首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The production of recombinant proteins is important in academic research to identify protein functions. Moreover, recombinant enzymes are used in the food and chemical industries, and high-quality proteins are required for diagnostic, therapeutic, and pharmaceutical applications. Though many recombinant proteins are produced by microbial or mammalian cell-based expression systems, plants have been promoted as alternative, cost-effective, scalable, safe, and sustainable expression systems. The development and improvement of transient expression systems have significantly reduced the period of protein production and increased the yield of recombinant proteins in plants. In this review, we consider the importance of plant-based expression systems for recombinant protein production and as genetic engineering tools.  相似文献   

2.
Recombinant protein expression for therapeutic applications   总被引:10,自引:0,他引:10  
In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Many of these applications involve complex glycoproteins and antibodies with relatively high production needs. These demands have driven the development of a variety of improvements in protein expression technology, particularly involving mammalian and microbial culture systems.  相似文献   

3.
Human cells: new platform for recombinant therapeutic protein production   总被引:1,自引:0,他引:1  
The demand for recombinant therapeutic proteins is significantly increasing. There is a constant need to improve the existing expression systems, and also developing novel approaches to face the therapeutic proteins demands. Human cell lines have emerged as a new and powerful alternative for the production of human therapeutic proteins because this expression system is expected to produce recombinant proteins with post translation modifications more similar to their natural counterpart and reduce the potential immunogenic reactions against nonhuman epitopes. Currently, little information about the cultivation of human cells for the production of biopharmaceuticals is available. These cells have shown efficient production in laboratory scale and represent an important tool for the pharmaceutical industry. This review presents the cell lines available for large-scale recombinant proteins production and evaluates critically the advantages of this expression system in comparison with other expression systems for recombinant therapeutic protein production.  相似文献   

4.
ABSTRACT: BACKGROUND: Although there are many different expression systems for recombinant production of pharmaceutical proteins, many of these suffer from drawbacks such as yield, cost, complexity of purification, and possible contamination with human pathogens. Microalgae have enormous potential for diverse biotechnological applications and currently attract much attention in the biofuel sector. Still underestimated, though, is the idea of using microalgae as solar-fueled expression system for the production of recombinant proteins. RESULTS: In this study, we show for the first time that completely assembled and functional human IgG antibodies can not only be expressed to high levels in algal systems, but also secreted very efficiently into the culture medium. We engineered the diatom Phaeodactylum tricornutum to synthesize and secrete a human IgG antibody against the Hepatitis B Virus surface protein. As the diatom P. tricornutum is not known to naturally secrete many endogenous proteins, the secreted antibodies are already very pure making extensive purification steps redundant and production extremely cost efficient. CONCLUSIONS: Microalgae combine rapid growth rates with all the advantages of eukaryotic expression systems, and offer great potential for solar-powered, low cost production of pharmaceutical proteins.  相似文献   

5.
Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of “difficult to express” complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner.

This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.  相似文献   


6.
The use of whole plants for the synthesis of recombinant proteins has received a great deal of attention recently because of advantages in economy, scalability and safety compared with traditional microbial and mammalian production systems. However, production systems that use whole plants lack several of the intrinsic benefits of cultured cells, including the precise control over growth conditions, batch-to-batch product consistency, a high level of containment and the ability to produce recombinant proteins in compliance with good manufacturing practice. Plant cell cultures combine the merits of whole-plant systems with those of microbial and animal cell cultures, and already have an established track record for the production of valuable therapeutic secondary metabolites. Although no recombinant proteins have yet been produced commercially using plant cell cultures, there have been many proof-of-principle studies and several companies are investigating the commercial feasibility of such production systems.  相似文献   

7.
A review of over 15 years of research, development and commercialization of plant cell suspension culture as a bioproduction platform is presented. Plant cell suspension culture production of recombinant products offers a number of advantages over traditional microbial and/or mammalian host systems such as their intrinsic safety, cost-effective bioprocessing, and the capacity for protein post-translational modifications. Recently significant progress has been made in understanding the bottlenecks in recombinant protein expression using plant cells, including advances in plant genetic engineering for efficient transgene expression and minimizing proteolytic degradation or loss of functionality of the product in cell culture medium. In this review article, the aspects of bioreactor design engineering to enable plant cell growth and production of valuable recombinant proteins is discussed, including unique characteristics and requirements of suspended plant cells, properties of recombinant proteins in a heterologous plant expression environment, bioreactor types, design criteria, and optimization strategies that have been successfully used, and examples of industrial applications.  相似文献   

8.
Nearly 30% of currently approved recombinant therapeutic proteins are produced in Escherichia coli. Due to its well-characterized genetics, rapid growth and high-yield production, E. coli has been a preferred choice and a workhorse for expression of non-glycosylated proteins in the biotech industry. There is a wealth of knowledge and comprehensive tools for E. coli systems, such as expression vectors, production strains, protein folding and fermentation technologies, that are well tailored for industrial applications. Advancement of the systems continues to meet the current industry needs, which are best illustrated by the recent drug approval of E. coli produced antibody fragments and Fc-fusion proteins by the FDA. Even more, recent progress in expression of complex proteins such as full-length aglycosylated antibodies, novel strain engineering, bacterial N-glycosylation and cell-free systems further suggests that complex proteins and humanized glycoproteins may be produced in E. coli in large quantities. This review summarizes the current technology used for commercial production of recombinant therapeutics in E. coli and recent advances that can potentially expand the use of this system toward more sophisticated protein therapeutics.  相似文献   

9.
10.
The initial focus of recombinant protein production by filamentous fungi related to exploiting the extraordinary extracellular enzyme synthesis and secretion machinery of industrial strains, including Aspergillus, Trichoderma, Penicillium and Rhizopus species, was to produce single recombinant protein products. An early recognized disadvantage of filamentous fungi as hosts of recombinant proteins was their common ability to produce homologous proteases which could degrade the heterologous protein product and strategies to prevent proteolysis have met with some limited success. It was also recognized that the protein glycosylation patterns in filamentous fungi and in mammals were quite different, such that filamentous fungi are likely not to be the most suitable microbial hosts for production of recombinant human glycoproteins for therapeutic use. By combining the experience gained from production of single recombinant proteins with new scientific information being generated through genomics and proteomics research, biotechnologists are now poised to extend the biomanufacturing capabilities of recombinant filamentous fungi by enabling them to express genes encoding multiple proteins, including, for example, new biosynthetic pathways for production of new primary or secondary metabolites. It is recognized that filamentous fungi, most species of which have not yet been isolated, represent an enormously diverse source of novel biosynthetic pathways, and that the natural fungal host harboring a valuable biosynthesis pathway may often not be the most suitable organism for biomanufacture purposes. Hence it is expected that substantial effort will be directed to transforming other fungal hosts, non-fungal microbial hosts and indeed non microbial hosts to express some of these novel biosynthetic pathways. But future applications of recombinant expression of proteins will not be confined to biomanufacturing. Opportunities to exploit recombinant technology to unravel the causes of the deleterious impacts of fungi, for example as human, mammalian and plant pathogens, and then to bring forward solutions, is expected to represent a very important future focus of fungal recombinant protein technology.  相似文献   

11.
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins.  相似文献   

12.
13.
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.  相似文献   

14.
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.  相似文献   

15.
The therapeutic potential of selected peptides and proteins is enormous, with applications ranging from use as therapeutic vaccines, as modulators of intracellular signaling pathways and as highly selective agents capable of recognizing unique extracellular targets. We have been pursuing development of hybrid lipid-based carrier formulations designed to take advantage of the therapeutic benefits of peptides selected for their ability to act in a complementary fashion with the carrier system. In this regard, it is critical to have simple and versatile methods to promote and control the binding of diverse peptides to a broad range of carrier formulations. As demonstrated here, recombinant proteins and synthetic peptides containing poly-histidine residues (4 to 10) can be specifically bound to liposomes containing a metal-ion-chelating lipid, DOGS-NTA-Ni. The potential of this approach is demonstrated using two functional peptides, AntpHD-Cw3 (applications for vaccine production) and AHNP (specificity for Her-2 expressing cells).  相似文献   

16.
Filamentous fungi, in particular those of the genus Aspergillus have been well exploited for their ability to produce high levels of extracellular proteins in an inexpensive manner. Since many human proteins with the potential to be used therapeutically are secreted and require post-translational modification for biological activity, eukaryotic expression-secretion systems have been targeted for development. Recent developments in DNA-mediated transformation systems have allowed the utilization of Aspergillus as a host for the production of recombinant proteins. Several features such as well-characterized genetics and the availability of many mutants make Aspergillus nidulans the organism of choice for development of expression secretion systems. Recombinant strains contain integrated expression cassettes often in multiple copy, which are mitotically stable. In this review, we discuss the recent progress made in the use of Aspergillus as expression secretion hosts for the production of proteins of therapeutic significance.  相似文献   

17.
Recombinant proteins, in particular antibodies, have become fundamental in biomedical research where they are used in numerous therapeutic and diagnostic applications. For this reason there is an increasing demand for quick and economical production systems for recombinant proteins in mammalian cells.  相似文献   

18.
Microorganisms encounter diverse stress conditions in their native habitats but also during fermentation processes, which have an impact on industrial process performance. These environmental stresses and the physiological reactions they trigger, including changes in the protein folding/secretion machinery, are highly interrelated. Thus, the investigation of environmental factors, which influence protein expression and secretion is still of great importance. Among all the possible stresses, temperature appears particularly important for bioreactor cultivation of recombinant hosts, as reductions of growth temperature have been reported to increase recombinant protein production in various host organisms. Therefore, the impact of temperature on the secretion of proteins with therapeutic interest, exemplified by a model antibody Fab fragment, was analyzed in five different microbial protein production hosts growing under steady-state conditions in carbon-limited chemostat cultivations. Secretory expression of the heterodimeric antibody Fab fragment was successful in all five microbial host systems, namely Saccharomyces cerevisiae, Pichia pastoris, Trichoderma reesei, Escherichia coli and Pseudoalteromonas haloplanktis. In this comparative analysis we show that a reduction of cultivation temperature during growth at constant growth rate had a positive effect on Fab 3H6 production in three of four analyzed microorganisms, indicating common physiological responses, which favor recombinant protein production in prokaryotic as well as eukaryotic microbes.  相似文献   

19.
Protein expression systems for structural genomics and proteomics   总被引:8,自引:0,他引:8  
One of the key steps of structural genomics and proteomics is high-throughput expression of many target proteins. Gene cloning, especially by ligation-independent cloning techniques, and recombinant protein expression using microbial hosts such as Escherichia coli and the yeast Pichia pastoris are well optimized and further robotized. Cell-free protein synthesis systems have been developed for large-scale production of protein samples for NMR (stable-isotope labeling) and X-ray crystallography (selenomethionine substitution). Protein folding is still a major bottleneck in protein expression. Cell-based and cell-free methods for screening of suitable samples for structure determination have been developed for achieving a high success rate.  相似文献   

20.
Antibody fragments can be isolated rapidly using techniques such as phage display and can be expressed to high levels in microbial systems. However, to date such antibody fragments have been of limited use for many therapeutic applications because they are rapidly cleared from the body. We present a strategy for the site-specific chemical modification of antibody fragments with polyethylene glycol, which results in the production of antibody fragments with long in vivo half-lives and full retention of antigen-binding properties. This technology should allow more rapid and economical production of therapeutic antibodies for chronic disease therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号