首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Glycosylation is considered to be an important reaction for the chemical modification of compounds with useful biological activities. Glycoside hydrolases are biotechnologically attractive enzymes which can be used in synthetic reactions for assembling glycosidic linkages with absolute stereoselectivity at an anomeric centre. Most of these enzymes are commercially available but there is great interest in the search for new biocatalysts with original catalytic characteristics. The marine environment has shown to be a very interesting source for new glycosyl hydrolases for both hydrolytic and synthetic aspects. In particular, Aplysia fasciata a marine herbivorous mollusc has been shown to be a potent producer of a library of glycoside hydrolases applied to the synthesis of glycosidic bonds. The impressive assortment of glycosidases in marine organisms clearly indicates that the potential biodiversity of these enzymes is still largely unexplored and that potential applications of biocatalysts from the sea will increase in the near future.  相似文献   

2.
The expanding field of glycobiology requires tools for the synthesis of structurally defined oligosaccharides and glycoconjugates, while any potential therapeutic applications of sugar-based derivates would require access to substantial quantities of such compounds. Classical chemical approaches are not well suited for such large-scale syntheses, thus enzymatic approaches are sought. Traditional routes to the enzymatic assembly of oligosaccharides have involved the use of either Nature’s own biosynthetic enzymes, the glycosyl transferases, or glycosidases run in transglycosylation mode. However, each approach has drawbacks that have limited its application. Glycosynthases are mutant glycosidases in which the catalytic nucleophile has been replaced by mutation, inactivating them as hydrolases. When used in conjunction with glycosyl fluorides of the opposite anomeric configuration to that of the substrate, these enzymes function as highly efficient transferases, frequently giving stoichiometric yields of products. Further improvements can be obtained through directed evolution of the gene encoding the enzyme in question, but this requires the ability to screen very large libraries of catalysts. In this review we survey new screening methods for the formation of glycosidic linkages using high-throughput techniques, such as FACS, chemical complementation, and robot-assisted ELISA assays. Enzymes were evolved to have higher catalytic activity with their natural substrates, to show altered substrate specificities or to be promiscuous for efficient application in oligosaccharide, glycolipid, and glycoprotein synthesis.  相似文献   

3.
1,3-1,4-beta-Glucanases (or lichenases, EC 3.2.1.73) hydrolyse linear beta-glucans containing beta-1,3 and beta-1,4 linkages such as cereal beta-glucans and lichenan, with a strict cleavage specificity for beta-1,4 glycosidic bonds on 3-O-substituted glucosyl residues. The bacterial enzymes are retaining glycosyl hydrolases of family 16 with a jellyroll beta-sandwich fold and a substrate binding cleft composed of six subsites. The present paper reviews the structure-function aspects of the enzymatic action including mechanistic enzymology, protein engineering and X-ray crystallographic studies.  相似文献   

4.
The mutation of putative acid/base and nucleophile of the active sites of retaining glycosyl hydrolases, together with kinetic analysis of the mutants, and stereochemical identification of products lead to useful information for the understanding of the reaction mechanism of these enzymes. This was the preliminary and fundamental step toward the preparation of new enzymatic activities called glycosynthases. Direct exploitation of this information has been possible, leading to the design of four new enzymes for oligosaccharides synthesis. The interest for these biocatalysts rises from the fact that the yield of the reaction can be increased and selectivity can be interpreted as key characteristic of the transfer reaction instead of a balance of hydrolytic and transferring pathways followed either by substrates and products. These new biocatalysts possess different specificities and are promising and useful tools in the construction of oligosaccharide molecules of great biological interest. This short review focused the attention on different glycosynthases obtained from four glycosyl hydrolases highlighting on the preparation and development of these new enzymes.  相似文献   

5.
The halophilic Archaea are a group of microorganisms that have not been extensively considered for biotechnological applications. This review describes some of the enzymes and products and the potential applications of this unique group of microorganisms to various industrial processes. Specifically, the characteristics of the glycosyl hydrolases, lipases and esterases, proteases, biopolymers and surfactants, as well as some miscellaneous other activities will be described.  相似文献   

6.
Many pathogenic microorganisms invade mammalian and/or plant cells by producing polysaccharide-degrading enzymes (lyases and hydrolases). Mammalian glycosaminoglycans and plant pectins that form part of the cell surface matrix are typical targets for these microbial enzymes. Unsaturated glycoside hydrolase catalyzes the hydrolytic release of an unsaturated uronic acid from oligosaccharides, which are produced through the reaction of matrix-degrading polysaccharide lyase. This enzymatic ability suggests that unsaturated glycoside hydrolases function as virulence factors in microbial infection. This review focuses on the molecular identification, bacterial distribution, and structure/function relationships of these enzymes. In contrast to general glycoside hydrolases, in which the catalytic mechanism involves the retention or inversion of an anomeric configuration, unsaturated glycoside hydrolases uniquely trigger the hydrolysis of vinyl ether groups in unsaturated saccharides but not of their glycosidic bonds.  相似文献   

7.
8.
The ability of 16 chitinases from seven different plant species to hydrolyze a collection of several structurally related lipochitooligosaccharides (LCOs) of Rhizobium was analyzed. It was found that the enzymes differed to a large extent in their activity on different LCOs. Differences were attributed to (i) the relative activity on different LCOs as substrate (e.g. sulfated versus non-sulfated LCOs); (ii) the relative cleavage site preference on a given LCO molecule (hydrolysis of either the second, third or fourth glycosidic bond from the non-reducing end of the molecule); and (iii) the stereochemistry of the reaction (retention or inversion of the anomeric configuration). A graphic representation of the different substrate specificities resulted in a ‘fingerprint’ that is characteristic for a given enzyme or a family of related enzymes. By comparing the LCO-fingerprint of unknown enzymes with those obtained for already characterized proteins, it is possible to identify new glycosyl hydrolases. The high diversity of substrate specificity found among plant chitinases may reflect variations in the natural substrates of the enzymes, such as substitutions on the chitin moiety of fungal cell walls or, in plants, the presence of putative endogenous substrates related to LCOs.  相似文献   

9.
Abstract Genes encoding for glycosyl hydrolases (GH) in multiple families were recovered from an expression sequence tag library of Coptotermes formosanus, a xylophagous lower termite species. Functional analyses of these genes not only shed light on the mechanisms the insect employs to successfully use cellulosic materials as energy sources, which may serve as strategic targets for designing molecular-based bio-pesticides, but also enrich discoveries of new cellulolytic enzymes for conversion of biomass into biofuel. Our study demonstrated that cellulose could be converted to glucose by two recombinant endogenous glycosyl hydrolases (endo-β-1,4 glucanase in GH9 and β-glucosidase in GH1). While the former cleaved cellulose to cellobiose and cellotriose, the resulting simple cellodextrins were digested to glucose. Both of the Escherichia coli-expressed recombinant proteins showed properties that could be incorporated in a glucose-based ethanol production program.  相似文献   

10.
Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converting enzymes in the production of maltodextrin, modified starches, or glucose and fructose syrups. Currently, these enzymes comprise about 30% of the world's enzyme production. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-staling agents in baking. A number of these starch-converting enzymes belong to a single family: the alpha-amylase family or family13 glycosyl hydrolases. This group of enzymes share a number of common characteristics such as a (beta/alpha)(8) barrel structure, the hydrolysis or formation of glycosidic bonds in the alpha conformation, and a number of conserved amino acid residues in the active site. As many as 21 different reaction and product specificities are found in this family. Currently, 25 three-dimensional (3D) structures of a few members of the alpha-amylase family have been determined using protein crystallization and X-ray crystallography. These data in combination with site-directed mutagenesis studies have helped to better understand the interactions between the substrate or product molecule and the different amino acids found in and around the active site. This review illustrates the reaction and product diversity found within the alpha-amylase family, the mechanistic principles deduced from structure-function relationship structures, and the use of the enzymes of this family in industrial applications.  相似文献   

11.
The alpha-L-arabinofuranosidase D3 from Thermobacillus xylanilyticus is an arabinoxylan-debranching enzyme which belongs to family 51 of the glycosyl hydrolase classification. Previous studies have indicated that members of this family are retaining enzymes and may form part of the 4/7 superfamily of glycosyl hydrolases. To investigate the active site of alpha-L-arabinofuranosidase D3, we have used sequence alignment, site-directed mutagenesis and kinetic analyses. Likewise, we have shown that Glu(28), Glu(176) and Glu(298) are important for catalytic activity. Kinetic data obtained for the mutant Glu(176)-->Gln, combined with the results of chemical rescue using the mutant Glu(176)-->Ala, have shown that Glu(176) is the acid-base residue. Moreover, NMR analysis of the arabinosyl-azide adduct, which was produced by chemical rescue of the mutant Glu(176)-->Ala, indicated that alpha-L-arabinofuranosidase D3 hydrolyses glycosidic bonds with retention of the anomeric configuration. The results of similar chemical rescue studies using other mutant enzymes suggest that Glu(298) might be the catalytic nucleophile and that Glu(28) is a third member of a catalytic triad which may be responsible for modulating the ionization state of the acid-base and implicated in substrate fixation. Overall, these findings support the hypothesis that alpha-L-arabinofuranosidase D3 belongs to the 4/7 superfamily and provide the first experimental evidence concerning the catalytic apparatus of a family 51 arabinofuranosidase.  相似文献   

12.
The 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes (Fsbeta-glucanase) is classified as one of the family 16 glycosyl hydrolases. It hydrolyzes the glycosidic bond in the mixed-linked glucans containing beta-1,3- and beta-1,4-glycosidic linkages. We constructed a truncated form of recombinant Fsbeta-glucanase containing the catalytic domain from amino acid residues 1-258, which exhibited a higher thermal stability and enzymatic activity than the full-length enzyme. The crystal structure of the truncated Fsbeta-glucanase was solved at a resolution of 1.7A by the multiple wavelength anomalous dispersion (MAD) method using the anomalous signals from the seleno-methionine-labeled protein. The overall topology of the truncated Fsbeta-glucanase consists mainly of two eight-stranded anti-parallel beta-sheets arranged in a jellyroll beta-sandwich, similar to the fold of many glycosyl hydrolases and carbohydrate-binding modules. Sequence comparison with other bacterial glucanases showed that Fsbeta-glucanase is the only naturally occurring circularly permuted beta-glucanase with reversed sequences. Structural comparison shows that the engineered circular-permuted Bacillus enzymes are more similar to their parent enzymes with which they share approximately 70% sequence identity, than to the naturally occurring Fsbeta-glucanase of similar topology with 30% identity. This result suggests that protein structure relies more on sequence identity than topology. The high-resolution structure of Fsbeta-glucanase provides a structural rationale for the different activities obtained from a series of mutant glucanases and a basis for the development of engineered enzymes with increased activity and structural stability.  相似文献   

13.
Chemoenzymatic approaches using carbohydrate-active enzymes (CAZymes) offer a promising avenue for the synthesis of glycans like oligosaccharides. Here, we report a novel chemoenzymatic route for cellodextrins synthesis employed by chimeric CAZymes, akin to native glycosyltransferases, involving the unprecedented participation of a “non-catalytic” lectin-like domain or carbohydrate-binding modules (CBMs) in the catalytic step for glycosidic bond synthesis using β-cellobiosyl donor sugars as activated substrates. CBMs are often thought to play a passive substrate targeting role in enzymatic glycosylation reactions mostly via overcoming substrate diffusion limitations for tethered catalytic domains (CDs) but are not known to participate directly in any nucleophilic substitution mechanisms that impact the actual glycosyl transfer step. This study provides evidence for the direct participation of CBMs in the catalytic reaction step for β-glucan glycosidic bonds synthesis enhancing activity for CBM-based CAZyme chimeras by >140-fold over CDs alone. Dynamic intradomain interactions that facilitate this poorly understood reaction mechanism were further revealed by small-angle X-ray scattering structural analysis along with detailed mutagenesis studies to shed light on our current limited understanding of similar transglycosylation-type reaction mechanisms. In summary, our study provides a novel strategy for engineering similar CBM-based CAZyme chimeras for the synthesis of bespoke oligosaccharides using simple activated sugar monomers.  相似文献   

14.
Family 70 glycoside hydrolase glucansucrase enzymes exclusively occur in lactic acid bacteria and synthesize a wide range of α-d-glucan (abbreviated as α-glucan) oligo- and polysaccharides. Of the 47 characterized GH70 enzymes, 46 use sucrose as glucose donor. A single GH70 enzyme was recently found to be inactive with sucrose and to utilize maltooligosaccharides [(1→4)-α-d-glucooligosaccharides] as glucose donor substrates for α-glucan synthesis, acting as a 4,6-α-glucanotransferase (4,6-αGT) enzyme. Here, we report the characterization of two further GH70 4,6-αGT enzymes, i.e., from Lactobacillus reuteri strains DSM 20016 and ML1, which use maltooligosaccharides as glucose donor. Both enzymes cleave α1→4 glycosidic linkages and add the released glucose moieties one by one to the non-reducing end of growing linear α-glucan chains via α1→6 glycosidic linkages (α1→4 to α1→6 transfer activity). In this way, they convert pure maltooligosaccharide substrates into linear α-glucan product mixtures with about 50% α1→6 glycosidic bonds (isomalto/maltooligosaccharides). These new α-glucan products may provide an exciting type of carbohydrate for the food industry. The results show that 4,6-αGTs occur more widespread in family GH70 and can be considered as a GH70 subfamily. Sequence analysis allowed identification of amino acid residues in acceptor substrate binding subsites +1 and +2, differing between GH70 GTF and 4,6-αGT enzymes.  相似文献   

15.
The process of protein crosslinking comprises the chemical, enzymatic, or chemoenzymatic formation of new covalent bonds between polypeptides. This allows (1) the site-directed coupling of proteins with distinct properties and (2) the de novo assembly of polymeric protein networks. Transferases, hydrolases, and oxidoreductases can be employed as catalysts for the synthesis of crosslinked proteins, thereby complementing chemical crosslinking strategies. Here, we review enzymatic approaches that are used for protein crosslinking at the industrial level or have shown promising potential in investigations on the lab-scale. We illustrate the underlying mechanisms of crosslink formation and point out the roles of the enzymes in their natural environments. Additionally, we discuss advantages and drawbacks of the enzyme-based crosslinking strategies and their potential for different applications.  相似文献   

16.
Enzymes that catalyse the synthesis and breakdown of glycosidic bonds account for 1-3% of the proteins encoded by the genomes of most organisms. At the current rate, over 12 000 glycosyltransferase and glycoside hydrolase open reading frames will appear during 2006. Recent advances in the study of the structure and mechanism of these carbohydrate-active enzymes reveal that glycoside hydrolases continue to display a wide variety of scaffolds, whereas nucleotide-sugar-dependent glycosyltransferases tend to be grafted onto just two protein folds. The past two years have seen significant advances, including the discovery of a novel NAD+-dependent glycosidase mechanism, the dissection of the reaction coordinate of sialidases and a better understanding of the expanding roles of auxiliary carbohydrate-binding domains.  相似文献   

17.
Phytopathogenic fungi can degrade xylan, an abundant hemicellulose in plant cell walls, by the coordinate action of a group of extracellular enzymes. Among these, endo-beta-1,4-xylanases carry out the initial breakdown by cleaving internal bonds in the polymer backbone. We have isolated and characterized a gene, xyn11A, coding for an endo-beta-1,4-xylanase belonging to family 11 of glycosyl hydrolases. xyn11A was shown to be induced by xylan and repressed by glucose and to be expressed in planta. The disruption of xyn11A caused only a moderate decrease, about 30%, in the level of extracellular endo-beta-1-4-xylanase activity and in the growth rate, with beechwood xylan as the only carbon source. However, deletion of the gene had a more pronounced effect on virulence, delaying the appearance of secondary lesions and reducing the average lesion size by more than 70%. Reintroducing the wild-type gene into the mutant strains reversed this phenotype back to wild type.  相似文献   

18.
19.
We are investigating glycosyl hydrolases from new psychrophilic isolates to examine the adaptations of enzymes to low temperatures. A beta-galactosidase from isolate BA, which we have classified as a strain of the lactic acid bacterium Carnobacterium piscicola, was capable of hydrolyzing the chromogen 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside (X-Gal) at 4 degrees C and possessed higher activity in crude cell lysates at 25 than at 37 degrees C. Sequence analysis of a cloned DNA fragment encoding this activity revealed a gene cluster containing three glycosyl hydrolases with homology to an alpha-galactosidase and two beta-galactosidases. The larger of the two beta-galactosidase genes, bgaB, encoded the 76.8-kDa cold-active enzyme. This gene was homologous to family 42 glycosyl hydrolases, a group which contains several thermophilic enzymes but none from lactic acid bacteria. The bgaB gene from isolate BA was subcloned in Escherichia coli, and its enzyme, BgaB, was purified. The purified enzyme was highly unstable and required 10% glycerol to maintain activity. Its optimal temperature for activity was 30 degrees C, and it was inactivated at 40 degrees C in 10 min. The K(m) of freshly purified enzyme at 30 degrees C was 1.7 mM, and the V(max) was 450 micromol. min(-1). mg(-1) with o-nitrophenyl beta-D-galactopyranoside. This cold-active enzyme is interesting because it is homologous to a thermophilic enzyme from Bacillus stearothermophilus, and comparisons could provide information about structural features important for activity at low temperatures.  相似文献   

20.
A sustainable bioeconomy that includes increased agricultural productivity and new technologies to convert renewable biomass to value-added products may help meet the demands of a growing world population for food, energy and materials. The potential use of plant biomass is determined by the properties of the cell walls, consisting of polysaccharides, proteins, and the polyphenolic polymer lignin. Comprehensive knowledge of cell wall glycan structure and biosynthesis is therefore essential for optimal utilization. However, several areas of plant cell wall research are hampered by a lack of available pure oligosaccharide samples that represent structural features of cell wall glycans. Here, we provide an update on recent chemical syntheses of plant cell wall oligosaccharides and their application in characterizing plant cell wall-directed antibodies and carbohydrate-active enzymes including glycosyltransferases and glycosyl hydrolases, with a particular focus on glycan array technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号