首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv) expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.  相似文献   

2.
Changes in the sugar and amino acid contents of potato tubers during short-term storage and the effect on the acrylamide level in chips after frying were investigated. The acrylamide content in chips began to increase after 3 days of storage at 2 degrees C in response to the increase of glucose and fructose contents in the tubers. There was strong correlation between the reducing sugar content and acrylamide level, R(2)=0.873 for fructose and R(2)=0.836 for glucose. The sucrose content had less correlation with the acrylamide content because of its decrease after 4 weeks of storage at 2 degrees C, while the reducing sugar in potato tubers and the acrylamide in chips continued to increase. The contents of the four amino acids, i.e., asparatic acid, asparagine, glutamic acid and glutamine, showed no significant correlation with the acrylamide level. These results suggest that the content of reducing sugars in potato tubers determined the degree of acrylamide formation in chips. The chip color, as evaluated by L* (lightness), was correlated well with the acrylamide content.  相似文献   

3.
Deep-fat frying at 180°C or above is one of the most common food processing methods used for preparing of human kind foods worldwide. However, a serial of complex reactions such as oxidation, hydrolysis, isomerization, and polymerization take place during the deep-fat frying course and influence quality attributes of the final product such as flavor, texture, shelf life and nutrient composition. The influence of these reactions results from a number of their products including volatile compounds, hydrolysis products, oxidized triacylglycerol monomers, cyclic compounds, trans configuration compounds, polymers, sterol derivatives, nitrogen- and sulphur-containing heterocyclic compounds, acrylamide, etc. which are present in both frying oil and the fried food. In addition, these reactions are interacted and influenced by various impact factors such as frying oil type, frying conditions (time, temperature, fryer, etc.) and fried material type. Based on the published literatures, three main organic chemical reaction mechanisms namely hemolytic, heterolytic and concerted reaction were identified and supposed to elucidate the complex chemical alterations during deep-fat frying. However, well understanding the mechanisms of these reactions and their products under different conditions helps to control the deep-fat frying processing; therefore, producing healthy fried foods. By means of comprehensively consulting the papers which previously studied on the chemical changes occurred during deep-fat frying process, the major reaction products and corresponding chemical alterations were reviewed in this work.  相似文献   

4.
To clarify the effects of storage temperature on potato components and acrylamide in chips, tubers from five cultivars were stored at various temperatures (2, 6, 8, 10, and 18 degrees C) for 18 weeks, and the contents of sugars, free amino acids in tubers, and acrylamide in chips after frying were analyzed. At temperatures lower than 8 degrees C, the contents of reducing sugars increased markedly in all cultivars, with similar increases in the acrylamide level and dark brown chip color. Free amino acids showed little change at the storage temperatures tested and varied within certain ranges characteristic of each cultivar. The contents of reducing sugars correlated well with the acrylamide level when the fructose/asparagine molar ratio in the tubers was <2. When the fructose/asparagine ratio was >2 by low-temperature storage, the asparagine content, rather than the reducing sugar content, was found to be the limiting factor for acrylamide formation.  相似文献   

5.
Cold‐induced sweetening (CIS) is a serious post‐harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark‐coloured and bitter‐tasting product and generating the probable carcinogen acrylamide as a by‐product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS‐susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS‐resistant line increased susceptibility to CIS. The results show that post‐translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS.  相似文献   

6.
The functional properties of whey proteins can be improved by conjugation with citrus pectin. Although protein-polysaccharide conjugates can be performed using extrusion processing, little is known about the influence of the extrusion conditions (e.g., temperature, shear stress, time) on the reactions taking place. As during extrusion processing, thermal and mechanical stresses are coupled to each other, their influence on the reactions taking place cannot be investigated separately. This study aims to get a deeper understanding of the influence of defined shear rates on structural changes and functional properties of highly concentrated whey protein-citrus pectin blends treated at elevated temperatures by using a closed-cavity rheometer (CCR). The CCR provides the opportunity to examine the impact of thermal and mechanical stresses in highly concentrated systems independently. The analyses of structural changes showed that the formation of disulfide bonds was accelerated with increasing shear. Temperature treatments at 120 °C and 140 °C resulted in the formation of non-disulfide covalent cross-links (e.g., Maillard reaction products and isopeptides), while shear inhibited their formation at treatment conditions up to 140 °C and 2 min. The samples treated at 140 °C and 2 min (with and without the application of shear) exhibited improved emulsifying capacities which is attributed to changes in their interfacial properties. This might be due to high concentrations of fluorescent compounds indicating the formation of Maillard reaction products (e.g., conjugates).  相似文献   

7.
Concerns related to higher levels of acrylamide in processed carbohydrate-rich foods, especially in fried potato products, are well known. This article provides updates on various aspects of acrylamide in processed potato products including mechanisms of acrylamide formation and health risks due to its intake. Levels of reducing sugars in potatoes are considered as a main factor contributing towards the formation of acrylamide in processed potato products. Useful approaches in lowering the levels of reducing sugars such as use of suitable varieties, storage methods, storage temperature and duration of storage are described and discussed. Importance and practical utility of various steps before and during the processing that can contribute in reducing the final concentration of acrylamide are highlighted. Progress made and present status of potato processing industry in India are part of this article. The article describes varietal improvement and spread of short-term and long-term storage technologies in India and their contribution towards round the year availability of processing-grade potatoes to the processing industries and how all this has helped in achieving reduced levels of acrylamide in chips and French fries. Outcome and implications of cold-induced sweetening tolerance in potatoes are presented along with other management practices and strategies that can lower the acrylamide levels in processed potato products. Future lines of work have been suggested to make the consumption of fried potato products safer.  相似文献   

8.
Prolonged incubation of protein with reducing sugar proceeds through a series of reactions involving early stage products to the advanced glycation end products with fluorescence, brown color, and cross-linking. Known collectively as the Maillard reaction, these changes have been suggested as factors in diabetic complications and the aging process. The early stage products have been demonstrated in vivo, but evidence for the presence in vivo of the advanced glycation end products has been limited. We sought to provide immunochemical evidence by the preparation and use of polyclonal and monoclonal antibodies to these end products (Horiuchi, S., Araki, N., and Morino, Y. (1991) J. Biol. Chem. 266, 7329-7332) as probes to identify and quantitate such compounds in human lens crystallins. Neither of the antibodies reacted with extracts from infant lenses, but fractions from adult lenses showed a significant reactivity, correlating with lens age. Our findings provide the first immunochemical evidence that human lens crystallins contain advanced glycation end products and that these products increase with tissue age.  相似文献   

9.
The non-enzymatic modifications of proteins through Amadori and Maillard reactions play an important role in the loss of seed viability during storage. In the present study, the contribution of sugar hydrolysis and lipid peroxidation to Amadori and Maillard reactions, and to seed deterioration was investigated in mung-bean (Vigna radiata Wilczek). The contents of glucose and lipid peroxidation products in seed axes increased significantly during storage. The accumulation of Amadori products in seed axes was correlated to the lipid peroxidation, whereas the accumulation of Maillard products was closely correlated to sugar hydrolysis. The rate of accumulation of Maillard products was not well correlated to the content of Amadori products in both seed axes and protein/glucose model system, reflecting the complex nature of Amadori and Maillard reactions. The content of Amadori products in seed axes increased during the early stages of seed ageing, whereas the content of Maillard products increased steadily during the entire period of storage. The accumulation of Maillard products in seed axes was associated with the decline of seed vigour. These data suggest that, during seed ageing, sugar hydrolysis and lipid peroxidation are coupled with non-enzymatic protein modification through Amadori and Maillard reactions.  相似文献   

10.
11.
The influence of water activity on the kinetics of acrylamide formation and elimination reaction was investigated using low-moisture equimolar asparagine-glucose model systems, which were heated at temperatures between 120 and 200 degrees C for variable heating times. To determine the water content corresponding to the water activities tested, a sorption moisture isotherm was constructed experimentally. The acrylamide concentrations measured at different water activities could be modeled on the basis of a reaction scheme including not only acrylamide formation and elimination reactions but also an alternative Maillard reaction between both reactants. The corresponding rate constants and activation energies were estimated using nonlinear regression analysis. Whereas the rate constant for acrylamide formation varied only slightly with the initial water activity of the model system, the elimination rate constant showed a clear minimum around a water activity of 0.82. The opposite trend, namely, a maximum at a water activity of 0.82, was found for the Maillard reaction rate constant as a function of water activity, which confirms data from literature. The activation energies for the different reactions changed in a comparable way as the corresponding rate constant with water activity.  相似文献   

12.
Jakas A  Horvat S 《Biopolymers》2003,69(4):421-431
Reactions between biological amines and reducing sugars (the Maillard reaction) are among the most important of the chemical and oxidative changes occurring in biological systems that contribute to the formation of a complex family of rearranged and dehydrated covalent adducts that have been implicated in the pathogenesis of human diseases. In this study, chemistry of the Maillard reactions was studied in four model systems containing fructosamines (Amadori compounds) obtained from the endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu), leucine-enkephalin methyl ester, structurally related tripeptide (Tyr-Gly-Gly), or from amino acid (Tyr). The degradation of model compounds as well as their ability to develop Maillard fluorescence was investigated under oxidative conditions in methanol and phosphate buffer pH 7.4 at two different temperatures (37 and 70 degrees C). At 37 degrees C, glycated leucine-enkephalin degraded slowly in methanol (t(1/2) approximately 13 days) and phosphate buffer (t(1/2) approximately 9 days), producing a parent peptide compound as a major product throughout a three-week incubation period. Whereas fluorescence slowly increased over time at 37 degrees C, incubations off all studied Amadori compounds at 70 degrees C resulted in a rapid appearance of a brown color and sharp increase in AGE (advanced glycation end products)-associated fluorescence (excitation 320 nm/emmision 420 nm) as well as in distinctly higher amounts of fragmentation products. The obtained data indicated that the shorter the peptide chain the more degradation products were formed. These studies have also helped to identify a new chemical transformation of the peptide backbone in the Maillard reaction that lead to beta-scission of N-terminal tyrosine side chain and p-hydroxybenzaldehyde formation under both aqueous and nonaqueous conditions.  相似文献   

13.
In the 40‐year history of biopharmaceuticals, there have been a few cases where the final products contained residual host cell protein (HCP) impurities at levels high enough to be of concern. This article summarizes the industry experience in these cases where HCP impurities have been presented in public forums and/or published. Regulatory guidance on HCP impurities is limited to advising that products be as pure as practical, with no specified numerical limit because the risk associated with HCP exposure often depends on the clinical setting (route of administration, dose, indication, patient population) and the particular impurity. While the overall safety and purity track record of the industry is excellent, these examples illustrate several important lessons learned about the kinds of HCPs that co‐purify with products (e.g., product homologs, and HCPs that react with product), and the kinds of clinical consequences of HCP impurities (e.g., direct biological activity, immunogenicity, adjuvant). The literature on industry experience with HCP impurities is scattered, and this review draws in to one reference documented examples where the data have been presented in meetings, patents, product inserts, or press releases, in addition to peer‐reviewed journal articles. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:828–837, 2018  相似文献   

14.
Acrylamide is a processing contaminant and Group 2a carcinogen that was discovered in foodstuffs in 2002. Its presence in a range of popular foods has become one of the most difficult problems facing the food industry and its supply chain. Wheat, rye and potato products are major sources of dietary acrylamide, with biscuits, breakfast cereals, bread (particularly toasted), crispbread, batter, cakes, pies, French fries, crisps and snack products all affected. Here we briefly review the history of the issue, detection methods, the levels of acrylamide in popular foods and the risk that dietary acrylamide poses to human health. The pathways for acrylamide formation from free (non‐protein) asparagine are described, including the role of reducing sugars such as glucose, fructose and maltose and the Maillard reaction. The evolving regulatory situation in the European Union and elsewhere is discussed, noting that food businesses and their suppliers must plan to comply not only with current regulations but with possible future regulatory scenarios. The main focus of the review is on the genetic and agronomic approaches being developed to reduce the acrylamide‐forming potential of potatoes and cereals and these are described in detail, including variety selection, plant breeding, biotechnology and crop management. Obvious targets for genetic interventions include asparagine synthetase genes, and the asparagine synthetase gene families of different crop species are compared. Current knowledge on crop management best practice is described, including maintaining optimum storage conditions for potatoes and ensuring sulphur sufficiency and disease control for wheat.  相似文献   

15.
Acrylamide in Austrian foods   总被引:3,自引:0,他引:3  
Acrylamide is known for its potential health hazards. Recently acrylamide was found in starch containing heated foods in high concentrations which lead to the assumption that a cancer risk could be associated with the uptake of foods containing high amounts of acrylamide. This study focuses on the analysis of acrylamide in foods potentially containing this substance which is formed from natural ingredients. The highest concentrations were found in potato crisps with concentrations of above 1500 ng/g (median: 499 ng/g). Other food groups contained lower amounts: cookies with a median of 99 ng/g; crisp bread with a median of 69 ng/g; breakfast cereals with a median of 0 ng/g; popcorn and rice products with a median of 97 ng/g; potato chips with a median of 161 ng/g and coffee with a median of 169 ng/g.  相似文献   

16.
Microbes are the leading producers of useful natural products. Natural products from microbes and plants make excellent drugs. Significant portions of the microbial genomes are devoted to production of these useful secondary metabolites. A single microbe can make a number of secondary metabolites, as high as 50 compounds. The most useful products include antibiotics, anticancer agents, immunosuppressants, but products for many other applications, e.g., antivirals, anthelmintics, enzyme inhibitors, nutraceuticals, polymers, surfactants, bioherbicides, and vaccines have been commercialized. Unfortunately, due to the decrease in natural product discovery efforts, drug discovery has decreased in the past 20 years. The reasons include excessive costs for clinical trials, too short a window before the products become generics, difficulty in discovery of antibiotics against resistant organisms, and short treatment times by patients for products such as antibiotics. Despite these difficulties, technology to discover new drugs has advanced, e.g., combinatorial chemistry of natural product scaffolds, discoveries in biodiversity, genome mining, and systems biology. Of great help would be government extension of the time before products become generic.  相似文献   

17.
Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.  相似文献   

18.
19.
The chemistry of Maillard or browning reactions of glycated proteins is being studied in model systems in vitro in order to characterize potential reaction pathways and products in biological systems. In previous work with the Amadori rearrangement product N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in proteins, we showed that fFL was oxidatively cleaved between C-2 and C-3 of the carbohydrate chain to yield N epsilon-carboxymethyllysine (CML) and D-erythronic acid. We then detected CML in proteins glycated in vitro, as well as in human lens proteins and collagen in vivo (Ahmed, M. U., Thorpe, S. R., and Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894). This work provided an explanation for the origin of CML in human urine and evidence for non-browning pathways of the Maillard reaction in vivo. In this report we describe the identification of a second set of products resulting from oxidative cleavage of fFL between C-3 and C-4 of the sugar chain, i.e. 3-(N epsilon-lysino)-lactic acid (LL) and D-glyceric acid. The formation of LL from fFL was increased at slightly acid pH, representing about 30% of the yield of CML at pH 6.4, compared with 4% at pH 7.4 in phosphate buffer. By gas chromatography-mass spectroscopy, LL was detected in proteins glycated in vitro and then identified as a natural product in human lens proteins and urine. Our results indicate that oxidative degradation of Amadori adducts to proteins occurs in vivo, leading to formation and excretion of CML and LL. These non-browning pathways for reaction of Amadori compounds may be physiologically relevant mechanisms for averting potentially damaging consequences of the Maillard reaction.  相似文献   

20.
Free amino acids and reducing sugars participate in the Maillard reaction during high‐temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide‐forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide‐forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety‐dependent impact on sugar and amino acid concentrations and acrylamide‐forming potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号