228S生物转化2-羟基苯乙酮,获得产物(S)-苯基乙二醇的得率不超过10%,而以苯乙酮、4’-甲基苯乙酮、4’-氯苯乙酮为底物时,生物转化产物光学纯度维持在99%,得率高达80%以上。【结论】对底物结合域中的关键氨基酸实施突变,提高了SCRⅡ催化苯乙酮衍生物的底物广谱性,拓展了该酶的生物功能,为理性改造短链羰基还原酶的不对称还原催化功能和手性芳香醇的制备提供了新型途径。  相似文献   

6.
The yeast Candida tropicalis produces xylitol, a natural, low-calorie sweetener whose metabolism does not require insulin, by catalytic activity of NADPH-dependent xylose reductase. The oxidative pentose phosphate pathway (PPP) is a major basis for NADPH biosynthesis in C. tropicalis. In order to increase xylitol production rate, xylitol dehydrogenase gene (XYL2)disrupted C. tropicalis strain BSXDH-3 was engineered to co-express zwf and gnd genes which, respectively encodes glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), under the control of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. NADPH-dependent xylitol production was higher in the engineered strain, termed "PP", than in BSXDH-3. In fermentation experiments using glycerol as a co-substrate with xylose, strain PP showed volumetric xylitol productivity of 1.25 g l(-1) h(-1), 21% higher than the rate (1.04 g l(-1) h(-1)) in BSXDH-3. This is the first report of increased metabolic flux toward PPP in C. tropicalis for NADPH regeneration and enhanced xylitol production.  相似文献   

7.
A simple and reliable procedure was developed to screen biocatalysts with high alcohol dehydrogenase activity, efficient internal coenzyme regeneration, and high stereoselectivity. The strategy of activity screening in a microtitre plate format was based on the detection of fluorescence of NAD(P)H originating from the oxidation of alcohols. The primary and secondary screenings from soil samples yielded a versatile bacterial biocatalyst Rhodococcus erythropolis WZ010 demonstrating potential for the preparation of chiral aryl secondary alcohols. In terms of activity and stereoselectivity, the optimized reaction conditions in the stereoselective oxidation were 30?°C, pH 10.5, and 250?rpm, whereas bioreduction using glucose as co-substrate was the most favorable at 35?°C and pH 7.5 in the static reaction mixture. Under the optimized conditions, fresh cells of the strain stereoselectively oxidized the (S)-enantiomer of racemic 1-phenylethanol (120?mM) to acetophenone and afforded the unoxidized (R)-1-phenylethanol in 49.4?% yield and >99.9?% enantiomeric excess (e.e.). In the reduction of 10?mM acetophenone, the addition of 100?mM glucose significantly increased the conversion rate from 3.1 to 97.4?%. In the presence of 800?mM glucose, acetophenone and other aromatic ketones (80?mM) were enantioselectively reduced to corresponding (S)-alcohols with excellent e.e. values. Both stereoselective oxidation and asymmetric reduction required no external cofactor regeneration system.  相似文献   

8.
通过菌种优选得到产高选择性羰基还原酶的热带假丝酵母(Candida tropicalis)104菌株,可不对称还原1-(3,5-二三氟甲基)苯基乙酮生成(S)-1-(3,5-二三氟甲基)苯基乙醇,对映体过量值>99.9%。采用部分因子实验设计考察发酵培养基中各组分对产酶的影响,结果表明,酵母粉、葡萄糖和NH4Cl浓度对产酶影响显著。继而采用最陡爬坡路径逼近最大响应区域,并结合中心组合实验和响应面对3个显著性因素进行分析,得到优化的发酵培养基组成:葡萄糖47.14g/L,酵母粉13.25g/L,NH4Cl2.71g/L,MgSO4·7H2O0.4g/L,KH2PO41g/L和K2HPO41g/L。采用该优化培养基,供试菌株的羰基还原酶活力达851.13U/L,较优化前提高了65.2%。  相似文献   

9.
Application of 21 new bacterial strains from natural environments (coastal plain of Santos and Atlantic Rain Forest, São Paulo, Brazil) in the asymmetric reduction of acetophenone derivatives is described. The bioreduction was carried out with whole bacterial cells leading to (S)-chiral alcohols in up to ≥99% e.e. The (S)-(−)-1-(2-bromo-phenyl)-ethanol was employed in the preparation of chiral tellurium derivatives.  相似文献   

10.
从实验室保藏的菌株中筛选获得Candida sp.PT2A,并通过18S rRNA鉴定为安大略假单胞菌Candida on-tarioensis。对C.ontarioensis不对称还原合成(R)-2-氯-1-(3-氯苯基)乙醇的发酵产酶条件和转化条件进行优化,确定了最适的发酵产酶条件和转化条件:温度30℃,初始pH 6.5,摇床转速180 r/min,菌体质量浓度200 g/L。采用2-氯-1-(3-氯苯基)乙酮质量浓度为10 g/L时,还原反应72 h,(R)-2-氯-1-(3-氯苯基)乙醇的e.e.值为99.9%,产率为99%;底物质量浓度提高至30 g/L时,产率下降为84.3%。采用十六烷基三甲基溴化铵(CTAB)对C.ontarioensis细胞进行通透性处理(CTAB g/L,4℃下处理20 min),在30 g/L底物下反应24 h,产物的e.e.和产率分别达到99.9%和97.5%。  相似文献   

11.
(R)-[3,5-bis(trifluoromethyl)phenyl] ethanol is a crucial intermediate for the synthesis of Aprepitant. An efficient biocatalytic process for (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol was developed via the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone, catalyzed by whole cells of newly isolated Trichoderma asperellum ZJPH0810 using ethanol and glycerol as dual cosubstrate for cofactor recycling. A fungal strain ZJPH0810, showing asymmetric biocatalytic activity of 3,5-bis(trifluoromethyl) acetophenone to its corresponding (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol, was isolated from a soil sample. Based on its morphological and physiological characteristics and internal transcribed spacer sequence, this isolate was identified as T. asperellum ZJPH0810, which afforded an NADH-dependent (R)-stereospecific carbonyl reductase and was a promising biocatalyst for the synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. Some key reaction parameters involved in the bioreduction catalyzed by T. asperellum ZJPH0810 were subsequently optimized. The effectiveness of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol production was significantly enhanced by employing a novel dual cosubstrate-coupled system for cofactor recycling. The established efficient bioreduction system contained 50 mM of 3,5-bis(trifluoromethyl) acetophenone and 60 g l?1 of resting cells, employing ethanol (6.0 %, v/v) and glycerol (0.5 %, v/v) as dual cosubstrate. The bioreduction was performed in distilled water medium, at 30 °C and 200 rpm. Under the above conditions, a best yield of 93.4 % was obtained, which is nearly a 3.5-fold increase in contrast to no addition of cosubstrate. The ee value of the product reached above 98 %. This biocatalytic process shows great potential in the production of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol, a valuable chiral building block in the pharmaceutical industry.  相似文献   

12.
Culture conditions have been optimized for a newly isolated yeast strain Candida viswanathii PBR2 which is capable of reducing a wide variety of aryl ketones with high stereospecificity. Studies on the culture conditions and catalytic performance of this microorganism showed that the carbonyl reductase occurs constitutively in the cells and its production is enhanced by feeding with acetophenone (2 mM) during the early period of cultivation. Mannitol (1%, wv−1) was found to be beneficial both for growth and enzyme production. Supplementation of the media with yeast extract (1.0%, wv−1) and Ca2+ (4 mM) enhanced the enzyme production. The optimal temperature and pH for the growth and enzyme production were 25 °C and 9.0, respectively. Excellent conversions along with almost absolute enantioselectivity were observed when the resting cells of this yeast strain were exploited to carry out the stereoselective reduction of a number of aryl ketones.  相似文献   

13.
The present study verified an applicable technology of xylitol bioconversion as part of the integration of co-product generation within second-generation bioethanol processes. A newly isolated yeast strain, Candida tropicalis JH030, was shown to have a capacity for xylitol production from hemicellulosic hydrolysate without detoxification. The yeast gives a promising xylitol yield of 0.71 g(p) g(s)(-1) from non-detoxified rice straw hydrolysate that had been prepared by the dilute acid pretreatment under severe conditions. The yeast's capacity was also found to be practicable with various other raw materials, such as sugarcane bagasse, silvergrass, napiergrass and pineapple peel. The lack of a need to hydrolysate detoxification enhances the potential of this newly isolated yeast for xylitol production and this, in turn, has the capacity to improve economics of lignocellulosic ethanol production.  相似文献   

14.
The asymmetric microbial reduction of 1-(4-fluorophenyl)-3(R)-[3-oxo-3-(4-fluorophenyl)-propyl]-4(S)-(4-hydroxyphenyl)azetidin-2-one to 1-(4-fluorophenyl)-3(R)-[3(S)-hydroxy-3-(4-fluorophenyl)-propyl]-4(S)-(4-hydroxyphenyl)azetidin-2-one (Ezetimibe) by Rhodococcus fascians MO22 is described. The catalytic capability of the microorganism for reduction has been examined also with protected ketone, an intermediate from chemical synthesis of Ezetimibe. Various parameters of the bioreduction have been optimized: the strain converted 94.8% of ketone and 63% of protected ketone into Ezetimibe with the same de of 99.9%. In the later case, two chemical steps are replaced with a single biotransformation.  相似文献   

15.
The average volumetric intracellular concentrations of acetophenone and phenethyl alcohol were determined during the bioreduction of acetophenone using resting cells of Saccharomyces cerevisiae in aqueous solutions at 30 degrees C. The behavior of their distribution coefficients (ratio of intracellular to extracellular concentrations) during the bioreduction process was evaluated with different cell preparation and extracellular conditions. The distribution coefficient of acetophenone was found to be in the range of 2.3-4.0. The distribution coefficient of phenethyl alcohol was found to be in the range of 1.3-1.8. Both the distribution coefficients were correlated significantly only with the physiological state of the resting cells as reflected by the relative cell mass (0.65-1.09). The correlation is approximately linear with the largest slope for the toxic reagent, acetophenone. No significant effects on the distribution coefficients were experimentally observed or were present in a regression analysis for the concentrations of acetophenone (0-0.30% v/v), phenethyl alcohol (0-0.20% v/v), ethanol (1.60-2.25% v/v), the extracellular pH (pH 2-7), or the presence of the salts: KCl, KH2PO4, MgSO4, NaCl, and CaCl2 (each 0-0.1 M) in the medium. Different cell initialization times (0-6 days) and initialization conditions were also included.  相似文献   

16.
Monospecific factor serum for identifying Candida tropicalis was obtained either from rabbit antiserum to heated cells of C. tropicalis M 1519 (S 96) or from antiserum to C. tropicalis IFO 1400, by adsorption with heated cells of Candida albicans serotype A, or C. albicans (A) and Candida krusei, respectively. We designated this adsorbed serum factor t serum. The monospecific factor serum reacted with 31 out of 32 strains of C. tropicalis, only when tested on heat-treated cell antigens, whereas it did not react with any of 72 strains of the six other medically important species of Candida. The morphological and physiological characteristics of the one strain of C. tropicalis that did not react with the factor t serum, designated the t- -strain, were shown to be similar to those of the type strain of C. tropicalis by most of the methods employed for identifying Candida. Therefore, cell wall mannan from the t- -strain was compared with that from several typical strains of C. tropicalis for its specificity by the precipitation reaction and also for its 1H-nuclear magnetic resonance spectrum. The results showed that these mannans are similar to each other serologically and physicochemically, suggesting that the new antigen t is not mannan. Taxonomic characterization of the t-- and several typical strains of C. tropicalis was carried out by determining the mol% G+C of their DNA and also their DNA homology. Although the mol% G+C values of four typical strains of C. tropicalis were fairly similar (35.2 to 36.2 mol% by the Tm method and 35.5 to 36.4 mol% by the HPLC method), the t- -strain had a G+C content of 44.1 (Tm) and 43.3 (HPLC) mol%. Furthermore, the DNAs of the t- -strain and the type strain of C. tropicalis showed only 18.2% relatedness. These results suggest that the antigen corresponding to serum factor t exists only in the cell wall of C. tropicalis strains, not in those of the other medically important Candida, and that the t- -strain should not be classified as C. tropicalis. In conclusion, the taxonomic value and usefulness of factor t serum is primarily for differentiating C. tropicalis from C. albicans serotype A serologically.  相似文献   

17.
The increasing demand for biocatalysts in synthesizing enantiomerically pure chiral alcohols results from the outstanding characteristics of biocatalysts in reaction, economic, and ecological issues. Herein, fifteen yeast strains belonging to three food originated yeast species Candida zeylanoides, Pichia fermentans, and Saccharomyces uvarum were tested for their capability for asymmetric reduction of acetophenone to 1‐phenylethanol as biocatalysts. Of these strains, C. zeylanoides P1 showed an effective asymmetric reduction ability. Under optimized conditions, substituted acetophenones were converted to corresponding optically active secondary alcohols in up to 99% enantiomeric excess and at high yields. The preparative scale asymmetric bioreduction of 4‐nitroacetophenone ( 1m ) by C. zeylanoides P1 gave (S)‐1‐(4‐nitrophenyl)ethanol ( 2m ) with 89% yield and > 99% enantiomeric excess. Compound 2m has been obtained in an enantiomerically pure and inexpensive form. Additionally, these results indicate that C. zeylanoides P1 is a promising biocatalyst for the synthesis of chiral alcohols in industry.  相似文献   

18.
The biocatalytic reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol was successfully conducted with high enantioselectivity using immobilized whole cells of a novel strain Acetobacter sp. CCTCC M209061, newly isolated from kefir. Compared with other microorganisms that were investigated, Acetobacter sp. CCTCC M209061 was shown to be more effective for the bioreduction reaction, and afforded much higher yield and product enantiomeric excess (e.e.). The optimal buffer pH, co-substrate concentration, reaction temperature, substrate concentration and shaking rate were 5.0, 130.6 mM, 30 °C, 6.0 mM and 180 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 71% and >99%, respectively, which are much higher than those reported previously. Additionally, the established biocatalytic system proved to be efficient for the bioreduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol with excellent yield and product e.e. The immobilized cells manifested a good operational stability under the above reaction conditions since they retained 70% of their catalytic activity after ten cycles of use.  相似文献   

19.
在利用热带假丝酵母发酵生产长链二元酸的过程中 ,脂肪酸将进入 β 氧化途径 ,代谢产生能量 ,从而降低产物收率。首次以负责运输的肉毒碱乙酰转移酶为改造目标 ,在肉毒碱乙酰转移酶基因中插入潮霉素B抗性基因 ,构建DNA转化质粒 ,并进行一次同源重组 ,得到肉毒碱乙酰转移酶基因单拷贝敲除的基因工程菌。根据摇瓶实验结果 ,该基因工程菌与原始菌株相比 ,十三碳二元酸的产量与摩尔转化率分别提高了 13 0 %和 11 8%。  相似文献   

20.
A novel bacterial strain HS0904 was isolated from a soil sample using 3,5-bis(trifluoromethyl) acetophenone as the sole carbon source. This bacterial isolate can asymmetrically reduce 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol with high enantiometric excess (ee) value. Based on its morphological, physiological characteristics, Biolog, 16S rDNA sequence and phylogenetic analysis, strain HS0904 was identified as Leifsonia xyli HS0904. To our knowledge, this is the first reported case on the species L. xyli exhibited R-stereospecific carbonyl reductase and used for the preparation of chiral (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. The optimization of parameters for microbial transformation of 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol catalyzed by whole cells of L. xyli HS0904 was carried out by examining some key factors including buffer pH, reaction temperature, shaking speed, substrate concentration, and reaction time. The obtained optimized conditions for the bioreduction are as follows: buffer pH 8.0, 70 mM of 3,5-bis(trifluoromethyl) acetophenone, 100 g l−1 of glucose as co-substrate, 200 g l−1 of resting cells as biocatalyst, reaction for 30 h at 30 °C and 200 rpm. Under above conditions, 99.4% of product ee and best yield of 62% were obtained, respectively. The results indicated that isolate L. xyli HS0904 is a novel potential biocatalyst for the production of (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号