首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital-anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.  相似文献   

2.
We investigated the effect of elevated left atrial pressure and reduced cardiac output on pulmonary neutrophil kinetics in the sheep. Sheep neutrophils were isolated, labeled with 111In-oxine, and reinfused. Erythrocytes were labeled with [99mTc]pertechnetate. A gamma camera measured the lung activities of the labeled neutrophils and erythrocytes. The results indicated that 38.5% of the total injected neutrophils marginated in the lung. Pulmonary hemodynamics were altered by inflating a left atrial balloon three times in each sheep for 15-30 min to achieve 5- to 25-mmHg increments in pulmonary arterial wedge pressure. At least a 30-min recovery period was allowed between inflations. After each left atrial balloon inflation, neutrophil uptake remained unchanged from base line, despite decreased mean cardiac output to 0.67 +/- 0.24 (+/- SD) 1/min and increased pulmonary blood volume. The absence of pulmonary neutrophil uptake was confirmed by arterial-venous measurements. Increased pulmonary blood volume had little effect on lung neutrophil uptake, suggesting that most of the pulmonary neutrophils are marginated. We conclude that the lungs have a large marginated neutrophil pool compared with the circulating pool and that reduced cardiac output and elevated left atrial pressure have no effect on pulmonary neutrophil kinetics in the sheep.  相似文献   

3.
Cardiac output by rebreathing in patients with cardiopulmonary diseases   总被引:2,自引:0,他引:2  
Noninvasive estimates of cardiac output by rebreathing soluble gases (Qc) can be unreliable in patients with cardiopulmonary diseases because of uneven distribution of ventilation to lung gas volume and pulmonary blood flow. To evaluate this source of error, we compared rebreathing Qc with invasive measurements of cardiac output performed by indicator-dilution methods (COID) in 39 patients with cardiac or pulmonary diseases. In 16 patients with normal lung volumes and 1-s forced expiratory volumes (FEV1), Qc measured with acetylene [Qc(C2H2)] overestimated COID insignificantly by 2 +/- 9% (SD). In subjects with mild to moderate obstructive lung disease, Qc(C2H2) slightly overestimated COID by 6 +/- 15% (P = 0.11). In patients with restrictive disease or combined obstructive and restrictive disease, Qc(C2H2) underestimated COID significantly by 9 +/- 14% (P less than 0.04). The magnitude of the discrepancy between Qc and COID correlated with size of the volume rebreathed and an index of uneven ventilation calculated from helium mixing during rebreathing that determined a dead space to inspired volume ratio (VRD/VI). Rebreathing volumes less than 40% of the predicted FEV or VRD/VI of 0.4 or greater identified all subjects with a discrepancy between Qc(C2H2) and COID of 20% or greater.  相似文献   

4.
Distribution of bronchial blood flow was measured in unanesthetized sheep by the use of two modifications of the microsphere reference sample technique that correct for peripheral shunting of microspheres: 1) A double microsphere method in which simultaneous left and right atrial injections of 15-microns microspheres tagged with different isotopes allowed measurement of both pulmonary blood flow and shunt-corrected bronchial blood flow, and 2) a pulmonary arterial occlusion method in which left atrial injection and transient occlusion of the left pulmonary artery prevented delivery to the lung of microspheres shunted through the peripheral circulation and allowed systemic blood flow to the left lung to be measured. Both methods can be performed in unanesthetized sheep. The pulmonary arterial occlusion method is less costly and requires fewer calculations. The double microsphere method requires less surgical preparation and allows measurement without perturbation of pulmonary hemodynamics. There was no statistically significant difference between bronchial blood flow measured with the two methods. However, total bronchial blood flow measured during pulmonary arterial occlusion (1.52 +/- 0.98% of cardiac output, n = 9) was slightly higher than that measured with the double microsphere method (1.39 +/- 0.88% of cardiac output, n = 9). In another series of experiments in which sequential measurements of bronchial blood flow were made, there was a significant increase of 15% in left lung bronchial blood flow during the first minute of occlusion of the left pulmonary artery. Thus pulmonary arterial occlusion should be performed 5 s after microsphere injection as originally described by Baile et al. (1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.  相似文献   

6.
A double-lumen tube was inserted into the trachea of dogs anesthetized with intravenous pentobarbital (30-40 mg/kg). Blood flow/unit lung volume in each lung was measured with 133Xe. Both lungs were initially ventilated with oxygen and measurements of pulmonary blood flow, CO2 output, cardiac output, and blood gases were made. When nitrogen was administered to one lung blood flow was diverted to the opposite lung. The diversion of flow was reduced by the inhalation of 1% trichloroethylene but returned after withdrawal of the anesthetic. There were no significant changes in cardiac output. Changes in CO2 output and arterial Po2 were compatible with the xenon results. It is concluded that trichloroethylene may increase arterial hypoxemia by reducing vasoconstriction in hypoxic areas of lung.  相似文献   

7.
Discrepancies exist between experimental measurements of the systemic blood flow to sheep lung by use of microsphere techniques and flow probes on the bronchial artery. In these studies, we simultaneously measured the blood flow through the bronchial artery, using a transit time flow probe, and the systemic blood flow to left lung, using radioactive microspheres. All measurements were made on conscious sheep previously prepared with chronic catheterizations of the left atrium, aorta, and vena cava and a flow probe around the bronchial artery. Inflatable occluder cuffs were placed around the pulmonary and bronchoesophageal arteries. Bronchial artery blood flow in six sheep was 25.3 +/- 5.2 ml/min or 0.4% of the cardiac output. Systemic blood flow to left lung, measured with microspheres, was 54.1 +/- 14.2 ml/min. Calculated systemic blood flow to that portion of sheep lung perfused by the bronchial artery was 127.6 +/- 35.3 ml/min or 1.9% of cardiac output. Occlusion of the bronchoesophageal artery reduced bronchial artery flow to near zero, whereas total systemic blood to the lung was reduced by only 55%. Blood flow to the intraparenchymal cartilaginous airways was reduced 60-90% after occlusion of the bronchoesophageal artery. Sheep, like most mammals, have multiple and complex systemic arterial inputs to the lungs. We conclude that multiple branches of the bronchoesophageal artery provide most but not all of the systemic blood flow to the intraparenchymal cartilaginous airways but that over one-half of the total systemic blood flow to sheep lung comes from sources other than the common bronchial artery.  相似文献   

8.

Background

Intermittent measurement of cardiac output may be performed using a lithium dilution technique (LiDCO). This can then be used to calibrate a pulse power algorithm of the arterial waveform which provides a continuous estimate of this variable. The purpose of this study was to examine the duration of accuracy of the pulse power algorithm in critically ill patients with respect to time when compared to measurements of cardiac output by an independent technique.

Methods

Pulse power analysis was performed on critically ill patients using a proprietary commercial monitor (PulseCO). All measurements were made using an in-dwelling radial artery line and according to manufacturers instructions. Intermittent measurements of cardiac output were made with LiDCO in order to validate the pulse power measurements. These were made at baseline and then following 1, 2, 4 and 8 hours. The LiDCO measurement was considered the reference for comparison in this study. The two methods of measuring cardiac output were then compared by linear regression and a Bland Altman analysis. An error rate for the limits of agreement (LOA) between the two techniques of less than 30% was defined as being acceptable for this study.

Results

14 critically ill medical and surgical patients were enrolled over a three month period. At baseline patients showed a wide range of cardiac output (median 7.5 L/min, IQR 5.1 -9.0 L/min). The bias and limits of agreement between the two techniques was deemed acceptable for the first four hours of the study with percentage errors being 29%, 22%, and 285 respectively. The percentage error at eight hours following calibration increased to 36%. The ability of the PulseCo to detect changes in cardiac output was assessed with a similar analysis. The PulseCO tracked the changes in cardiac output with adequate accuracy for the first four hours with percentage errors being 20%, 24% and 25%. However at eight hours the error had increased to 43%.

Conclusion

The agreement between lithium dilution cardiac output and the pulse power algorithm in the PulseCO monitor remains acceptable for up to four hours in critically ill patients.  相似文献   

9.
The objective of our study was to compare Doppler echocardiography imaging with pulmonary artery thermodilution measurement during mechanical ventilation. Total 78 piglets (6 weeks old, average weight 24 kg, under general anesthesia) were divided into 4 groups under different cardiac loading conditions (at rest, with increased left ventricular afterload, with increased right ventricular preload, and with increased afterload of both heart ventricles). At 60 and 120 min the animals were examined by echocardiography and simultaneously pulmonary artery thermodilution was used to measure cardiac output. Tei-indexes data were compared with invasively monitored hemodynamic data and cardiac output values together with calculated vascular resistance indices. A total of 224 parallel measurements were obtained. Correlation was found between values of right Tei-index of myocardial performance and changes in right ventricular preload (p<0.05) and afterload (p<0.01). Significant correlation was also found between left index values and changes of left ventricular preload (p<0.001), afterload (p<0.001), stroke volume (p<0.01), and cardiac output (p<0.01). In conclusion, echocardiographic examination and determination of the global performance selectively for the right and left ventricle can be recommended as a suitable non-invasive supplement to the whole set of methods used for monitoring of circulation and cardiac performance.  相似文献   

10.
Seven Standardbred horses were exercised on a treadmill at speeds (approximately 12 m/s) producing maximal heart rate, hypoxemia, and a mean pulmonary arterial pressure of approximately 75 mmHg. Extravascular lung water was measured by using transients in temperature and electrical impedance of the blood caused by a bolus injection of cold saline solution. Lung water was approximately 3 ml/kg body wt when standing but did not increase significantly with exertion. We conclude that any increase in fluid extravasation from the pulmonary hypertension accumulates in the lung at a level that is less than that detectable by this method. At maximal exertion, the volume of blood measured between the jugular vein and the carotid artery increased by approximately 8 ml/kg, and the actively circulating component of the systemic blood volume increased by approximately 17 ml/kg with respect to corresponding values obtained when walking before exertion. These volume increases, reflecting recruitment and dilatation of capillaries, increase the area for respiratory gas exchange and offset the reduced transit times that would otherwise be imposed by the approximately eightfold increase in cardiac output at maximal exertion.  相似文献   

11.
The purpose of this study was to evaluate right ventricular (RV) loading and cardiac output changes, by using the thermodilution technique, during the mechanical ventilatory cycle. Fifteen critically ill patients on mechanical ventilation, with 5 cmH(2)O of positive end-expiratory pressure, mean respiratory frequency of 18 breaths/min, and mean tidal volume of 708 ml, were studied with help of a rapid-response thermistor RV ejection fraction pulmonary artery catheter, allowing 5-ml room-temperature 5% isotonic dextrose thermodilution measurements of cardiac index (CI), stroke volume (SV) index, RV ejection fraction (RVEF), RV end-diastolic volume (RVEDV), and RV end-systolic volume (RVESV) indexes at 10% intervals of the mechanical ventilatory cycle. The ventilatory modulation of CI and RV volumes varied from patient to patient, and the interindividual variability was greater for the latter variables. Within patients also, RV volumes were modulated more by the ventilatory cycle than CI and SV index. Around a mean value of 3.95 +/- 1.18 l. min(-1). m(-2) (= 100%), CI varied from 87.3 +/- 5.2 (minimum) to 114.3 +/- 5.1% (maximum), and RVESV index varied between 61.5 +/- 17.8 and 149.3 +/- 34.1% of mean 55.1 +/- 17.9 ml/m(2) during the ventilatory cycle. The variations in the cycle exceeded the measurement error even though the latter was greater for RVEF and volumes than for CI and SV index. For mean values, there was an inspiratory decrease in RVEF and increase in RVESV, whereas a rise in RVEDV largely prevented a fall in SV index. We conclude that cyclic RV afterloading necessitates multiple thermodilution measurements equally spaced in the ventilatory cycle for reliable assessment of RV performance during mechanical ventilation of patients.  相似文献   

12.
Using in vivo microscopy, we made direct measurements of pulmonary capillary transit time by determining the time required for fluorescent dye to pass from an arteriole to a venule on the dependent surface of the dog lung. Concurrently, in the same animals, pulmonary capillary transit time was measured indirectly in the entire lung using the diffusing capacity method (capillary blood volume divided by cardiac output). Transit times by each method were the same in a group of five dogs [direct: 1.75 +/- 0.27 (SE) s; indirect: 1.85 +/- 0.33 s; P = 0.7]. The similarity of these transit times is important, because the widely used indirect determinations based on diffusing capacity are now shown to coincide with direct measurements and also because it demonstrates that measurements of capillary transit times on the surface of the dependent lung bear a useful relationship to measurements on the capillaries in the rest of the lung.  相似文献   

13.
This study has been performed to characterize the relationship between changes in plasma taurine (TAU) and hemodynamic patterns in sepsis. Analysis of 249 plasma aminoacidograms (AA-grams) and associated measurements in a group of critically ill, mechanically ventilated septic patients, showed that decreases in TAU were significantly correlated with increases in pulmonary artery pressure and pulmonary vascular resistance, and with worsening of pulmonary dysfunction. All cases requiring positive end-expiratory pressure greater than 10cmH2O had TAU lower than 50 microM/L. Low TAU was paralleled by decreases in other sulfur-containing AA, phosphoethanolamine, beta-alanine, glutamate and aspartate, within a pattern of greater metabolic dysregulation. These data provide evidence of a link between severity of pulmonary dysfunction and reduced TAU availability in clinical sepsis. The implications relate also to the need for specific investigations of the clinical effect of exogenous TAU on proinflammatory mediator-induced pulmonary dysfunction.  相似文献   

14.
To study the influence of blood flow on postpneumonectomy lung growth, we banded the left caudal lobe pulmonary artery of eight ferrets in such a way that blood flow to the caudal lobe did not increase when the right lung was excised 1 wk later. The fraction of the cardiac output received by the right lung before pneumonectomy was therefore directed entirely to the left cranial lobe. Three weeks after pneumonectomy the weight, volume, and protein and DNA contents of the two lobes of the left lung were measured and compared with those of five unoperated animals and eight animals after right pneumonectomy alone. Although its perfusion did not increase after pneumonectomy, the left caudal lobe of banded animals participated in compensatory growth, increasing in weight and protein and DNA contents. Although the cranial lobe of banded animals received 25% more of the cardiac output than the same lobe in pneumonectomized animals, cranial lobe volume and protein and DNA contents in the two groups were similar. Caudal lobes were smaller in banded than in simple pneumonectomized animals and tended to contain less protein, whereas the cranial lobes tended to be heavier. We conclude that increased pulmonary perfusion is not necessary for compensatory lung growth in adult ferrets, but it may modify this response.  相似文献   

15.
The effect of prostaglandin E1 (PGE1) on central and peripheral hemodynamics was studied in seven conscious dogs under conditions of normoxia and hypobaric hypoxia to ascertain if hypoxia attenuated the cardiovascular actions of PGE1. Silastic catheters were chronically implanted in the pulmonary artery, left atrium, and aorta. Acute hypoxia was produced in a hypobaric chamber maintained at 446 mmHg pressure (14,000 feet). PGE1 at sea level (normoxia) resulted in significant increases in heart rate, cardiac output, left ventricular stroke work and pulmonary blood volume as well as significant decreases in aortic, pulmonary arterial, and left atrial pressures. During hypobaric hypoxia, PGE1 produced essentially identical effects on all hemodynamic parameters except pulmonary blood volume and pulmonary arterial pressure where marked attenuation of PGE1 action occurred.Significant hypoxemia does not alter the peripheral and myocardial actions of PGE1 in intact animals. Attenuation of the pulmonary hemodynamic actions of PGE1 may be secondary to the effect of hypoxia on certain segments of the pulmonary vascular bed.  相似文献   

16.
CT angiography is now commonly used for the diagnosis of pulmonary embolism, but the contrast media used for imaging produces various hemodynamic changes. In this study, we investigated the bronchovascular and hemodynamic responses to intravenous iopromide, a non-ionic contrast agent used for pulmonary CT angiograms, in anesthetized, mechanically ventilated sheep (n = 6). Bronchial blood flow and cardiac output were measured with ultrasonic flow probes. Systemic and pulmonary arterial pressures were continuously monitored. Injections of 0.9% NaCl (120 ml over 30 s) or iopromide (300 mg/ml, 120 ml over 30 s) were given in random order in a peripheral vein with an angiogram infuser and hemodynamic changes were determined. After these parameters returned to baseline, the left pulmonary artery (LPA) was occluded with a snare and the animals were allowed to stabilize. Injections of NaCl and iopromide were repeated in random order as before. There were no significant hemodynamic effects with infusion of NaCl. With intact pulmonary vasculature, NaCl and iopromide did not cause significant changes in arterial blood gases, however, cardiac output (QT, L/min), mean systemic and pulmonary arterial pressures (PSA and PPA, Torr) increased and bronchovascular resistance (BVR, Torr x min/ml), decreased. Following LPA ligation, pH and PO2 significantly decreased over baseline, whereas PCO2 increased. After LPA ligation, iopromide produced a greater decrease in BVR as compared with preligation intact pulmonary vasculature. In conclusion, iopromide caused rapid hemodynamic changes and decreased BVR, likely secondary to osmolar stress. Bronchovascular effects were more pronounced after pulmonary arterial occlusion.  相似文献   

17.
Although impedance cardiography provides safe and reliable noninvasive estimates of stroke volume in humans, its usefulness is limited by the necessity for subjects to be apneic and motionless. In an effort to circumvent this restriction we studied the validity of ensemble-averaging of impedance data in exercising normal subjects and in intensive-care patients. The correlation coefficient (r value) between 128 ensemble-averaged and standard hand-digitized determinations of stroke volume index from the same records taken during rest and exercise in six normal male subjects was +0.97 (P less than 0.001). The r value for ensemble-averaged stroke volume indices during free breathing and breath hold in the same subjects was +0.92 (P less than 0.001), suggesting that breath hold did not significantly affect the stroke volume estimation. In 14 freely breathing hospital intensive-care patients the r value between simultaneous thermodilution cardiac output readings and ensemble-averaged impedance determinations was +0.87 (P less than 0.01). The results indicate that ensemble-averaging of transthoracic impedance data provides waveforms from which reliable estimates of cardiac output can be made during normal respiration in healthy human subjects at rest and exercise and in critically ill patients.  相似文献   

18.
Diethylcarbamazine (DEC) is an inhibitor of lipoxygenase, with protective effects in several experimental models of anaphylaxis and lung dysfunction. The hypothesis of this study was that DEC would alter the pulmonary response to endotoxin infusion, especially the prolonged pulmonary hypertension, leukopenia, hypoxemia, and high flow of protein-rich lung lymph. We prepared sheep for chronic measurements of hemodynamics and collection of lung lymph. In paired studies we gave six sheep endotoxin (0.5 micrograms/kg iv) either with or without DEC. DEC was given (80-100 mg/kg iv) over 30 min followed by a continuous infusion at 1 mg X kg-1 X min-1. Endotoxin was given after the loading infusion of DEC, and variables were monitored for 4 h. The response to endotoxin was characterized by pulmonary hypertension, leukopenia, hypoxemia, and elevations of thromboxane B2 and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha). Lymph flow and protein content reflected hemodynamic and permeability changes in the pulmonary circulation. DEC did not significantly modify the response to endotoxin by any measured variable, including pulmonary arterial and left atrial pressures, cardiac output, lymph flow and protein content, alveolar-to-arterial PO2 difference, blood leukocyte count, and lymph thromboxane B2 and 6-keto-PGF1 alpha. We could not find evidence of release of leukotriene C4/D4 by radioimmunoassay in lung lymph after endotoxin infusion with or without DEC treatment. We conclude that lipoxygenase products of arachidonic acid may not be a major component of the pulmonary vascular response to endotoxin.  相似文献   

19.
Experiments were performed to determine whether different methods of increasing cardiac output would have similar effects on lung lymph flow, and to assess the contribution of the microvasculature (fluid-exchanging vessels) to the total calculated pulmonary vascular resistance. Yearling unanesthetized sheep with chronic vascular catheters and lung lymph fistulas underwent intravenous infusions of isoproterenol at 0.2 micrograms X kg-1. min-1 (n = 8) or were exercised on a treadmill (n = 16). Both isoproterenol and exercise increased cardiac output, lowered calculated total pulmonary and systemic vascular resistances, and had no effect on the calculated pulmonary microvascular pressure. Isoproterenol infusions did not affect lung lymph flow, whereas exercise increased lung lymph flow in proportion to the increase in cardiac output. We conclude that 1) the sheep has a different pulmonary hemodynamic response to exercise than dogs and man, 2) the microvasculature is recruited during exercise-induced but not isoproterenol-induced increases in cardiac output, and 3) the microvasculature represents only a small proportion of the total calculated pulmonary vascular resistance.  相似文献   

20.
Cardiac output (CO) monitoring is essential for the optimal management of critically ill patients. Several mathematical methods have been proposed for CO estimation based on pressure waveform analysis. Most of them depend on invasive recording of blood pressure and require repeated calibrations, and they suffer from decreased accuracy under specific conditions. A new systolic volume balance (SVB) method, including a simpler empirical form (eSVB), was derived from basic physical principles that govern blood flow and, in particular, a volume balance approach for the conservation of mass ejected into and flowed out of the arterial system during systole. The formulas were validated by a one-dimensional model of the systemic arterial tree. Comparisons of CO estimates between the proposed and previous methods were performed in terms of agreement and accuracy using "real" CO values of the model as a reference. Five hundred and seven different hemodynamic cases were simulated by altering cardiac period, arterial compliance, and resistance. CO could be accurately estimated by the SVB method as follows: CO = C × PP(ao)/(T - P(sm) × T(s)/P(m)) and by the eSVB method as follows: CO = k × C × PP(ao)/T, where C is arterial compliance, PP(ao) is aortic pulse pressure, T is cardiac period, P(sm) is mean systolic pressure, T(s) is systolic duration, P(m) is mean pressure, and k is an empirical coefficient. SVB applied on aortic pressure waves did not require calibration or empirical correction for CO estimation. An empirical coefficient was necessary for brachial pressure wave analysis. The difference of SVB-derived CO from model CO (for brachial waves) was 0.042 ± 0.341 l/min, and the limits of agreement were -0.7 to 0.6 l/min, indicating high accuracy. The intraclass correlation coefficient and root mean square error between estimated and "real" CO were 0.861 and 0.041 l/min, respectively, indicating very good accuracy. eSVB also provided accurate estimation of CO. An in vivo validation study of the proposed methods remains to be conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号