首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cellular signalling》2014,26(6):1326-1334
Cell proliferation from pre-existing cardiomyocytes is a major source of cells for normal mammalian myocardial renewal or for regeneration after myocardial injury. These proliferative cardiomyocytes may act differently from the postmitotic cardiomyocytes in a stressed heart. Extracellular matrix molecule CCN1 is produced to promote Fas ligand (FasL)-induced cardiomyocyte apoptosis in mice with stress-induced cardiac injury. We aimed to investigate the effect of CCN1 on the proliferative cardiomyocytes. We used rat embryonic cardiomyoblast H9c2 cells to study the cardiotoxicity of CCN1. We found that FasL dose-dependently increased the X-linked inhibitor of apoptosis protein (XIAP) levels to prevent the progression of apoptosis in H9c2 cells. CCN1, though it did not induce apoptosis by itself, sensitized H9c2 cells to FasL-induced apoptosis. CCN1 functions by engaging its cell-surface receptor integrin α6β1 and elevating reactive oxygen species levels, which leads to mitogen-activated protein kinase p38 activation, cytosolic Bax translocation to mitochondria, and the release of mitochondrial Smac and HtrA2 to cytosol. These elevated cytosolic Smac and HtrA2 dismantle the inhibition of XIAP, thereby facilitating the activation of caspase-3 and the apoptosis-induced by FasL. In summary, we demonstrated a novel mechanism underlying the resistance of cardiomyoblasts to FasL-induced apoptosis, and the pro-apoptotic function of CCN1 by disrupting this resistance.  相似文献   

2.
A proposed mechanism for the cardiotoxicity of doxorubicin (DOX) involves apoptosis in cardiomyocytes. In the study described here, we investigated the molecular basis for the differences in DOX-induced toxicity in adult rat cardiomyocytes (ARCM), neonatal rat cardiomyocytes (NRCM), and rat embryonic H9c2 cardiomyoblasts. Activation of caspase-9 and -3 was considerably lower in DOX-treated ARCM as compared with NRCM and H9c2 cardiomyoblasts. Addition of cytochrome c caused the activation of caspase-9 and -3 in permeabilized NRCM and H9c2 cardiomyoblasts but not in permeabilized ARCM. Expression of proapoptotic proteins, apoptotic protease activating factor-1 (Apaf1), and procaspase-9 was significantly lower, and abundance of antiapoptotic X-linked inhibitor of apoptosis protein (XIAP) was higher in ARCM, as compared with immature cardiac cells. Despite the abundance of XIAP in ARCM, its role in the inhibition of apoptosome function was dismissed, as second mitochondria-derived activator of caspases (Smac)-N7 peptide, had no effect on caspase activation in response to cytochrome c in these cells. Adenoviral expression of Apaf1 exacerbated the activation of caspase-9 and -3 in DOX-treated NRCM, but did not increase their activities in DOX-treated ARCM. This finding points to a major difference in the apoptotic signaling between immature and adult cardiomyocytes. The mitochondrial apoptotic pathway is limited in ARCM treated with DOX.  相似文献   

3.
E2F6在物理性低氧及化学性低氧诱导的凋亡中的表达特征   总被引:6,自引:0,他引:6  
Shu B  Yang WW  Yang HT 《生理学报》2008,60(1):1-10
心肌细胞凋亡性死亡是低氧发生时的重要病理学特征,但低氧诱导的心肌细胞凋亡的调控机制尚未完全阐明.E2F6是E2F转录因子家族成员之一,我们新近的研究证实其具有抑制DNA损伤诱导的细胞凋亡作用.但是,E2F6是否参与了低氧诱导的心肌细胞凋亡的调控尚不清楚.在本研究中,我们初步探讨了E2F6在物理性低氧及化学性低氧模拟物诱导大鼠心肌细胞系H9c2细胞凋亡中的表达特征.结果表明:物理性低氧、化学性低氧模拟物去铁胺(desferrioxamine,DFO)和氯化钻(cobalt chloride,CoCl2)均能有效诱导H9c2细胞发生凋亡.在物理性低氧及CoCl2,诱导的H9c2细胞凋亡中,内源性E2F6 mRNA表达明显下调,但蛋白表达没有明显变化.而在DFO诱导的凋亡中,内源性E2F6 mRNA及蛋白表达均发生明显下调.这些结果提示,E2F6可能参与调控DFO模拟低氧诱导的H9c2细胞凋亡,而对物理性低氧及CoCl2,模拟低氧诱导的细胞凋亡敏感性较低.此外,DFO模拟低氧诱导的细胞凋亡机制可能与物理性低氧及CoCl2.模拟低氧诱导的细胞凋亡机制不同.  相似文献   

4.
《Cellular signalling》2014,26(9):1818-1824
Reactive oxygen species (ROS) produced by different NADPH oxidases (NOX) play a role in cardiomyocyte hypertrophy induced by different stimuli, such as angiotensin II and pressure overload. However, the role of the specific NOX isoforms in phenylephrine (PE)-induced cardiomyocyte hypertrophy is unknown. Therefore we aimed to determine the involvement of the NOX isoforms NOX1, NOX2 and NOX4 in PE-induced cardiomyocyte hypertrophy. Hereto rat neonatal cardiomyoblasts (H9c2 cells) were incubated with 100 μM PE to induce hypertrophy after 24 and 48 h as determined via cell and nuclear size measurements using digital imaging microscopy, electron microscopy and an automated cell counter. Digital-imaging microscopy further revealed that in contrast to NOX1 and NOX4, NOX2 expression increased significantly up to 4 h after PE stimulation, coinciding and co-localizing with ROS production in the cytoplasm as well as the nucleus. Furthermore, inhibition of NOX-mediated ROS production with apocynin, diphenylene iodonium (DPI) or NOX2 docking sequence (Nox2ds)-tat peptide during these first 4 h of PE stimulation significantly inhibited PE-induced hypertrophy of H9c2 cells, both after 24 and 48 h of PE stimulation. These data show that early NOX2-mediated ROS production is crucial in PE-induced hypertrophy of H9c2 cells.  相似文献   

5.
A proposed mechanism for the cardiotoxicity of doxorubicin (DOX) involves apoptosis in cardiomyocytes. In the study described here, we investigated the molecular basis for the differences in DOX-induced toxicity in adult rat cardiomyocytes (ARCM), neonatal rat cardiomyocytes (NRCM), and rat embryonic H9c2 cardiomyoblasts. Activation of caspase-9 and -3 was considerably lower in DOX-treated ARCM as compared with NRCM and H9c2 cardiomyoblasts. Addition of cytochrome c caused the activation of caspase-9 and -3 in permeabilized NRCM and H9c2 cardiomyoblasts but not in permeabilized ARCM. Expression of proapoptotic proteins, apoptotic protease activating factor-1 (Apaf1), and procaspase-9 was significantly lower, and abundance of antiapoptotic X-linked inhibitor of apoptosis protein (XIAP) was higher in ARCM, as compared with immature cardiac cells. Despite the abundance of XIAP in ARCM, its role in the inhibition of apoptosome function was dismissed, as second mitochondria-derived activator of caspases (Smac)-N7 peptide, had no effect on caspase activation in response to cytochrome c in these cells. Adenoviral expression of Apaf1 exacerbated the activation of caspase-9 and -3 in DOX-treated NRCM, but did not increase their activities in DOX-treated ARCM. This finding points to a major difference in the apoptotic signaling between immature and adult cardiomyocytes. The mitochondrial apoptotic pathway is limited in ARCM treated with DOX.  相似文献   

6.
Gastroesophageal reflux disease complicated by Barrett esophagus (BE) is a major risk factor for esophageal adenocarcinoma (EA). The mechanisms whereby acid reflux may accelerate the progression from BE to EA are not known. We found that NOX1 and NOX5-S were the major isoforms of NADPH oxidase in SEG1-EA cells. The expression of NOX5-S mRNA was significantly higher in these cells than in esophageal squamous epithelial cells. NOX5 mRNA was also significantly higher in Barrett tissues with high grade dysplasia than without dysplasia. Pulsed acid treatment significantly increased H(2)O(2) production in both SEG1-EA cells and BE mucosa, which was blocked by the NADPH oxidase inhibitor apocynin. In SEG1 cells, acid treatment increased mRNA expression of NOX5-S, but not NOX1, and knockdown of NOX5 by NOX5 small interfering RNA abolished acid-induced H(2)O(2) production. In addition, acid treatment increased intracellular Ca(2+) and phosphorylation of cAMP-response element-binding protein (CREB). Acid-induced NOX5-S expression and H(2)O(2) production were significantly inhibited by removal of extracellular Ca(2+) and by knockdown of CREB using CREB small interfering RNA. Two novel CREB-binding elements TGACGAGA and TGACGCTG were identified in the NOX5-S gene promoter. Overexpression of CREB significantly increased NOX5-S promoter activity. Knockdown of NOX5 significantly decreased [(3)H]thymidine incorporation, which was restored by 10(-13) M H(2)O(2). Knockdown of NOX5 also significantly decreased retinoblastoma protein phosphorylation and increased cell apoptosis and caspase-9 expression. In conclusion, in SEG1 EA cells NOX5-S is overexpressed and mediates acid-induced H(2)O(2) production. Acid-induced NOX5-S expression depends on an increase in intracellular Ca(2+) and activation of CREB. NOX5-S contributes to increased cell proliferation and decreased apoptosis.  相似文献   

7.
Background Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. Methods H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ m) and ATP concentrations. Results We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 μM l-Hcy) resulted in an increase of ΔΨ m as well as ATP concentrations. 1.1 mM d,l-Hcy (= 460 μM l-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM d,l-Hcy (= 1.18 mM l-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. Conclusion We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.  相似文献   

8.
缺血再灌注产生的氧自由基会导致心肌细胞凋亡. 近年研究发现, α-硫辛酸(α-lipoic acid, LA)具有抗氧化作用, 但LA是否能够对抗心肌细胞凋亡, 保护心脏功能的作用尚未明确. 本研究利用H2O2诱导的心肌细胞H9c2氧化应激模型, 分别用CCK 8方法检测细胞存活率、Hoechst33342染色观察细胞核的形态变化、流式细胞术检测细胞凋亡率、real time PCR法检测Bcl 2/Bax基因表达变化, 评价LA是否具有对抗氧化损伤引起的心肌细胞凋亡能力. 结果显示, LA能提高H2O2损伤的H9c2细胞存活率, 降低心肌细胞凋亡, 而且LA通过上调Bcl 2的表达而发挥抑制细胞凋亡的作用. 研究结果证实, LA对氧化应激损伤的心肌细胞具有较好的保护作用. 该研究为LA在临床上用于治疗氧化应激引起的心肌细胞凋亡提供了实验依据.  相似文献   

9.
We examined the relationship between clusterin and activated complement in human heart infarction and evaluated the effect of this protein on ischemic rat neonatal cardiomyoblasts (H9c2) and isolated adult ventricular rat cardiomyocytes as in vitro models of acute myocardial infarction. Clusterin protects cells by inhibiting complement and colocalizes with complement on jeopardized human cardiomyocytes after infarction. The distribution of clusterin and complement factor C3d was evaluated in the infarcted human heart. We also analyzed the protein expression of clusterin in ischemic H9c2 cells. The binding of endogenous and purified human clusterin on H9c2 cells was analyzed by flow cytometry. Furthermore, the effect of clusterin on the viability of ischemically challenged H9c2 cells and isolated adult ventricular rat cardiomyocytes was analyzed. In human myocardial infarcts, clusterin was found on scattered, morphologically viable cardiomyocytes within the infarcted area that were negative for complement. In H9c2 cells, clusterin was rapidly expressed after ischemia. Its expression was reduced after reperfusion. Clusterin bound to single annexin V-positive or annexin V and propidium iodide-positive H9c2 cells. Clusterin inhibited ischemia-induced death in H9c2 cells as well as in isolated adult ventricular rat cardiomyocytes in the absence of complement. We conclude that ischemia induces the upregulation of clusterin in ischemically challenged, but viable, cardiomyocytes. Our data suggest that clusterin protects cardiomyocytes against ischemic cell death via a complement-independent pathway.  相似文献   

10.
We previously found that homocysteine (Hcy) induced plasma membrane flip-flop, apoptosis, and necrosis in cardiomyocytes. Inactivation of flippase by Hcy induced membrane flip-flop, while apoptosis was induced via a NOX2-dependent mechanism. It has been suggested that S-adenosylhomocysteine (SAH) is the main causative factor in hyperhomocysteinemia (HHC)-induced pathogenesis of cardiovascular disease. Therefore, we evaluated whether the observed cytotoxic effect of Hcy in cardiomyocytes is SAH dependent. Rat cardiomyoblasts (H9c2 cells) were treated under different conditions: (1) non-treated control (1.5 nM intracellular SAH with 2.8 μM extracellular L -Hcy), (2) incubation with 50 μM adenosine-2,3-dialdehyde (ADA resulting in 83.5 nM intracellular SAH, and 1.6 μM extracellular L -Hcy), (3) incubation with 2.5 mM D, L -Hcy (resulting in 68 nM intracellular SAH and 1513 μM extracellular L -Hcy) with or without 10 μM reactive oxygen species (ROS)-inhibitor apocynin, and (4) incubation with 100 nM, 10 μM, and 100 μM SAH. We then determined the effect on annexin V/propodium iodide positivity, flippase activity, caspase-3 activity, intracellular NOX2 and p47(phox) expression and localization, and nuclear ROS production. In contrast to Hcy, ADA did not induce apoptosis, necrosis, or membrane flip-flop. Remarkably, both ADA and Hcy induced a significant increase in nuclear NOX2 expression. However, in contrast to ADA, Hcy additionally induced nuclear p47(phox) expression, increased nuclear ROS production, and inactivated flippase. Incubation with SAH did not have an effect on cell viability, nor on flippase activity, nor on nuclear NOX2-, p47phox expression or nuclear ROS production. HHC-induced membrane flip-flop and apoptosis in cardiomyocytes is due to increased Hcy levels and not primarily related to increased intracellular SAH, which plays a crucial role in nuclear p47(phox) translocation and subsequent ROS production.  相似文献   

11.
MicroRNAs (miRNAs) are a novel class of powerful, endogenous regulators of gene expression. In an intact rat model of myocardial ischemia caused by coronary artery ligation, this study identified 17 miRNAs that changed more than 1.5-fold in the myocardium subjected to 4-h ischemia. Using miRNA microarray analysis, most of these aberrantly expressed miRNAs were confirmed by quantitative RT-PCR. MiR-378, a significantly down-regulated miRNA, was selected for further function study. In serum deprived rat H9c2 cardiomyocytes exposed to hypoxia (1% O2), miR-378 expression was down-regulated as well. The overexpression of miR-378 resulting from miR-378 mimic transfection significantly enhanced cell viability, reduced lactate dehydrogenase release, and inhibited apoptosis and necrosis. By contrast, miR-378 deficiency resulting from miR-378 inhibitor transfection aggravated the hypoxia-induced apoptosis and cell injury. In accordance, miR-378 inhibitor caused significant apoptosis and cell injury to cardiomyocytes cultured under normoxia. Using bioinformatic algorithms, caspase-3, a key apoptosis executioner, was predicted as a putative target of miR-378. The quantitative RT-PCR showed no effects of miR-378 mimic or inhibitor on caspase-3 mRNA level. However, the amount of caspase-3 proteins was reduced by miR-378 mimic, whereas increased by miR-378 inhibitor. Furthermore, the luciferase reporter assay confirmed caspase-3 to be a target of miR-378, and the apoptosis and cell injury caused by miR-378 inhibitor in both normoxic and hypoxic cells were abolished by a caspase-3 inhibitor. This study first showed that miR-378 inhibited caspase-3 expression and attenuated ischemic injury in cardiomyocytes. It may represent a potential novel treatment for apoptosis and ischemic heart disease.  相似文献   

12.
Palmitic acid (PA), a type of saturated fatty acids, induces cardiovascular diseases by causing cardiomyocyte apoptosis with unclear mechanisms. Akt participates in PA-induced cardiomyocyte apoptosis. GSK-3β is a substrate of Akt, we investigated its role in PA-induced apoptosis. We reveal that PA inhibits GSK-3β phosphorylation accompanied by inactivation of Akt in H9c2 cardiomyocytes. We also reveal that inhibition the activity of GSK-3β by its inhibitor LiCl or knockdown by siRNA significantly attenuates PA-induced cardiomyocyte apoptosis, this suggesting that GSK-3β plays a pro-apoptotic role. To detect its downstream factors, we analyzed the roles of JNK, p38 MAPK and β-arrestin 2 (β-Arr2). Here, we report that GSK-3β regulate PA-induced cardiomyocyte apoptosis by affecting the distribution of β-Arr2. PA diminishes the protein level of β-Arr2 and changes its distribution from nucleus to cytoplasm. Either inhibition of β-Arr2 by its siRNA or overexpression of its protein level by transfection of β-Arr2 full-length plasmid promotes PA-induced cardiomyocyte apoptosis, which remind us to focus on the changes of its location. β-Arr2 siRNA decreased the background level of β-Arr2 in nucleus in normal H9c2 cells. Overexpression of β-Arr2 increased cytoplasm level of β-Arr2 as PA did. While LiCl, the inhibitor of GSK-3β decreased PA-induced apoptosis, accompany with increased nucleus level of β-Arr2. Then we concluded that GSK-3β is closely associated with cardiomyocyte apoptosis induced by PA, it performs its pro-apoptotic function by affecting the location of β-Arr2. LiCl inhibits PA-induced cardiomyocyte apoptosis, which might provide novel therapeutic for cardiovascular diseases induced by metabolic syndrome.  相似文献   

13.
Ischemia–reperfusion (I/R) injury is a major cause of cardiomyocyte apoptosis after vascular recanalization, which was mimicked by a hypoxia/reoxygenation (H/R) injury model of cardiomyocytes in vitro. In this study, we explored an optimal H/R duration procedure using the AnaeroPack System. To study the H/R procedure, cardiomyocytes were exposed to the AnaeroPack System with sugar and serum-free medium, followed by reoxygenation under normal conditions. Cell injury was detected through lactate dehydrogenase (LDH) and cardiac troponin (c-Tn) release, morphological changes, cell apoptosis, and expression of apoptosis-related proteins. The results showed that the damage to H9c2 cells increased with prolonged hypoxia time, as demonstrated by increased apoptosis rate, LDH and c-Tn release, HIF-1α expression, as well as decreased expression of Bcl-2. Furthermore, hypoxia for 10 h and reoxygenation for 6 h exhibited the highest apoptosis rate and damage and cytokine release; in addition, cells were deformed, small, and visibly round. After 12 h of hypoxia, the majority of the cells were dead. Taken together, this study showed that subjecting H9c2 cells to the AnaeroPack System for 10 h and reoxygenation for 6 h can achieve a practicable and repeatable H/R injury model.  相似文献   

14.
In cardiomyocytes, certain extracellular stimuli that activate heterotrimeric G protein-coupled receptors (GPCRs) can induce hypertrophy by regulating gene expression and increasing protein synthesis. We investigated if rat embryonic cardiomyocytes (H9c2) underwent variations in the expression levels and subcellular distribution of key components of GPCR-activated signaling pathways during endothelin-1 (ET-1)-induced hypertrophic response. A significant increase of p115RhoGEF protein level was evident in ET-1-treated cells. Real-time quantitative PCR showed RhoGEF mRNA levels were significantly increased. Inhibition of the Rho-associated kinase (ROCK) caused a significant decrease of p115RhoGEF protein in the nuclear fraction, whereas an inhibitor of PKC induced a redistribution of the protein between membrane/organelle and nuclear fractions. The ROCK inhibitor also decreased H9c2 cell hypertrophic response. These results indicate that ROCK and its downstream target molecules, which are involved in inducing the hypertrophic response, are also implicated in signaling the up-regulation of the p115RhoGEF protein.  相似文献   

15.
In cardiomyocytes, certain extracellular stimuli that activate heterotrimeric G protein-coupled receptors (GPCRs) can induce hypertrophy by regulating gene expression and increasing protein synthesis. We investigated if rat embryonic cardiomyocytes (H9c2) underwent variations in the expression levels and subcellular distribution of key components of GPCR-activated signaling pathways during endothelin-1 (ET-1)-induced hypertrophic response. A significant increase of p115RhoGEF protein level was evident in ET-1-treated cells. Real-time quantitative PCR showed RhoGEF mRNA levels were significantly increased. Inhibition of the Rho-associated kinase (ROCK) caused a significant decrease of p115RhoGEF protein in the nuclear fraction, whereas an inhibitor of PKC induced a redistribution of the protein between membrane/organelle and nuclear fractions. The ROCK inhibitor also decreased H9c2 cell hypertrophic response. These results indicate that ROCK and its downstream target molecules, which are involved in inducing the hypertrophic response, are also implicated in signaling the up-regulation of the p115RhoGEF protein.  相似文献   

16.

Background

Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α.

Methodology/Principal Findings

In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule–depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells.

Conclusions/Significance

This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.  相似文献   

17.
The role of tissue transglutaminase 2 (TG2) in cardiac myocyte apoptosis under oxidative stress induced by ischemic injury remains unclear. Here, we investigated the effects of TG2 on apoptosis of cardiomyocytes under oxidative stress. Ectopic expression of TG2 increased caspase-3 activity and calcium overload in cardiomyocytes. Expression levels of TG2 were significantly increased in H(2)O(2)-treated cardiomyocytes. Caspase-3 activity assay demonstrated its considerable correlation with TG2 expression, which supported that caspase-3 inhibitor inhibited the apoptosis induced by the ectopic overexpression of TG2. In addition, the other apoptotic signals, such as caspase-8, cytochrome c, and Bax, were increased dependent with TG2 expression in H(2)O(2)-treated cardiomyocytes. These results indicated that apoptotic signals had a positive correlation with TG2 expression. The decreased expression of phospholipase C (PLC)-δ1 and phospho-PKC in H(2)O(2)-treated cardiomyocytes were rescued by TG2 silencing. Together, our data strongly suggest that oxidative stress up-regulates TG2 expression in cardiomyocytes, leading to apoptosis.  相似文献   

18.
We have shown that NADPH oxidase NOX5-S is overexpressed in Barrett's esophageal adenocarcinoma (EA) cells and may contribute to the progression from Barrett's esophagus (BE) to EA presumably by increasing cell proliferation and decreasing apoptosis (Fu X, Beer DG, Behar J, Wands J, Lambeth D, Cao W. J Biol Chem 281: 20368-20382, 2006). The mechanism(s) of NOX5-S overexpression in EA, however, is not fully understood. In SEG1 EA cells we found that acid treatment significantly increased platelet-activating factor (PAF) production, which in turn markedly increased NOX5-S expression and hydrogen peroxide (H(2)O(2)) production. Knockdown of NOX5-S by NOX5-S small interfering RNA (siRNA) blocked PAF-dependent H(2)O(2) production. PAF-dependent induction of NOX5-S expression and H(2)O(2) production were significantly decreased by the MAPK kinase 1 inhibitor PD-98059, by the cytosolic phospholipase A(2) (cPLA(2)) inhibitor AACOCF3, and by STAT5 downregulation with STAT5 siRNA. PAF significantly increased the phosphorylation of ERK1/2 MAPK, cPLA(2), and STAT5. Using inhibitors, we demonstrated that PAF-induced STAT5 phosphorylation depends on activation of ERK1/2 MAPK and cPLA(2), whereas PAF-induced cPLA(2) phosphorylation was associated with activation of ERK1/2 MAPK. Given that STAT5 bound to the c-sis-inducible element (TTCTGGTAA) of the NOX5-S promoter, overexpression of STAT5 significantly increased NOX5-S promoter activity. We conclude that acid-induced NOX5-S expression and H(2)O(2) production is mediated in part by production of PAF in SEG1 EA cells, and that PAF-induced increase in NOX5-S expression depends on sequential activation of ERK MAP kinases, cPLA(2), and STAT5 in these cells.  相似文献   

19.
《Free radical research》2013,47(5):386-393
Abstract

Background. Oxidative stress plays a pivotal role in myocardial ischemia–reperfusion injury. Increasing the protein expression of intracellular Cu/Zn SOD, which is the major endogenous antioxidant enzyme, may attenuate or prevent hypoxia–reoxygenation injury (HRI) in cultured cardiomyocytes. However, ectogenic Cu/Zn-SOD can hardly be transferred into cells to exert biological effects. In this study, we constructed PTD-Cu/Zn SOD plasmid with a kind of translocation structure-Protein transduction domain (PTD) and detected its transmembrane ability and antioxidant effects in H9c2 rat cardiomyocytes subjected to hypoxia/reoxygenation injury (HRI). Methods. We constructed the pET-PTD-Cu/Zn SOD (CDs) prokaryotic expression vectors in plasmid that were inserted into E. coli BL21 to induce the protein expression of PTD-Cu/Zn SOD. H9c2 cardiomyocyte HRI was achieved by exposing cardiomyocytes to 12 h hypoxia followed by 2 h reoxygenation. Protein expression of PTD-Cu/Zn SOD in cardiomyocytes was assayed by Western blot and their enzyme activities were investigated by immunohistochemistry and flow cytometry. Results. In cultured cardiomyocytes hypoxia–reoxygenation injury model, exogenous PTD-Cu/Zn SOD could penetrate cell membrane to clear superoxide anion and decrease hydrogen peroxide level in H9c2 cardiomyocytes subjected to HRI. The level of mitochondrial membrane potential was restored to normal, and the cell apoptosis was reduced in cardiomyocytes with PTD-Cu/Zn SOD treatment during HRI. Conclusion. Recombinant PTD-Cu/Zn SOD could scavenge intracellular-free superoxide anion, protect mitochondria from damages, and attenuate the hypoxia–reoxygenation injury in cultured cardiomyocytes.  相似文献   

20.
目的:研究氯化钴(CoCl2)对大鼠胚胎心脏来源的H9c2心肌细胞中新基因Mipu1表达的影响。方法:利用不同浓度的CoCl2(0、100、200、300、400、500μmol/L)处理H9c2细胞9h,及200μmol/L CoCl2处理H9c2细胞不同的时间(0、6、9、12、24h)后,用RT-PCR和Western Blot分别观察H9c2细胞Mipu1 mRNA和蛋白的表达情况。结果:CoCl2可以诱导H9c2细胞中Mipu1 mRNA和蛋白表达升高,200μM CoCl2处理组的Mipu1的表达水平高于100μM CoCl2处理组,但是更高浓度的CoCl2(〉200μM)不能使Mipu1的表达进一步升高。随着CoCl2作用时间的延长,Mipu1的表达逐步升高,在12h达到高峰,但是在24h后下降。结论:CoCl2能够促进H9c2细胞新基因Mipu1的表达,并且具有一定的剂量和时间依赖性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号