首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2α, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2α phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2α kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (γ34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.  相似文献   

2.
In response to viral infection, cells activate a variety of antiviral responses, including several that are triggered by double-stranded (ds) RNA. Among these are the protein kinase R and oligoadenylate synthetase/RNase L pathways, both of which result in the shutoff of protein synthesis. Many viruses, including human cytomegalovirus, encode dsRNA-binding proteins that prevent the activation of these pathways and thereby enable continued protein synthesis and viral replication. We have extended these analyses to another member of the beta subfamily of herpesviruses, murine cytomegalovirus (MCMV), and now report that products of the m142 and m143 genes together bind dsRNA. Coimmunoprecipitation experiments demonstrate that these two proteins interact in infected cells, consistent with their previously reported colocalization. Jointly, but not individually, the proteins rescue replication of a vaccinia virus mutant with a deletion of the dsRNA-binding protein gene E3L (VVDeltaE3L). Like the human cytomegalovirus dsRNA-binding protein genes TRS1 and IRS1, m142 and m143 are members of the US22 gene family. We also found that two other members of the MCMV US22 family, M23 and M24, encode dsRNA-binding proteins, but they do not rescue VVDeltaE3L replication. These results reveal that MCMV, like many other viruses, encodes dsRNA-binding proteins, at least two of which can inhibit dsRNA-activated antiviral pathways. However, unlike other well-studied examples, the MCMV proteins appear to act in a heterodimeric complex.  相似文献   

3.
Murine cytomegalovirus (MCMV) proteins m142 and m143 are essential for viral replication. They bind double-stranded RNA and prevent protein kinase R-induced protein synthesis shutoff. Whether the two viral proteins have additional functions such as their homologs in human cytomegalovirus do remained unknown. We show that MCMV m142 and m143 knockout mutants attain organ titers equivalent to those attained by wild-type MCMV in Pkr knockout mice, suggesting that these viral proteins do not encode additional PKR-independent functions relevant for pathogenesis in vivo.  相似文献   

4.
Many viruses have evolved mechanisms to evade the repression of translation mediated by protein kinase R (PKR). In the case of murine cytomegalovirus (MCMV), the protein products of two essential genes, m142 and m143, bind to double-stranded RNA (dsRNA) and block phosphorylation of PKR and eukaryotic initiation factor 2α. A distinctive feature of MCMV is that two proteins are required to block PKR activation whereas other viral dsRNA-binding proteins that prevent PKR activation contain all the necessary functions in a single protein. In order to better understand the mechanism by which MCMV evades the PKR response, we investigated the associations of pm142 and pm143 with each other and with PKR. Both pm142 and pm143 interact with PKR in infected and transfected cells. However, the ~200-kDa pm142-pm143 complex that forms in these cells does not contain substantial amounts of PKR, suggesting that the interactions between pm142-pm143 and PKR are unstable or transient. The stable, soluble pm142-pm143 complex appears to be a heterotetramer consisting of two molecules of pm142 associated with each other, and each one binds to and stabilizes a monomer of pm143. MCMV infection also causes relocalization of PKR into the nucleus and to an insoluble cytoplasmic compartment. These results suggest a model in which the pm142-pm143 multimer interacts with PKR and causes its sequestration in cellular compartments where it is unable to shut off translation and repress viral replication.  相似文献   

5.
The large cytomegalovirus (CMV) US22 gene family, found in all betaherpesviruses, comprises 12 members in both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV). Conserved sequence motifs suggested a common ancestry and related functions for these gene products. Two members of this family, m140 and m141, were recently shown to affect MCMV replication on macrophages. To test the role of all US22 members in cell tropism, we analyzed the growth properties in different cell types of MCMV mutants carrying transposon insertions in all 12 US22 gene family members. When necessary, additional targeted mutants with gene deletions, ATG deletions, and ectopic gene revertants were constructed. Mutants with disruption of genes M23, M24, m25.1, m25.2, and m128 (ie2) showed no obvious growth phenotype, whereas growth of M43 mutants was reduced in a number of cell lines. Genes m142 and m143 were shown to be essential for virus replication. Growth of mutants with insertions into genes M36, m139, m140, and m141 in macrophages was severely affected. The common phenotype of the m139, m140, and m141 mutants was explained by an interaction at the protein level. The M36-dependent macrophage growth phenotype could be explained by the antiapoptotic function of the gene that was required for growth on macrophages but not for growth on other cell types. Together, the comprehensive set of mutants of the US22 gene family suggests that individual family members have diverged through evolution to serve a variety of functions for the virus.  相似文献   

6.
Cassady KA 《Journal of virology》2005,79(14):8707-8715
Human cytomegalovirus (HCMV) attachment and entry stimulates the expression of cellular interferon-inducible genes, many of which target important cellular functions necessary for viral replication. Double-stranded RNA-dependent host protein kinase (PKR) is an interferon-inducible gene product that limits viral replication by inhibiting protein translation in the infected cell. It was anticipated that HCMV encodes gene products that facilitate the evasion of this PKR-mediated antiviral response. Using a deltagamma1 34.5 herpes simplex virus type 1 (HSV-1) recombinant that triggers PKR-mediated protein synthesis shutoff, experiments identified an HCMV gene product expressed in the initial hours of infection that allows continued protein synthesis in the infected cell. Recombinant HSV-1 viruses expressing either the HCMV TRS1 or IRS1 protein demonstrate that either of these HCMV gene products allows the deltagamma1 34.5 recombinant viruses to evade PKR-mediated protein shutoff and maintain late viral protein synthesis.  相似文献   

7.
8.
Brune W  Nevels M  Shenk T 《Journal of virology》2003,77(21):11633-11643
Viruses have evolved various strategies to prevent premature apoptosis of infected host cells. Some of the viral genes mediating antiapoptotic functions have been identified by their homology to cellular genes, but others are structurally unrelated to genes of known function. In this study, we used a random, unbiased approach to identify such genes in the murine cytomegalovirus genome. From a library of random transposon insertion mutants, a mutant virus that caused premature cell death was isolated. The transposon was inserted within open reading frame m41. An independently constructed m41 deletion mutant showed the same phenotype, whereas deletion mutants lacking the adjacent genes m40 and M42 did not. Apoptosis occurred in different cell types, could be blocked by caspase inhibitors, and did not require p53. Within the murine cytomegalovirus genome, m41, m40, and m39 form a small cluster of genes of unknown function. They are homologous to r41, r40, and r39 of rat cytomegalovirus, but lack sequence homology to UL41, UL40, and UL37 exon 1 (UL37x1) which are located at the corresponding positions of the human cytomegalovirus genome. Unlike UL37x1 of human cytomegalovirus, which encodes a mitochondrion-localized inhibitor of apoptosis that is essential for virus replication, m41 encodes a protein that localizes to the Golgi apparatus. The murine cytomegalovirus m41 product is the first example of a Golgi-localized protein that prevents premature apoptosis and thus extends the life span of infected cells.  相似文献   

9.
Efficient replication of murine cytomegalovirus (MCMV) in macrophages is a prerequisite for optimal growth and spread of the virus in its natural host. Simultaneous deletion of US22 gene family members M139, M140, and M141 results in impaired replication of MCMV in macrophages and mice. In this study, we characterized the proteins derived from these three genes and examined the impact of individual gene deletions on viral pathogenesis. The M139, M140, and M141 gene products were identified as early proteins that localize to both the nucleus and cytoplasm in infected cells. Gene M139 encodes two proteins, of 72 and 61 kDa, while M140 and M141 each encode a single protein of 56 (pM140) and 52 (pM141) kDa, respectively. No role for the M139 proteins in MCMV replication in macrophages or mice was determined in these studies. In contrast, deletion of either M140 or M141 resulted in impaired MCMV replication in macrophages and spleen tissue. Replication of the M140 deletion mutant was significantly more impaired than that of the virus lacking M141. Further analyses revealed that the absence of the pM140 adversely affected pM141 levels by rendering the latter protein unstable. Since the replication defect due to deletion of M140 was more profound than could be explained by the reduced half-life of pM141, pM140 must exert an additional, independent function in mediating efficient replication of MCMV in macrophages and spleen tissue. These data indicate that the US22 genes M140 and M141 function both cooperatively and independently to regulate MCMV replication in a cell type-specific manner and, thus, to influence viral pathogenesis.  相似文献   

10.
Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis of murine cells and its role during MCMV infection have not been investigated previously. Here we show that m38.5 is expressed at early time points during MCMV infection. Cells infected with MCMVs lacking m38.5 showed increased sensitivity to cell death induced by staurosporine, MG132, or the viral infection itself compared to the sensitivity of cells infected with wild-type MCMV. This defect was eliminated when an m38.5 or Bcl-X(L) gene was inserted into the genome of a deletion mutant. Using fibroblasts deficient in the proapoptotic Bcl-2 family proteins Bak and/or Bax, we further demonstrated that m38.5 protected from Bax- but not Bak-mediated apoptosis and interacted with Bax in infected cells. These results consolidate the role of m38.5 as a viral mitochondrion-localized inhibitor of apoptosis and its functional similarity to the human cytomegalovirus UL37x1 gene product. Although the m38.5 gene is not homologous to the UL37x1 gene at the sequence level, m38.5 is conserved among rodent cytomegaloviruses. Moreover, the fact that MCMV-infected cells are protected from both Bak- and Bax-mediated cell death suggests that MCMV possesses an additional, as-yet-unidentified mechanism to block Bak-mediated apoptosis.  相似文献   

11.
12.
The murine cytomegalovirus (MCMV) proteins encoded by US22 genes M139, M140, and M141 function, at least in part, to regulate replication of this virus in macrophages. Mutant MCMV having one or more of these genes deleted replicates poorly in macrophages in culture and in the macrophage-dense environment of the spleen. In this report, we demonstrate the existence of stable complexes formed by the products of all three of these US22 genes, as well as a complex composed of the products of M140 and M141. These complexes form in the absence of other viral proteins; however, the pM140/pM141 complex serves as a requisite binding partner for the M139 gene products. Products from all three genes colocalize to a perinuclear region of the cell juxtaposed to or within the cis-Golgi region but excluded from the trans-Golgi region. Interestingly, expression of pM141 redirects pM140 from its predominantly nuclear residence to the perinuclear, cytoplasmic locale where these US22 proteins apparently exist in complex. Thus, complexing of these nonessential, early MCMV proteins likely confers a function(s) independent of each individual protein and important for optimal replication of MCMV in its natural host.  相似文献   

13.
Feng X  Schröer J  Yu D  Shenk T 《Journal of virology》2006,80(17):8371-8378
We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.  相似文献   

14.
Zhan X  Lee M  Xiao J  Liu F 《Journal of virology》2000,74(16):7411-7421
A transposon derived from Escherichia coli Tn3 was introduced into the genome of murine cytomegalovirus (MCMV) to generate a pool of viral mutants, including two recombinant viruses that contained the transposon sequence within open reading frames m09 and M83. Our studies provide the first direct evidence to suggest that m09 is not essential for viral replication in mouse NIH 3T3 cells. Studies in cultured cells and in both BALB/c-Byj and CB17 severe combined immunodeficient (SCID) mice indicated that the transposon insertion is stable during viral propagation both in vitro and in vivo. Moreover, the virus that contained the insertion mutation in m09 exhibited a titer similar to that of the wild-type virus in the salivary glands, lungs, livers, spleens, and kidneys of both the BALB/c and SCID mice and was as virulent as the wild-type virus in killing the SCID mice when these animals were intraperitoneally infected with these viruses. These results suggest that m09 is dispensable for viral growth in these organs and that the presence of the transposon sequence in the viral genome does not significantly affect viral replication in vivo. In contrast, the virus that contained the insertion mutation in M83 exhibited a titer of at least 60-fold lower than that of the wild-type virus in the organs of the SCID mice and was attenuated in killing the SCID mice. These results demonstrate the utility of using the Tn3-based system as a mutagenesis approach for studying the function of MCMV genes in both immunocompetent and immunodeficient animals.  相似文献   

15.
16.
The evolutionary survival of viruses relies on their ability to disseminate infectious progeny to sites of transmission. The capacity to subvert apoptosis is thought to be crucial for ensuring efficient viral replication in permissive cells, but its role in viral dissemination in vivo has not been considered. We show here that the murine cytomegalovirus (MCMV) m38.5 protein specifically counters the action of Bax. As predicted from our biochemical data, the capacity of m38.5 to inhibit apoptosis is only apparent in cells unable to activate Bak. Deletion of m38.5 resulted in an attenuated growth of MCMV in vitro. In vivo replication of the Deltam38.5 virus was not significantly impaired in visceral organs. However, m38.5 played a central role in protecting leukocytes from Bax-mediated apoptosis, thereby promoting viral dissemination to the salivary glands, the principal site of transmission. These results establish that in vivo MCMV replication induces the activation of Bax in leukocytes, but not other permissive cells, and that MCMV interferes with this process to attain maximum dissemination.  相似文献   

17.
18.
The host antiviral protein kinase R (PKR) has rapidly evolved during primate evolution, likely in response to challenges posed by many different viral antagonists, such as the TRS1 gene of cytomegaloviruses (CMVs). In turn, viral antagonists have adapted to changes in PKR. As a result of this "arms race," modern TRS1 alleles in CMVs may function differently in cells derived from alternative species. We have previously shown that human CMV TRS1 (HuTRS1) blocks the PKR pathway and rescues replication of a vaccinia virus mutant lacking its major PKR antagonist in human cells. We now demonstrate that HuTRS1 does not have these activities in Old World monkey cells. Conversely, the rhesus cytomegalovirus homologue of HuTRS1 (RhTRS1) fulfills these functions in African green monkey cells, but not rhesus or human cells. Both TRS1 proteins bind to double-stranded RNA and, in the cell types in which they can rescue VVΔE3L replication, they also bind to PKR and prevent phosphorylation of the α-subunit of eukaryotic initiation factor 2. However, while HuTRS1 binds to inactive human PKR and prevents its autophosphorylation, RhTRS1 binds to phosphorylated African green monkey PKR. These studies reveal that evolutionary adaptations in this critical host defense protein have altered its binding interface in a way that has resulted in a qualitatively altered mechanism of PKR antagonism by viral TRS1 alleles from different CMVs. These results suggest that PKR antagonism is likely one of the factors that contributes to species specificity of cytomegalovirus replication.  相似文献   

19.
I Mohr  Y Gluzman 《The EMBO journal》1996,15(17):4759-4766
Novel suppressor variants of conditionally lethal HSV-1 gamma34.5 deletion mutants have been isolated which exhibit restored ability to grow on neoplastic neuronal cells. Deletion of the viral gamma34.5 genes, whose products share functional similarity with the cellular GADD34 gene, renders the virus non-neurovirulent and imposes a block to viral replication in neuronal cells. Protein synthesis ceases at late times post-infection and the translation initiation factor eIF2alpha is phosphorylated by the cellular PKR kinase [Chou et al. (1990) Science, 252, 1262-1266; (1995) Proc. Natl Acad. Sci. USA, 92, 10516-10520]. The suppressor mutants have overcome the translational block imposed by PKR. Multiple, independent isolates all contain rearrangements within a 595 bp element in the HSV-1 genome where the unique short component joins the terminal repeats. This alteration, which affects the production of the viral mRNA and protein from the Us11 and Us12 genes, is both necessary and sufficient to confer the suppressor phenotype on gamma34.5 mutant viruses. HSV-1 thus encodes a specific element which inhibits ongoing protein synthesis in the absence of the viral GADD34-like function. Since this inhibition involves the accumulation of phosphorylated eIF2alpha, the element identified by the suppressor mutations may be a discrete PKR activator. Activation of the PKR kinase thus does not proceed through a general, cellular 'antiviral' sensing mechanism. Instead, the virus deliberately activates PKR and encodes a separate function which selectively prevents the phosphorylation of at least one PKR target, eIF2alpha. The nature of this potential activator element, and how analogous cellular elements could affect PKR pathways which affect growth arrest and differentiation are discussed.  相似文献   

20.
The murine cytomegalovirus (MCMV) fcr-1 gene codes for a glycoprotein located at the surface of infected cells which strongly binds the Fc fragment of murine immunoglobulin G. To determine the biological significance of the fcr-1 gene during viral infection, we constructed MCMV fcr-1 deletion mutants and revertants. The fcr-1 gene was disrupted by insertion of the Escherichia coli lacZ gene. In another mutant, the marker gene was also deleted, by recombinase cre. As expected for its hypothetical role in immunoevasion, the infection of mice with fcr-1 deletion mutants resulted in significantly restricted replication in comparison with wild-type MCMV and revertant virus. In mutant mice lacking antibodies, however, the fcr-1 deletion mutants also replicated poorly. This demonstrated that the cell surface-expressed viral glycoprotein with FcR activity strongly modulates the virus-host interaction but that this biological function is not caused by the immunoglobulin binding property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号