首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The current model of immune activation in Drosophila melanogaster suggests that fungi and Gram-positive (G(+)) bacteria activate the Toll/Dif pathway and that Gram-negative (G(-)) bacteria activate the Imd/Relish pathway. To test this model, we examined the response of Relish and Dif (Dorsal-related immunity factor) mutants to challenge by various fungi and G(+) and G(-) bacteria. In Relish mutants, the Cecropin A gene was induced by the G(+) bacteria Micrococcus luteus and Staphylococcus aureus, but not by other G(+) or G(-) bacteria. This Relish-independent Cecropin A induction was blocked in Dif/Relish double mutant flies. Induction of the Cecropin A1 gene by M. luteus required Relish, whereas induction of the Cecropin A2 gene required Dif. Intact peptidoglycan (PG) was necessary for this differential induction of Cecropin A. PG extracted from M. luteus induced Cecropin A in Relish mutants, whereas PGs from the G(+) bacteria Bacillus megaterium and Bacillus subtilis did not, suggesting that the Drosophila immune system can distinguish PGs from various G(+) bacteria. Various fungi stimulated antimicrobial peptides through at least two different pathways requiring Relish and/or Dif. Induction of Attacin A by Geotrichum candidum required Relish, whereas activation by Beauvaria bassiana required Dif, suggesting that the Drosophila immune system can distinguish between at least these two fungi. We conclude that the Drosophila immune system is more complex than the current model. We propose a new model to account for this immune system complexity, incorporating distinct pattern recognition receptors of the Drosophila immune system, which can distinguish between various fungi and G(+) bacteria, thereby leading to selective induction of antimicrobial peptides via differential activation of Relish and Dif.  相似文献   

3.
4.
In Drosophila, the Imd pathway is activated by diaminopimelic acid-type peptidoglycan and triggers the humoral innate immune response, including the robust induction of antimicrobial peptide gene expression. Imd and Relish, two essential components of this pathway, are both endoproteolytically cleaved upon immune stimulation. Genetic analyses have shown that these cleavage events are dependent on the caspase-8 like Dredd, suggesting that Imd and Relish are direct substrates of Dredd. Among the seven Drosophila caspases, we find that Dredd uniquely promotes Imd and Relish processing, and purified recombinant Dredd cleaves Imd and Relish in vitro. In addition, interdomain cleavage of Dredd is not required for Imd or Relish processing and is not observed during immune stimulation. Baculovirus p35, a suicide substrate of executioner caspases, is not cleaved by purified Dredd in vitro. Consistent with this biochemistry but contrary to earlier reports, p35 does not interfere with Imd signaling in S2* cells or in vivo.  相似文献   

5.
Drosophila has highly efficient defenses against infection. These include both cellular immune responses, such as the phagocytosis of invading microorganisms, and humoral immune responses, such as the secretion of antimicrobial peptides into the hemolymph [1] [2]. These defense systems are thought to interact, but the nature and extent of these interactions is not known. Here we describe a method for inhibiting phagocytosis in Drosophila blood cells (hemocytes) by injecting polystyrene beads into the body cavity. This treatment does not in itself make a fly susceptible to Escherichia coli infection. However, when performed on flies carrying the mutation immune deficiency (imd), which affects the humoral immune response [3], the treatment results in a striking decrease in resistance to infection. We therefore carried out a sensitized genetic screen to identify immunocompromised mutants by co-injecting beads and E. coli. From this screen, we identified a new gene we have named red shirt and identified the caspase Dredd as a regulator of the Drosophila immune response. The observation that mutants with defects in the humoral immune response are further immunocompromised by blocking phagocytosis, and thus inhibiting the cellular immune response, shows that the Drosophila cellular and humoral immune responses act in concert to fight infection.  相似文献   

6.
7.
8.
9.
10.
11.
The Drosophila protein, Rbp9, is homologous to human Hu, which is reported to be involved in small cell lung cancer. Rbp9 functions in cystocyte differentiation, and mutations in Rbp9 cause ovarian tumors. Here we show that the antimicrobial peptide, Attacin, is upregulated in Rbp9 mutants, especially in ovaries where tumors form. Upregulation seems to result from activation of the NF-kappaB pathway since we detected nuclear localization of Relish in Rbp9 mutant ovaries but not in wild type ovaries. Inactivation of NF-kappaB in the Rbp9 mutant allows prolonged survival of malformed egg chambers. We conclude that Drosophila initiates an anti-tumor defense response via activation of NF-kappaB.  相似文献   

12.
Nuclear transport factor-2 (NTF-2) functions in yeast and mammalian cell culture in targeting proteins into the nucleus. The Drosophila homolog, DNTF-2, is an essential component of the nuclear import machinery, since ntf mutants are lethal. Interestingly, hypomorphic alleles show specific phenotypes. Some are viable, but the number of omatidia in the eye is severely reduced. The immune response in the Drosophila larval fat body is also affected; the three NF-κB/Rel proteins Dorsal, Dif and Relish do not target to the nucleus after infection, and, consequently, the expression of the anti-microbial peptide genes drosomycin, attacin and drosocin is severely impaired. Hence, in spite of its general requirement in many developmental processes, DNTF-2 has a higher specific requirement in the development of the eye and in the immune response. We also found that DNTF-2 interacts directly with Mbo/DNup88, which does not contain phenylalanine-glycine-rich repeats, but has been shown to function in the import of Rel proteins.  相似文献   

13.
14.
Jin LH  Shim J  Yoon JS  Kim B  Kim J  Kim-Ha J  Kim YJ 《PLoS pathogens》2008,4(10):e1000168
Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. Although signaling pathways that activate NF-kappaB during innate immune responses to various microorganisms have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila.  相似文献   

15.
In Drosophila, the immune deficiency (Imd) pathway controls antibacterial peptide gene expression in the fat body in response to Gram-negative bacterial infection. The ultimate target of the Imd pathway is Relish, a transactivator related to mammalian P105 and P100 NF-kappaB precursors. Relish is processed in order to translocate to the nucleus, and this cleavage is dependent on both Dredd, an apical caspase related to caspase-8 of mammals, and the fly Ikappa-B kinase complex (dmIKK). dTAK1, a MAPKKK, functions upstream of the dmIKK complex and downstream of Imd, a protein with a death domain similar to that of mammalian receptor interacting protein (RIP). Finally, the peptidoglycan recognition protein-LC (PGRP-LC) acts upstream of Imd and probably functions as a receptor for the Imd pathway. Using inducible expression of dFADD double-stranded RNA, we demonstrate that dFADD is a novel component of the Imd pathway: dFADD double-stranded RNA expression reduces the induction of antibacterial peptide-encoding genes after infection and renders the fly susceptible to Gram-negative bacterial infection. Epistatic studies indicate that dFADD acts between Imd and Dredd. Our results reinforce the parallels between the Imd and the TNF-R1 pathways.  相似文献   

16.
17.
Ryu JH  Ha EM  Oh CT  Seol JH  Brey PT  Jin I  Lee DG  Kim J  Lee D  Lee WJ 《The EMBO journal》2006,25(15):3693-3701
In the Drosophila gut, reactive oxygen species (ROS)-dependent immunity is critical to host survival. This is in contrast to the NF-kappaB pathway whose physiological function in the microbe-laden epithelia has yet to be convincingly demonstrated despite playing a critical role during systemic infections. We used a novel in vivo approach to reveal the physiological role of gut NF-kappaB/antimicrobial peptide (AMP) system, which has been 'masked' in the presence of the dominant intestinal ROS-dependent immunity. When fed with ROS-resistant microbes, NF-kappaB pathway mutant flies, but not wild-type flies, become highly susceptible to gut infection. This high lethality can be significantly reduced by either re-introducing Relish expression to Relish mutants or by constitutively expressing a single AMP to the NF-kappaB pathway mutants in the intestine. These results imply that the local 'NF-kappaB/AMP' system acts as an essential 'fail-safe' system, complementary to the ROS-dependent gut immunity, during gut infection with ROS-resistant pathogens. This system provides the Drosophila gut immunity the versatility necessary to manage sporadic invasion of virulent pathogens that somehow counteract or evade the ROS-dependent immunity.  相似文献   

18.
19.
B cells and Abs play a key role in controlling the erythrocytic stage of malaria. However, little is known about the way the humoral response develops during infection. We show that Plasmodium chabaudi chabaudi causes major, but temporary changes in the distribution of leukocytes in the spleen. Despite these changes, an ordered response to infection develops, which includes vigorous extrafollicular growth of plasmablasts and germinal center formation. Early in the response, the lymphocytes in the T zone and follicles become widely spaced, and the edges of these compartments blur. This effect is maximal around the peak of parasitemia. Germinal centers are apparent by day 8, peak at day 20, and persist through day 60. Extrafollicular foci of plasmablasts are visible from day 4 and initiate a very strong plasma cell response. Initially, the plasma cells have a conventional red pulp distribution, but by day 10 they are unconventionally sited in the periarteriolar region of the white pulp. In this region they form clusters occupying part of the area normally filled by T cells. B cells are absent from the marginal zone for at least 30 days after the peak of infection, although flow cytometry shows their continued presence in the spleen throughout infection. Relatively normal splenic architecture is regained by day 60 of infection. These results show that the changes in splenic cell distribution are linked to the presence of parasites and do not seem to interfere with the development of the humoral response.  相似文献   

20.
Caspases have been extensively studied as critical initiators and executioners of cell death pathways. However, caspases also take part in non-apoptotic signalling events such as the regulation of innate immunity and activation of nuclear factor-κB (NF-κB). How caspases are activated under these conditions and process a selective set of substrates to allow NF-κB signalling without killing the cell remains largely unknown. Here, we show that stimulation of the Drosophila pattern recognition protein PGRP-LCx induces DIAP2-dependent polyubiquitylation of the initiator caspase DREDD. Signal-dependent ubiquitylation of DREDD is required for full processing of IMD, NF-κB/Relish and expression of antimicrobial peptide genes in response to infection with Gram-negative bacteria. Our results identify a mechanism that positively controls NF-κB signalling via ubiquitin-mediated activation of DREDD. The direct involvement of ubiquitylation in caspase activation represents a novel mechanism for non-apoptotic caspase-mediated signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号