首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malic enzymes are widely distributed in nature, and have important biological functions. They catalyze the oxidative decarboxylation of malate to produce pyruvate and CO(2) in the presence of divalent cations (Mg(2+), Mn(2+)). Most malic enzymes have a clear selectivity for the dinucleotide cofactor, being able to use either NAD(+) or NADP(+), but not both. Structural studies of the human mitochondrial NAD(+)-dependent malic enzyme established that malic enzymes belong to a new class of oxidative decarboxylases. Here we report the crystal structure of the pigeon cytosolic NADP(+)-dependent malic enzyme, in a closed form, in a quaternary complex with NADP(+), Mn(2+), and oxalate. This represents the first structural information on an NADP(+)-dependent malic enzyme. Despite the sequence conservation, there are large differences in several regions of the pigeon enzyme structure compared to the human enzyme. One region of such differences is at the binding site for the 2'-phosphate group of the NADP(+) cofactor, which helps define the cofactor selectivity of the enzymes. Specifically, the structural information suggests Lys362 may have an important role in the NADP(+) selectivity of the pigeon enzyme, confirming our earlier kinetic observations on the K362A mutant. Our structural studies also revealed differences in the organization of the tetramer between the pigeon and the human enzymes, although the pigeon enzyme still obeys 222 symmetry.  相似文献   

2.
NADP+ -dependent malic enzyme of Rhizobium meliloti.   总被引:1,自引:0,他引:1       下载免费PDF全文
The bacterium Rhizobium meliloti, which forms N2-fixing root nodules on alfalfa, has two distinct malic enzymes; one is NADP+ dependent, while a second has maximal activity when NAD+ is the coenzyme. The diphosphopyridine nucleotide (NAD+)-dependent malic enzyme (DME) is required for symbiotic N2 fixation, likely as part of a pathway for the conversion of C4-dicarboxylic acids to acetyl coenzyme A in N2-fixing bacteroids. Here, we report the cloning and localization of the tme gene (encoding the triphosphopyridine nucleotide [NADP+]-dependent malic enzyme) to a 3.7-kb region. We constructed strains carrying insertions within the tme gene region and showed that the NADP+ -dependent malic enzyme activity peak was absent when extracts from these strains were eluted from a DEAE-cellulose chromatography column. We found that NADP+ -dependent malic enzyme activity was not required for N2 fixation, as tme mutants induced N2-fixing root nodules on alfalfa. Moreover, the apparent NADP+ -dependent malic enzyme activity detected in wild-type (N2-fixing) bacteroids was only 20% of the level detected in free-living cells. Much of that residual bacteroid activity appeared to be due to utilization of NADP+ by DME. The functions of DME and the NADP+ -dependent malic enzyme are discussed in light of the above results and the growth phenotypes of various tme and dme mutants.  相似文献   

3.
Crystallization of an NADP+-dependent malic enzyme from rat liver   总被引:1,自引:0,他引:1  
Crystals of a tetrameric NADP+-dependent malic enzyme from rat liver have been grown in the presence of NADP+ using the hanging-drop method of vapour diffusion with ammonium sulphate as the precipitant. Measurement of the crystal density and calculation of the values of Vm for different numbers of polypeptide chains in the unit cell indicate that the asymmetric unit of the crystal contains a complete tetramer, allowing the application of non-crystallographic symmetry to the determination of the molecular structure of this enzyme. This structure would provide only the second example for an enzyme involved in oxidative decarboxylation, the other being 6-phosphogluconate dehydrogenase. In addition, then, to providing an insight into the structure-function relationship in malic enzyme, the successful structure determination would permit valuable comparisons to be made between these two and other enzymes with this catalytic activity.  相似文献   

4.
The role of general acid-base catalysis in the enzymatic mechanism of NADP+-dependent malic enzyme was examined by detailed steady-state kinetic studies through site-directed mutagenesis of the Tyr(91) and Lys(162) residues in the putative catalytic site of the enzyme. Y91F and K162A mutants showed approx. 200- and 27000-fold decreases in k(cat) values respectively, which could be partially recovered with ammonium chloride. Neither mutant had an effect on the partial dehydrogenase activity of the enzyme. However, both Y91F and K162A mutants caused decreases in the k(cat) values of the partial decarboxylase activity of the enzyme by approx. 14- and 3250-fold respectively. The pH-log(k(cat)) profile of K162A was found to be different from the bell-shaped profile pattern of wild-type enzyme as it lacked a basic pK(a) value. Oxaloacetate, in the presence of NADPH, can be converted by malic enzyme into L-malate by reduction and into enolpyruvate by decarboxylation activities. Compared with wild-type, the K162A mutant preferred oxaloacetate reduction to decarboxylation. These results are consistent with the function of Lys(162) as a general acid that protonates the C-3 of enolpyruvate to form pyruvate. The Tyr(91) residue could form a hydrogen bond with Lys(162) to act as a catalytic dyad that contributes a proton to complete the enol-keto tautomerization.  相似文献   

5.
Alanine-scanning site-directed mutagenesis was carried out on all conserved lysine residues of pigeon cytosolic NADP(+)-dependent malic enzyme. Only two mutant enzymes, K162A and K340A, showed significant effect on their kinetic parameters. Both mutant enzymes have K(m) values for Mn(2+) and l-malate similar to those of wild-type. The K(m) value for NADP(+) of K162A is identical to that of wild-type. However, K162A demonstrated a 235-fold decrease in the k(cat) value (0.17 +/- 0.01 vs 40.0 +/- 1.3 s(-1)). These data suggested that the side chain of K162 is important for the enzyme catalytic reaction. We propose that the epsilon-amino group of K162 may serve as a general acid to protonate the 3-carbon of enolpyruvate after decarboxylation. The K340A mutant demonstrated no effect on the k(cat) value. However, its K(m) value for NADP(+) was increased by a factor of 65 (225.7 +/- 5.07 vs 3.49 +/- 0.05 microM). We propose that the NADP(+) specificity is determined by the electrostatic interaction between the epsilon-amino group of K340 and 2'-phosphate of NADP(+).  相似文献   

6.
Pigeon liver malic enzyme (malate dehydrogenase (decarboxylating), EC 1.1.1.40) was reversibly inactivated by periodate-oxidized NADP in a biphasic manner. The reversibility could be made irreversible by treating the modified enzyme with sodium borohydride. The inactivation showed saturation kinetics and could be prevented by nucleotide (NADP or NADPH). Fully protection was afforded by the combination of NADP, Mn2+ and L-malate. Oxidized NADP was also found to be a coenzyme and noncompetitive inhibitor of L-malate in the oxidative decarboxylase reaction catalyzed by malic enzyme.  相似文献   

7.
Structural analogues of the NADP+ were studied as potential coenzymes and inhibitors for NADP+ dependent malic enzyme from Zea mays L. leaves. Results showed that 1, N6-etheno-nicotinamide adenine dinucleotide phosphate ( NADP+), 3-acetylpyridine-adenine dinucleotide phosphate (APADP+), nicotinamide-hypoxanthine dinucleotide phosphate (NHDP+) and -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate (23NADPc+) act as alternate coenzymes for the enzyme and that there is little variation in the values of the Michaelis constants and only a threefold variation in Vmax for the five nucleotides. On the other hand, thionicotinamide-adenine dinucleotide phosphate (SNADP+), 3-aminopyridine-adenine dinucleotide phosphate (AADP+), adenosine 2-monophosphate (2AMP) and adenosine 2: 3-cyclic monophosphate (23AMPc) were competitive inhibitors with respect to NADP+, while -nicotinamide adenine dinucleotide 3-phosphate (3NADP+), NAD+, adenosine 3-monophosphate (3AMP), adenosine 2: 5-cyclic monophosphate (25AMPc), 5AMP, 5ADP, 5ATP and adenosine act as non-competitive inhibitors. These results, together with results of semiempirical self-consistent field-molecular orbitals calculations, suggest that the 2-phosphate group is crucial for the nucleotide binding to the enzyme, whereas the charge density on the C4 atom of the pyridine ring is the major factor that governs the coenzyme activity.Abbreviations NADP+ 1, N6-etheno-nicotinamide adenine dinucleotide phosphate - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - APADP+ 3-acetylpyridine-adenine dinucleotide phosphate - SNADP+ thionicotinamide-adenine dinucleotide phosphate - AADP+ 3-aminopyridine-adenine dinucleotide phosphate - 23NADPc+ -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate - 3NADP+ -nicotinamide adenine dinucleotide 3-phosphate - 2AMP adenosine 2-monophosphate - 3AMP adenosine 3-monophosphate - 23AMPc adenosine 2: 3 monophosphate cyclic - A adenosine - RuBP ribulose 1,5-bisphosphate - SCF-MO Self-Consistent Field-Molecular Orbitals (method)  相似文献   

8.
Ultraviolet light induces anthocyanin biosynthesis in cell cultures of an Afghan cultivar of Daucus carota (Daucus carota L. ssp. sativus). Simultaneous treatment with a fungal elicitor from Pythium aphanidermatum results in an inhibition of the catalytic activity of chalcone synthase (CHS), which in turn correlates with an inhibition of anthocyanin biosynthesis. On immunoblots, one isoenzyme (40 kDa) of CHS disappears upon elicitor treatment. On an mRNA level, only the mRNA for the 40-kDa-CHS is active after treatment with ultraviolet light. After inhibition of anthocyanin biosynthesis by the elicitor the enzyme protein disappears and the CHS mRNA is strongly diminished. This inhibition depends on the concentration of the elicitor. In addition, elicitor treatment leads to an induction of the general phenylpropanoid pathway as well as to the accumulation of 4-hydroxybenzoic acid which is covalently bound to wall polysaccharides of the carrot cells. The possible function of phenylalanine ammonia-lyase in providing precursors for 4-hydroxybenzoic acid is discussed.Abbreviations CHI chalcone isomerase - CHS chalcone synthase - PAL phenylalanine ammonia-lyase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We are grateful to Professor K. Hahlbrock (Max-Planck-Institut für Züchtungsforschung, Köln, FRG) for providing us with antisera to CHS and PAL, respectively. This work was supported by a grant from the Deutsche Forschungsgemeinschaft and scholarships from the Friedrich-Ebert-Stiftung (J. G.), the Landesgraduierten-förderungsgesetz Baden-Württemberg (J.-P. S) and the Gerhard-Rösch-Stiftung (D. S.). We thank R. Hofmann for her excellent technical assistance.  相似文献   

9.
Hung HC  Chien YC  Hsieh JY  Chang GG  Liu GY 《Biochemistry》2005,44(38):12737-12745
Human mitochondrial NAD(P)+-dependent malic enzyme is inhibited by ATP. The X-ray crystal structures have revealed that two ATP molecules occupy both the active and exo site of the enzyme, suggesting that ATP might act as an allosteric inhibitor of the enzyme. However, mutagenesis studies and kinetic evidences indicated that the catalytic activity of the enzyme is inhibited by ATP through a competitive inhibition mechanism in the active site and not in the exo site. Three amino acid residues, Arg165, Asn259, and Glu314, which are hydrogen-bonded with NAD+ or ATP, are chosen to characterize their possible roles on the inhibitory effect of ATP for the enzyme. Our kinetic data clearly demonstrate that Arg165 is essential for catalysis. The R165A enzyme had very low enzyme activity, and it was only slightly inhibited by ATP and not activated by fumarate. The values of K(m,NAD) and K(i,ATP) to both NAD+ and malate were elevated. Elimination of the guanidino side chain of R165 made the enzyme defective on the binding of NAD+ and ATP, and it caused the charge imbalance in the active site. These effects possibly caused the enzyme to malfunction on its catalytic power. The N259A enzyme was less inhibited by ATP but could be fully activated by fumarate at a similar extent compared with the wild-type enzyme. For the N259A enzyme, the value of K(i,ATP) to NAD+ but not to malate was elevated, indicating that the hydrogen bonding between ATP and the amide side chain of this residue is important for the binding stability of ATP. Removal of this side chain did not cause any harmful effect on the fumarate-induced activation of the enzyme. The E314A enzyme, however, was severely inhibited by ATP and only slightly activated by fumarate. The values of K(m,malate), K(m,NAD), and K(i,ATP) to both NAD+ and malate for E314A were reduced to about 2-7-folds compared with those of the wild-type enzyme. It can be concluded that mutation of Glu314 to Ala eliminated the repulsive effects between Glu314 and malate, NAD+, or ATP, and thus the binding affinities of malate, NAD+, and ATP in the active site of the enzyme were enhanced.  相似文献   

10.
Pigeon cytosolic malic enzyme has a double dimer quaternary structure with three tryptophanyl residues in each monomer distributed in different structural domains. The enzyme showed a three-state unfolding phenomenon upon increasing the urea concentration (Chang, H. C., Chou, W. Y., and Chang, G. G. (2002) J. Biol. Chem. 277, 4663-4671). At urea concentration of 4-4.5 m, where the intermediate form was detected, the enzyme existed as partially unfolded dimers, which were easily polymerized. Mn2+ provided full protection against the polymerization. To further characterize this phenomenon, three mutants of the enzyme (W129, W321, and W548), each with only one tryptophanyl residue left, were constructed. All these mutants were successfully overexpressed in Escherichia coli cells and purified to homogeneity. Changes in the circular dichroism spectra of all mutants revealed a three-state urea-unfolding process in the absence of Mn2+. In the presence of 4 mm Mn2+, W548 and wild type (WT) enzymes shifted to monophasic, while W129 and W321 were still biphasic. Similar results were obtained from the fluorescence spectral changes, except for W321, which showed monophasic denaturation curve with or without Mn2+. Analytical ultracentrifugation analysis indicated that the mutant enzymes were polymerized at 4.5 m urea, and Mn2+ provided protective effect on W548 and WT enzymes only. Other mutants with mutated Trp-548 polymerized at 4.5 m urea in the absence or presence of 4 mm Mn2+. The above results indicate that a single residue, Trp-548, in the subunit interface region, is responsible for the integrity of the quaternary structure of the pigeon cytosolic malic enzyme.  相似文献   

11.
Incubation of malic enzyme (L-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40) with ethoxyformic anhydride caused the time-dependent loss of its ability to catalyze reactions requiring the nucleotide cofactor NADP+ or NADPH, such as the oxidative decarboxylase, the NADP+ - stimualted oxalacetate decarboxylase, the pyruvate reductase, and the pyruvate-medium proton exchange activities. Similar loss of oxidative decarboxylase and pyruvate reductase activities was affected by photo-oxidation in the presence of rose bengal. The inactivation of oxidative decarboxylase activity by ethoxyformic anhydride was accompanied by the reaction of greater than or equal to 2.3 histidyl residues per enzyme site and was strongly inhibited by NADP+. Ethoxyformylation also impaired the ability of malic enzyme to bind NADP+ or NADPH. These results support the involvement of histidyl residue(s) at the nucleotide binding site of malic enzyme.  相似文献   

12.
H J Lee  G G Chang 《FEBS letters》1990,277(1-2):175-179
Pigeon liver malic enzyme (EC 1.1.1.40) has a double dimer quaternary structure. The NADP+ analogs, aminopyridine adenine dinucleotide phosphate and nicotinamide-1,N6-ethenoadenosine dinucleotide phosphate, bind to the enzyme anti-cooperatively. In the presence of non-cooperative competing ligand NADP+, the binding parameter Hill coefficients of these analogues changed very little. Binding of L-malate with enzyme-AADP+ complex first enhanced then reduced the nucleotide fluorescence. Two L-malate binding sites, with Kd values of 23-30 and 270-400 microM, respectively. for the tight and weak binding sites were postulated. A hybrid model between the sequential and pre-existing asymmetrical models was proposed for the pigeon liver malic enzyme.  相似文献   

13.
A sonicate of Achromobacter parvulus IFO-13182 produced NADPH from NADP+by an NADP+-linked malic enzyme [l-malate: NAD(P)+oxidoreductase, EC 1.1.1.39–40] reaction in the presence of l-malic acid and divalent metal ions. Malic enzyme of A. parvulus was stabilized by 5% l-malic acid, and activity was maintained at 60°C for 1 h. Contaminating phosphatase (orthophosphoricmonoester phosphohydrolase, EC 3.1.3.1–2) was completely inactivated by this treatment. Among the conditions tested, the optimum NADPH production was done using 36 μmol NADP+, 67 μmol l-malic acid, 63 μmol MgCl2 and 1 unit of the malic enzyme in 3 ml of 55 mm phosphate buffer (pH 7.8). Conversion ratio of NADPH from NADP+ reached 100% after 4 h incubation at 30°C and the amount of NADPH accumulated was ~12 μmol ml?1of the reaction mixture. No dephosphorylation of NADP+to NAD+or of NADPH to NADH was found by high performance liquid chromatography. The NADPH produced by such enzymatic reduction was purified by ethanol precipitation and dried in vacuo in powdered form with 97% purity, judged from the ratio of the absorbances at 340 and 260 nm. The purity of the NADPH produced was determined to be 95% from its coenzyme activity with NAD(P)+-linked glutathione reductase [NAD(P)H: oxidized-glutathione oxidoreductase, EC 1.6.4.2].  相似文献   

14.
Light-stimulated synthesis of NADP malic enzyme in leaves of maize   总被引:4,自引:0,他引:4  
Illumination of etiolated maize plants for 80 h brings about a 15-20-fold increase in activity of NADP malic enzyme (EC 1.1.1.40). Increases in NADP malic enzyme protein and in the level of translatable mRNA for this protein occur simultaneously with the activity increase. Radiolabeled amino acids are also incorporated into NADP malic enzyme during this time. These results are consistent with the conclusion that an increase in NADP malic enzyme activity during greening results from de novo synthesis of NADP malic enzyme protein. Polyadenylated RNA extracted from greening maize leaves directs the synthesis in vitro of a protein 12,000 daltons larger than NADP malic enzyme purified from corn leaves. This protein is a precursor of NADP malic enzyme because 1) both the precursor and mature NADP malic enzyme are immunoprecipitated by antibody made against NADP malic enzyme purified from corn leaves, 2) both NADP malic enzyme protein and the level of mRNA for the precursor increase during greening, and 3) peptide maps of the precursor and of mature NADP malic enzyme are very similar. Mature NADP malic enzyme and its precursor (synthesized in vitro) both migrate on sodium dodecyl sulfate-polyacrylamide gradient gels as doublet bands. Peptide analyses show all bands to be structurally related.  相似文献   

15.
16.
Singlet oxygen ( 1 O 2 ) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.  相似文献   

17.
Malic enzyme is shown to be widely distributed in higher plants and contrary to earlier reports is present in the roots of flood tolerant species. Excluding members of the Gramineae, the malic enzyme from 27 out of 28 species examined was shown to exhibit allosteric properties. On the other hand the malic enzyme present in members of the Gramineae shows little or no allosteric properties.  相似文献   

18.
Rapid purification and radioimmunoassay of cytosolic malic enzyme   总被引:1,自引:0,他引:1  
A very rapid and highly effective procedure has been devised for the isolation of homogeneous malic enzyme from rat liver cytosol. A combination of precipitation with 10 to 20% polyethylene glycol, ion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Procion Red HE-3B Agarose was used to prepare 3 to 4 mg of homogeneous malic enzyme from the livers of two rats in 18 h. In addition to introducing the advantages of simplicity, speed, and high yield (31%) the new method eliminates potentially denaturing steps (heat treatment, ethanol fractionation) and prolonged dialysis procedures used in other purification schemes. Malic enzyme purified by this new method was use to immunize rabbits. The resulting antibodies bound purified rat liver and mouse liver malic enzymes with very similar affinities and also avidly complexed cytosolic malic enzyme from two murine cell lines, 3T3-L1 preadipocytes and 3T3-C2 fibroblasts. When purified malic enzyme was incubated with lactoperoxidase, glucose oxidase and Na 125I 1.8 atoms of 125I were incorporated per molecule of enzyme with full retention of catalytic activity, subunit size, and immunoreactivity. The antiserum, the purified enzyme, and enzymatically iodinated 125I-malic enzyme were used to construct a sensitive, competitive binding radioimmunoassay for the measurement of malic enzyme mass in the range of 1 to 100 ng.  相似文献   

19.
A simple and rapid method for the purification of malic enzyme (EC 1.1.1.40) from pigeon liver is described. Malic enzyme in the crude tissue extract was partially purified by heat treatment, ammonium sulfate fractionation, and DEAE-cellulose chromatography. Final purification was achieved by affinity chromatography on immobilized N6-(6-aminohexyl)-adenosine 2′,5′-bisphosphate. Apparently homogeneous enzyme was obtained in 2 days with 54% yield.  相似文献   

20.
Myeoloperoxidase catalyses the formation of hypochlorous acid (HOCl) via reaction of H(2)O(2) with Cl(-) ion. Although HOCl is known to play a major role in the human immune system by killing bacteria and other invading pathogens, excessive generation of this oxidant is known to cause damage to tissue. Recently, it was demonstrated that the control of mitochondrial redox balance and oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) to supply NADPH for antioxidant systems. This study investigated whether the IDPm would be a vulnerable target of HOCl as a purified enzyme and in intact cells. Loss of enzyme activity was observed and the inactivation of IDPm was reversed by thiols. Transfection of HeLa cells with an IDPm small interfering RNA (siRNA) markedly enhanced HOCl-induced oxidative damage to cells. The HOCl-mediated damage to IDPm may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号