首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The transporter SbtA is a high affinity Na+-dependent HCO3 - uptake system present in a majority of cyanobacterial clades. It functions in conjunction with CO2 uptake systems and other HCO3 - uptake systems to allow cyanobacteria to accumulate high levels of HCO3 - used to support efficient photosynthetic CO2 fixation via the CO2 concentrating mechanism in these species. The phoA/lacZ fusion reporter method was used to determine the membrane topology of the cyanobacterial bicarbonate transporter, SbtA (predicted size of ~ 39.7 kD), cloned from the freshwater strain, Synechocystis PCC6803. The structure conforms to a model featuring 10 transmembrane helices (TMHs), with a distinct 5 + 5 duplicated structure. Both the N- and C-terminus are outside the cell and the second half of the protein is inverted relative to the first. The first putative helix appears to lack sufficient topogenic signals for its correct orientation in the membrane and instead relies on the presence of later helices. The cytoplasmic loop between helices 5 and 6 is a likely location for regulatory mechanisms that could govern activation of the transporter, and the cytoplasmic loop between helices 9 and 10 also contains some conserved putative regulatory residues.  相似文献   

2.
The primary HCO3- uptake system in the cyanobacterium Synecocystis is the Na+-dependent transporter SbtA. SbtA and its homologues were identified and shown to display a common topology of ten transmembrane segments (TMSs). These proved to have arisen by an intragenic duplication event from an ancestral gene encoding a five TMS protein product. A region of SbtA shows sufficient similarity to 10 TMS ABC-type integral membrane transport proteins to suggest a common origin. Phylogenetic analyses of the SbtA family revealed two clusters of cyanobacterial homologues with all non-cyanobacterial family members outside of these two clusters. The tree topology suggests that SbtA family members display multiple transport functions.  相似文献   

3.
4.
5.
The cyanobacterium Synechocystis sp. strain PCC 6803 possesses two CO(2) uptake systems and two HCO(3)(-) transporters. We transformed a mutant impaired in CO(2) uptake and in cmpA-D encoding a HCO(3)(-)transporter with a transposon inactivation library, and we recovered mutants unable to take up HCO(3)(-) and grow in low CO(2) at pH 9.0. They are all tagged within slr1512 (designated sbtA). We show that SbtA-mediated transport is induced by low CO(2), requires Na(+), and plays the major role in HCO(3)(-) uptake in Synechocystis. Inactivation of slr1509 (homologous to ntpJ encoding a Na(+)/K(+)-translocating protein) abolished the ability of cells to grow at [Na(+)] higher than 100 mm and severely depressed the activity of the SbtA-mediated HCO(3)(-) transport. We propose that the SbtA-mediated HCO(3)(-) transport is driven by DeltamuNa(+) across the plasma membrane, which is disrupted by inactivating ntpJ. Phylogenetic analyses indicated that two types of sbtA exist in various cyanobacterial strains, all of which possess ntpJ. The sbtA gene is the first one identified as essential to Na(+)-dependent HCO(3)(-) transport in photosynthetic organisms and may play a crucial role in carbon acquisition when CO(2) supply is limited, or in Prochlorococcus strains that do not possess CO(2) uptake systems or Cmp-dependent HCO(3)(-) transport.  相似文献   

6.
The cmpABCD operon of the cyanobacterium Synechococcus sp. strain PCC 7942 encodes an ATP-binding cassette transporter involved in HCO(3)(-) uptake. The three genes, cmpBCD, encode membrane components of an ATP-binding cassette transporter, whereas cmpA encodes a 42-kDa cytoplasmic membrane protein, which is 46.5% identical to the membrane-anchored substrate-binding protein of the nitrate/nitrite transporter. Equilibrium dialysis analysis using H(14)CO(3)(-) showed that a truncated CmpA protein lacking the N-terminal 31 amino acids, expressed in Escherichia coli cells as a histidine-tagged soluble protein, specifically binds inorganic carbon (CO(2) or HCO(3)(-)). The addition of the recombinant CmpA protein to a buffer caused a decrease in the concentration of dissolved CO(2) because of the binding of inorganic carbon to the protein. The decrease in CO(2) concentration was accelerated by the addition of carbonic anhydrase, indicating that HCO(3)(-), but not CO(2), binds to the protein. Mass spectrometric measurements of the amounts of unbound and bound HCO(3)(-) in CmpA solutions containing low concentrations of inorganic carbon revealed that CmpA binds HCO(3)(-) with high affinity (K(d) = 5 microm). A similar dissociation constant was obtained by analysis of the competitive inhibition of the CmpA protein on the carboxylation of phosphoenolpyruvate by phosphoenolpyruvate carboxylase at limiting concentrations of HCO(3)(-). These findings showed that the cmpA gene encodes the substrate-binding protein of the HCO(3)(-) transporter.  相似文献   

7.
This mini-review addresses advances in understanding the transmembrane topologies of two unrelated, single-subunit bicarbonate transporters from cyanobacteria, namely BicA and SbtA. BicA is a Na+-dependent bicarbonate transporter that belongs to the SulP/SLC26 family that is widespread in both eukaryotes and prokaryotes. Topology mapping of BicA via the phoA/lacZ fusion reporter method identified 12 transmembrane helices with an unresolved hydrophobic region just beyond helix 8. Re-interpreting this data in the light of a recent topology study on rat prestin leads to a consensus topology of 14 transmembrane domains with a 7+7 inverted repeat structure. SbtA is also a Na+-dependent bicarbonate transporter, but of considerably higher affinity (Km 2–5?μM versus >100?μM for BicA). Whilst SbtA is widespread in cyanobacteria and a few bacteria, it appears to be absent from eukaryotes. Topology mapping of SbtA via the phoA/lacZ fusion reporter method identified 10 transmembrane helices. The topology consists of a 5+5 inverted repeat, with the two repeats separated by a large intracellular loop. The unusual location of the N and C-termini outside the cell raises the possibility that SbtA forms a novel fold, not so far identified by structural and topological studies on transport proteins.  相似文献   

8.
The cyanobacterial Na+-dependent HCO3- transporter BicA is a member of the ubiquitous and important SulP/SLC26 family of anion transporters found in eukaryotes and prokaryotes. BicA is an important component of the cyanobacterial CO2 concentrating mechanism, an adaptation that contributes to cyanobacteria being able to achieve an estimated 25% of global primary productivity, largely in the oceans. The human SLC26 members are involved in a range of key cellular functions involving a diverse range of anion transport activities including Cl-/HCO3-, I-/HCO3-, and SO42-/HCO3- exchange; mutations in SLC26 members are known to be associated with debilitating diseases such as Pendred syndrome, chondrodysplasias, and congenital chloride diarrhoea. We have recently experimentally determined the membrane topology of BicA using the phoA-lacZ reporter system and here consider some of the extrapolated implications for topology of the human SLC26 family and the Sultr plant sulphate transporters.  相似文献   

9.
Hypoxic pulmonary vasoconstriction (HPV) occurs in smooth muscle cells (SMC) from small pulmonary arteries (SPA) and is accompanied by increases in free cytoplasmic calcium ([Ca2+]i) and cytoplasmic pH (pHi). SMC from large pulmonary arteries (LPA) relax during hypoxia, and [Ca2+]i and pHi decrease. Increases in pHi and [Ca2+]i in cat SPA SMC during hypoxia and the augmentation of hypoxic pulmonary vasoconstriction by alkalosis seen in isolated arteries and lungs suggest that cellular mechanisms, which regulate inward and outward movement of Ca2+ and H+, may participate in the generation of HPV. SMC transport systems that regulate pHi include the Na+ - H+ transporter which regulates intracellular Na+ and H+ and aids in recovery from acid loads, and the Na+ -dependent and Na+ -independent Cl-/HCO3- transporters which regulate intracellular chloride. The Na+ -dependent Cl-/HCO3- transporter also aids in recovery from acidosis in the presence of CO2 and HCO3-. The Na+ -independent Cl-/HCO3- transporter aids in recovery from cellular alkalosis. The Na+ - H+ transporter was present in SMC from SPA and LPA of the cat, but it seemed to have little if any role in regulating pHi in the presence of CO2 and HCO3-. Inhibiting the Cl-/HCO3- transporters reversed the normal direction of pHi change during hypoxia, suggesting a role for these transporters in the hypoxic response. Future studies to determine the interaction between pHi, [Ca2+]i and HPV should ascertain whether pHi and [Ca2+]i changes are linked and how they may interact to promote or inhibit SMC contraction.  相似文献   

10.
11.
12.
The in situ photoactivation of an HCO3- uptake system in the green alga Monoraphidium braunii requires the irradiation of the cell suspensions with short wavelength radiation (blue, UVA and/or UVC). Plasma membrane ATPase inhibitors block the uptake of this monovalent anion at pH 9. M. braunii cells grown in high CO2 lack an HCO3- uptake system in their plasma membrane, but those grown in low CO2 can take up this anion at high rates. Cells grown in high CO2, transferred to CO2-limiting conditions in the light, start taking up HCO3- in 30 min, although they take 90 min to reach maximum rates of HCO3- transport. Therefore, this induction process seems to be triggered by low external CO2 concentration. In fact, increasing or decreasing the external HCO3- concentration does not induce the uptake system and only a decrease in CO2 concentration in the medium triggers the induction process. The appearance of the HCO3- transport activity is sensitive to cycloheximide, indicating that cytoplasmic protein biosynthesis is necessary for the induction of the uptake system. Photosynthetically active radiation, but not particularly blue light, is essential for induction of the uptake system to occur and the inhibition of photosynthesis by DCMU blocks it. From these results it can be inferred that when M. braunii cells detect a drop in CO2 concentration, they induce a blue light-dependent HCO3- uptake system.  相似文献   

13.
The product of the chloroplast ycf10 gene has been localized in the inner chloroplast envelope membrane (Sasaki et al., 1993) and found to display sequence homology with the cyanobacterial CotA product which is altered in mutants defective in CO2 transport and proton extrusion (Katoh et al., 1996a,b). In Chlamydomonas reinhardtii, ycf10, located between the psbI and atpH genes, encodes a putative hydrophobic protein of 500 residues, which is considerably larger than its higher plant homologue because of a long insertion that separates the conserved N and C termini. Using biolistic transformation, we have disrupted ycf10 with the chloroplast aadA expression cassette and examined the phenotype of the homoplasmic transformants. These were found to grow both photoheterotrophically and photoautotrophically under low light, thereby revealing that the Ycf10 product is not essential for the photosynthetic reactions. However, under high light these transformants did not grow photoautotrophically and barely photoheterotrophically. The increased light sensitivity of the transformants appears to result from a limitation in photochemical energy utilization and/or dissipation which correlates with a greatly diminished photosynthetic response to exogenous (CO2 + HCO3-), especially under conditions where the chloroplast inorganic carbon transport system is not induced. Mass spectrometric measurements with either whole cells or isolated chloroplasts from the transformants revealed that the CO2 and HCO3- uptake systems have a reduced affinity for their substrates. The results suggest the existence of a ycf10-dependent system within the plastid envelope which promotes efficient inorganic carbon (Ci) uptake into chloroplasts.  相似文献   

14.
Cyanobacteria have evolved an extremely effective single-cell CO(2) concentrating mechanism (CCM). Recent molecular, biochemical and physiological studies have significantly extended current knowledge about the genes and protein components of this system and how they operate to elevate CO(2) around Rubisco during photosynthesis. The CCM components include at least four modes of active inorganic carbon uptake, including two bicarbonate transporters and two CO(2) uptake systems associated with the operation of specialized NDH-1 complexes. All these uptake systems serve to accumulate HCO(3)(-) in the cytosol of the cell, which is subsequently used by the Rubisco-containing carboxysome protein micro-compartment within the cell to elevate CO(2) around Rubisco. A specialized carbonic anhydrase is also generally present in this compartment. The recent availability of at least nine cyanobacterial genomes has made it possible to begin to undertake comparative genomics of the CCM in cyanobacteria. Analyses have revealed a number of surprising findings. Firstly, cyanobacteria have evolved two types of carboxysomes, correlated with the form of Rubisco present (Form 1A and 1B). Secondly, the two HCO(3)(-) and CO(2) transport systems are distributed variably, with some cyanobacteria (Prochlorococcus marinus species) appearing to lack CO(2) uptake systems entirely. Finally, there are multiple carbonic anhydrases in many cyanobacteria, but, surprisingly, several cyanobacterial genomes appear to lack any identifiable CA genes. A pathway for the evolution of CCM components is suggested.  相似文献   

15.
The human equilibrative nucleoside transporter hENT1, the first identified member of the ENT family of integral membrane proteins, is the primary mechanism for the cellular uptake of physiologic nucleosides, including adenosine, and many anti-cancer nucleoside drugs. We have produced recombinant hENT1 in Xenopus oocytes and used native and engineered N-glycosylation sites in combination with immunological approaches to experimentally define the membrane architecture of this prototypic nucleoside transporter. hENT1 (456 amino acid residues) is shown to contain 11 transmembrane helical segments with an amino terminus that is intracellular and a carboxyl terminus that is extracellular. Transmembrane helices are linked by short hydrophilic regions, except for a large glycosylated extracellular loop between transmembrane helices 1 and 2 and a large central cytoplasmic loop between transmembrane helices 6 and 7. Sequence analyses suggest that this membrane topology is common to all mammalian, insect, nematode, protozoan, yeast, and plant members of the ENT protein family.  相似文献   

16.
To investigate the (co)expression, interaction, and membrane location of multifunctional NAD(P)H dehydrogenase type 1 (NDH-1) complexes and their involvement in carbon acquisition, cyclic photosystem I, and respiration, we grew the wild type and specific ndh gene knockout mutants of Synechocystis sp PCC 6803 under different CO2 and pH conditions, followed by a proteome analysis of their membrane protein complexes. Typical NDH-1 complexes were represented by NDH-1L (large) and NDH-1M (medium size), located in the thylakoid membrane. The NDH-1L complex, missing from the DeltaNdhD1/D2 mutant, was a prerequisite for photoheterotrophic growth and thus apparently involved in cellular respiration. The amount of NDH-1M and the rate of P700+ rereduction in darkness in the DeltaNdhD1/D2 mutant grown at low CO2 were similar to those in the wild type, whereas in the M55 mutant (DeltaNdhB), lacking both NDH-1L and NDH-1M, the rate of P700+ rereduction was very slow. The NDH-1S (small) complex, localized to the thylakoid membrane and composed of only NdhD3, NdhF3, CupA, and Sll1735, was strongly induced at low CO2 in the wild type as well as in DeltaNdhD1/D2 and M55. In contrast with the wild type and DeltaNdhD1/D2, which show normal CO2 uptake, M55 is unable to take up CO2 even when the NDH-1S complex is present. Conversely, the DeltaNdhD3/D4 mutant, also unable to take up CO2, lacked NDH-1S but exhibited wild-type levels of NDH-1M at low CO2. These results demonstrate that both NDH-1S and NDH-1M are essential for CO2 uptake and that NDH-1M is a functional complex. We also show that the Na+/HCO3- transporter (SbtA complex) is located in the plasma membrane and is strongly induced in the wild type and mutants at low CO2.  相似文献   

17.
HCO3- exit across the basolateral membrane of the kidney proximal tubule cell is mediated via an electrogenic Na+:HCO3- cotransporter. We have studied the effect of pH on the activity of this cotransport system in basolateral membrane vesicles isolated from rabbit renal cortex. At constant internal pH 6.0, increasing the external pH and [HCO3-] increased the rate of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive 22Na+ influx into the vesicles. To determine the role of internal pH on the activity of the Na+:HCO3- cotransport system, the influx of 22Na+ via HCO3-dependent Na(+)-Na+ exchange was measured in the absence of an initial pH and [HCO3-] gradient (pH(i) = pH(o), 5% CO2). Increasing the pH from 6.8 to 7.2 increased whereas, increasing the pH from 7.4 to 8.0 decreased the rate of 22Na+ influx via this exchange. Increasing pH at constant [HCO3-] (pH(i) = pH(o) = 8.0, 1.5% CO2 versus pH(i) = pH(o) = 7.2, 10% CO2) reduced the influx of 22Na+ via HCO3-dependent Na(+)-Na+ exchange. Increasing pH at constant [CO3(2-)](pH(i) = pH(o) = 8.0, 1.5% CO2 versus pH(i) = pH(o) = 7.2, 60% CO2) was associated with reduced 22Na+ uptake. Decreasing the pH (pH(i) = pH(o) = 6.3, 60% CO2 versus pH(i) = pH(o) = 7.2, 5% CO2) was associated with a reduced rate of HCO3(-)-dependent Na(+)-Na+ exchange. We conclude that the Na+:HCO3- cotransporter displays a significant pH sensitivity profile with the cotransporter being more functional at pH 7.0-7.4 and less active at more acid or alkaline pH. In addition, the results suggest that the pH sensitivity arises at the inner surface of the basolateral membrane.  相似文献   

18.
Rat pancreatic acini loaded with the pH sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to characterize intracellular pH (pHi) regulatory mechanisms in these cells. The acini were attached to cover slips and continuously perfused. In 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered solutions recovery from acid load (H+ efflux) required extracellular Na+ (Na+out) and was blocked by amiloride. Likewise, H+ influx initiated by removal of Na+out was blocked by amiloride. Hence, in HEPES-buffered medium the major operative pHi regulatory mechanism is a Na+/H+ exchange. In HCO3(-)-buffered medium, amiloride only partially blocked recovery from acid load and acidification due to Na+out removal. The remaining fraction required Na+out, was inhibited by H2-4,4'-diisothiocyanostilbene-2,2'-disulfunic acid (H2DIDS) and was independent of C1-. Hence, a transporter with characteristics of a Na(+)-HCO3- cotransport exists in pancreatic acini. Measurement of pHi changes due to Na(+)-HCO3- cotransport, suggests that the transporter contributes to HCO3- efflux under physiological conditions. Changing the Cl- gradient across the plasma membrane of acini maintained in HCO3(-)-buffered solutions reveals the presence of an H2DIDS-sensitive, Na(+)-independent, Cl(-)-dependent, HCO3- transporter with characteristics of a Cl-/HCO3- exchanger. In pancreatic acini the exchanger transports HCO3- but not OH- and under physiological conditions functions to remove HCO3- from the cytosol. In summary, only the Na+/H+ exchanger is functional in HEPES-buffered medium to maintain pHi at 7.28 +/- 0.03. In the presence of 25 mM HCO3- at pHo of 7.4, all the transporters operate simultaneously to maintain a steady-state pHi of 7.13 +/- 0.04.  相似文献   

19.
Espie GS  Kandasamy RA 《Plant physiology》1994,104(4):1419-1428
The effect of monensin, an ionophore that mediates Na+/H+ exchange, on the activity of the inorganic carbon transport systems of the cyanobacterium Synechococcus UTEX 625 was investigated using transport assays based on the measurement of chlorophyll a fluorescence emission or 14C uptake. In Synechococcus cells grown in standing culture at about 20 [mu]M CO2 + HCO3-, 50 [mu]M monensin transiently inhibited active CO2 and Na+-independent HCO3- transport, intracellular CO2 and HCO3- accumulation, and photosynthesis in the presence but not in the absence of 25 mM Na+. These activities returned to near-normal levels within 15 min. Transient inhibition was attributed to monensin-mediated intracellular alkalinization, whereas recovery may have been facilitated by cellular mechanisms involved in pH homeostasis or by monensin-mediated H+ uptake with concomitant K+ efflux. In air-grown cells grown at 200 [mu]M CO2 + HCO3- and standing culture cells, Na+-dependent HCO3- transport, intracellular HCO3- accumulation, and photosynthesis were also inhibited by monensin, but there was little recovery in activity over time. However, normal photosynthetic activity could be restored to air-grown cells by the addition of carbonic anhydrase, which increased the rate of CO2 supply to the cells. This observation indicated that of all the processes required to support photosynthesis only Na+-dependent HCO3- transport was significantly inhibited by monensin. Monensin-mediated dissipation of the Na+ chemical gradient between the medium and the cells largely accounted for the decline in the HCO3- accumulation ratio from 751 to 55. The two HCO3- transport systems were further distinguished in that Na+-dependent HCO3- transport was inhibited by Li+, whereas Na+-independent HCO3- transport was not. It is suggested that Na+-dependent HCO3- transport involves an Na+/HCO3- symport mechanism that is energized by the Na+ electrochemical potential.  相似文献   

20.
The exit of HCO3- across the basolateral membrane of the proximal tubule cell occurs via the electrogenic cotransport of 3 eq of base per Na+. We have used basolateral membrane vesicles isolated from rabbit renal cortex to identify the ionic species transported via this pathway. Media of varying pH and pCO2 were employed to evaluate the independent effects of HCO3- and CO3(2-) on 22Na transport. Na+ uptake was stimulated when [CO3(2-)] was increased at constant [HCO3-], indicating the existence of a transport site for CO3(2-). In the presence of HCO3-, Na+ influx was stimulated more than 3-fold by an inward SO3(2-) gradient. SO3(2-)-stimulated Na+ influx was stilbene-sensitive, confirming that it occurs via the Na+-HCO3- cotransport system. Na+-SO3(2-) cotransport was demonstrated and found to have a 1:1 stoichiometry. Increasing [CO3(2-)] at constant [HCO3-] reduced the stimulation of Na+ influx by SO3(2-), suggesting competition between SO3(2-) and CO3(2-) at a common divalent anion site. Additional divalent anions that were tested, such as SO4(2-), oxalate2-, and HPO4(2-), did not interact at this site. SO3(2-) stimulation of Na+ influx was absolutely HCO3-(-)dependent and was increased as a function of [HCO3-], indicating the presence of a separate HCO3- site. Lastly, we tested whether Na+ interacts via ion pair formation with CO3(2-) or binds to a distinct site. Na+, which has lower affinity than Li+ for ion pair formation with CO3(2-), was found to have greater than 5-fold higher affinity than Li+ for the Na+-HCO3- cotransport system. Moreover, when its inhibition was studied as a function of [Na+], harmaline was found to be a competitive inhibitor of Na+ influx, indicating the existence of a distinct cation site. Our data are compatible with a model in which base transport across the basolateral membrane of the proximal tubule cell takes place via 1:1:1 cotransport of CO3(2-), HCO3-, and Na+ on distinct sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号