首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modification of the type II calmodulin-dependent protein kinase by 5'-p-fluorosulfonylbenzoyl adenosine (FSBA) resulted in a time-dependent inactivation of the enzyme. The reaction followed pseudo-first-order kinetics and showed a nonlinear dependence on reagent concentration. The rate of inactivation was sensitive to Mg2+- and calmodulin-induced conformational changes on the enzyme. However, the enhancing effects of these ligands were not additive; indeed, the kinetic parameters of the Mg2+-stimulated inactivation reaction with FSBA (Kinact = 2.4 mM; kappa max = 0.12 min-1) were almost unaffected by the simultaneous addition of calmodulin (Kinact = 1.5 mM; kappa max = 0.086 min-1). Protection from inactivation by FSBA was provided by Mg2+-ADP which is consistent with modification of the catalytic site. An analysis of the protective effect of Mg2+-ADP in the absence (Kd = 590 microM) and presence (Kd = 68 microM) of calmodulin demonstrated that binding of the modulator protein to the enzyme increases the affinity of the protein kinase for nucleotides. Modification by FSBA resulted in labeling of both Tyr and Lys residues but only labeling of Lys was decreased by Mg2+-ADP which is consistent with the hypothesis that a conserved Lys residue is important in nucleotide binding to the protein kinase. However, the kinetic results of the inactivation reaction suggest that this Lys is not involved in mediating the calmodulin-promoted increase in the affinity of the enzyme for Mg2+-nucleotide complexes.  相似文献   

2.
P J Kennelly  J Leng  P Marchand 《Biochemistry》1992,31(23):5394-5399
An ATP-like affinity labeling reagent, 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA), was used to probe the MgATP-binding site of smooth muscle myosin light chain kinase from chicken gizzard (smMLCK) and its calmodulin (CaM) complex. Native smMLCK has an absolute requirement for the binding of the calcium complex of CaM for expression of its catalytic activity. FSBA reacted with smMLCK-CaM and with the CaM-free, inactive enzyme as well. Both reactions were dependent on time and FSBA concentration. Reaction was accompanied by the incorporation of covalently bound [14C]FSBA into smMLCK protein at a molar ratio of approximately 1:1 in each case. p-(Fluorosulfonyl)benzoic acid, an analogue of FSBA lacking the adenosine targeting group, did not react at a significant rate with either form of smMLCK. Reaction of CaM-free and CaM-bound smMLCK with FSBA displayed saturation kinetics. The first-order rate constants for the conversion of the reversible, noncovalent enzyme-FSBA complex to form the irreversibly inhibited, covalently modified enzyme were similar for both smMLCK and smMLCK-CaM, 0.15 and 0.07 min-1, respectively. The concentrations of FSBA yielding the half-maximal rate of inactivation, KI, were essentially identical--0.65 and 0.64 mM, respectively--for smMLCK and smMLCK-CaM. MgATP, but not MgGTP or a substrate peptide, potently inhibited reaction with FSBA. Inhibition by MgATP was competitive. The measured inhibitory constant for MgATP was essentially the same--33 versus 34 microM--for both smMLCK and smMLCK-CaM. It therefore is concluded that the MgATP-binding site on smMLCK remains accessible and recognizable as such when the enzyme becomes inactivated upon dissociation of CaM.  相似文献   

3.
Studies on the interaction of calcineurin with its activator, calmodulin, showed that the 1:1 complex is the activated species. Concomitant with activation, a time-dependent deactivation of the phosphatase was observed. The process followed first order kinetics and was dependent on the presence of both Ca2+ and calmodulin. The deactivation rate constant at pH 7.6 and 30 degrees C was 0.06 min-1, which was increased by the substrate, p-nitrophenylphosphate (Km = 11 mM), to 0.47 min-1. PPi and nucleotides inhibited the enzyme competitively and accelerated the deactivation. The first order rate constant was increased to 2.3 min-1 by PPi (Ki = 55 microM) and to 8.0 min-1 by ADP (Ki = 0.94 mM). A theory dealing with the deactivation (applicable to chemical modification, etc.) of an enzyme in the absence and presence of various ligands is presented. The deactivated enzyme remained bound to calmodulin and was not reactivated by dissociation-reassociation of the calcineurin-calmodulin complex. Calcineurin was found to contain covalently bound phosphate; however, no difference in its content was detected upon deactivation, indicating that self-dephosphorylation was not involved. The deactivation could be reversed, as well as prevented, by divalent metal ions such as Ni2+ and Mn2+. Atomic absorption spectroscopy revealed nearly stoichiometric amounts of tightly bound Fe and Zn (but little other ions) on purified calcineurin, which remained bound during the calmodulin-dependent deactivation; removal of tightly bound metals is, therefore, not the cause of deactivation. Our results indicate that calcineurin is a metallophosphatase and not simply a Ca2+- and calmodulin-stimulated enzyme. In addition to the nondissociable Zn and Fe and the Ca2+ bound to the B subunit and calmodulin, the enzyme requires a divalent metal ion for structural stability and full activity.  相似文献   

4.
Bordetella pertussis, the bacterium responsible for whooping cough, releases a soluble, calmodulin-sensitive adenylate cyclase into its culture medium. B. pertussis mutants deficient in this enzyme are avirulent, indicating that the adenylate cyclase contributes to the pathogenesis of the disease. It has been proposed that B. pertussis adenylate cyclase may enter animal cells and increase intracellular adenosine cyclic 3',5'-phosphate (cAMP) levels. We have purified the enzyme extensively from culture medium using anion-exchange chromatography in the presence and absence of calmodulin and gel filtration chromatography. The enzyme was purified 1600-fold to a specific activity of 608 mumol of cAMP min-1 mg-1 and was free of islet activating protein. The molecular weight of the enzyme was 43 400 in the absence of calmodulin and 54 200 in the presence of calmodulin. The Km of the bacterial enzyme for adenosine 5'-triphosphate was 2.0 mM, whereas the Km of the calmodulin-sensitive adenylate cyclase from bovine brain was 0.07 mM. Although the enzyme was not purified to homogeneity, its turnover number of 27 000 min-1 is the highest documented for any adenylate cyclase preparation.  相似文献   

5.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   

6.
Human erythrocyte and bovine brain calmodulins were indistinguishable by tryptic peptide mapping, indicating that the primary sequence of the two proteins is either very similar or identical. Calcium binding determinations of human erythrocyte calmodulin, by equilibrium dialysis and fluorescence titration, were in close agreement with previous studies on other calmodulins. The calcium-activated adenosine triphosphatase which is stimulated by calmodulin was shown to be firmly associated with smooth erythrocyte plasma membranes devoid of spectrin and actin. Kinetic titration demonstrated that there are 4500 calmodulin binding sites per erythrocyte and that the turnover number of this calcium-activated adenosine triphosphatase is 3000 mumol of Pi . (mumol of site)-1 . min-1 which is similar to the turnover numbers of other transport adenosine triphosphatases. Furthermore, calmodulin stimulates calcium-activated adenosine triphosphatase by a simple enzyme-ligand association.  相似文献   

7.
H S Kim  L Lee  D R Evans 《Biochemistry》1991,30(42):10322-10329
The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA) was used to chemically modify the ATP binding sites of the carbamyl phosphate synthetase domain of CAD, the multifunctional protein that catalyzes the first steps in mammalian pyrimidine biosynthesis. Reaction of CAD with FSBA resulted in the inactivation of the ammonia- and glutamine-dependent CPSase activities but had no effect on its glutaminase, aspartate transcarbamylase, or dihydroorotase activities. ATP protected CAD against inactivation by FSBA whereas the presence of the allosteric effectors UTP and PRPP afforded little protection, which suggests that the ATP binding sites were specifically labeled. The inactivation exhibited saturation behavior with respect to FSBA with a K1 of 0.93 mM. Of the two ATP-dependent partial activities of carbamyl phosphate synthetase, bicarbonate-dependent ATPase was inactivated more rapidly than the carbamyl phosphate dependent ATP synthetase, which indicates that these partial reactions occur at distinct ATP binding sites. The stoichiometry of [14C]FSBA labeling showed that only 0.4-0.5 mol of FSBA/mol of protein was required for complete inactivation. Incorporation of radiolabeled FSBA into CAD and subsequent proteolysis, gel electrophoresis, and fluorography demonstrated that only the carbamyl phosphate synthetase domain of CAD is labeled. Amino acid sequencing of the principal peaks resulting from tryptic digests of FSBA-modified CAD located the sites of FSBA modification in regions that exhibit high homology to ATP binding sites of other known proteins. Thus CAD has two ATP binding sites, one in each of the two highly homologous halves of the carbamyl phosphate domain which catalyze distinct ATP-dependent partial reactions in carbamyl phosphate synthesis.  相似文献   

8.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

9.
M Ikura  G Barbato  C B Klee  A Bax 《Cell calcium》1992,13(6-7):391-400
The solution structure of Ca2+ ligated calmodulin and of its complex with a 26-residue peptide fragment of skeletal muscle myosin light chain kinase (skMLCK) have been investigated by multi-dimensional NMR. In the absence of peptide, the two globular domains of calmodulin adopt the same structure as observed in the crystalline form. The so-called 'central helix' which is observed in the crystalline state is disrupted in solution. 15N relaxation studies show that residues Asp78 through Ser81, located near the middle of this 'central helix', form a very flexible link between the two globular domains. In the presence of skMLCK target peptide, the peptide-protein complex adopts a globular ellipsoidal shape. The helical peptide is located in a hydrophobic channel that goes through the center of the complex and makes an angle of approximately 45 degrees with the long axis of the ellipsoid.  相似文献   

10.
5'-Fluorosulfonylbenzonyl 5'-adenosine (FSBA) is an ATP analogue that covalently modifies several residues in the nucleotide-binding domains (NBDs) of several ATPases, kinases, and other proteins. P-glycoprotein (P-gp, ABCB1) is a member of the ATP-binding cassette (ABC) transporter superfamily that utilizes energy from ATP hydrolysis for the efflux of amphipathic anticancer agents from cancer cells. We investigated the interactions of FSBA with P-gp to study the catalytic cycle of ATP hydrolysis. Incubation of P-gp with FSBA inhibited ATP hydrolysis (IC(50 )= 0.21 mM) and the binding of 8-azido[α-(32)P]ATP (IC(50) = 0.68 mM). In addition, (14)C-FSBA cross-links to P-gp, suggesting that FSBA-mediated inhibition of ATP hydrolysis is irreversible due to covalent modification of P-gp. However, when the NBDs were occupied with a saturating concentration of ATP prior to treatment, FSBA stimulated ATP hydrolysis by P-gp. Furthermore, FSBA inhibited the photo-cross-linking of P-gp with [(125)I]iodoarylazidoprazosin (IAAP; IC(50) = 0.17 mM). As IAAP is a transport substrate for P-gp, this suggests that FSBA affects not only the NBDs but also the transport-substrate site in the transmembrane domains. Consistent with these results, FSBA blocked efflux of rhodamine 123 from P-gp-expressing cells. Additionally, mass spectrometric analysis identified FSBA cross-links to residues within or nearby the NBDs but not in the transmembrane domains, and docking of FSBA in a homology model of human P-gp NBDs supports the biochemical studies. Thus, FSBA is an ATP analogue that interacts with both the drug-binding and ATP-binding sites of P-gp, but fluorosulfonyl-mediated cross-linking is observed only at the NBDs.  相似文献   

11.
The interaction of ADP with platelets leads to shape change, exposure of fibrinogen binding sites, and aggregation, all of which have been shown to be inhibited by 5'-p-fluorosulfonylbenzoyladenosine (FSBA), an alkylating analogue of adenine nucleotides which binds covalently to a 100-kDa polypeptide in intact platelet membranes (Figures, W. R., Niewiarowski, S., Morinelli, T., Colman, R. F., and Colman, R. W. (1981) J. Biol. Chem. 256, 7789-7795). In plasma, FSBA can break down to adenosine which stimulates adenylate cyclase. To distinguish between direct effects of FSBA and the actions of adenosine, we have used washed platelet suspensions and adenosine deaminase. We studied the effects of FSBA on shape change and cyclic AMP metabolism, and on the binding of 2-methylthio-ADP, which mimics the effects of ADP on cyclic AMP metabolism at concentrations too low to activate platelets. Inhibition of ADP-induced shape change of platelets incubated with FSBA for 2 min in platelet-rich plasma was greatly reduced by adenosine deaminase. In the presence of a phosphodiesterase inhibitor, 100 microM FSBA increased platelet cyclic AMP to the same extent as did 10 microM adenosine. These effects were inhibited by theophylline, an adenosine receptor antagonist, and by adenosine deaminase. Incubation of washed platelets for 60 min with FSBA and adenosine deaminase caused a concentration-dependent inhibition of ADP-induced shape change. Inhibition closely paralleled the covalent incorporation of 3H from tritiated FSBA into platelet membranes. Under these conditions, FSBA did not block inhibition of cyclic AMP accumulation by ADP, nor did it block the binding of 2-methylthio-ADP. We conclude that part of the inhibition of shape change caused by brief exposure to FSBA is due to adenosine, but at longer times shape change is inhibited in association with covalent incorporation of sulfonylbenzoyladenosine. This effect of FSBA is independent of adenosine and occurs at a site distinct from that at which ADP inhibits adenylate cyclase.  相似文献   

12.
Among the neuronal binding partners of calmodulin (CaM) are Munc13 proteins as essential presynaptic regulators that play a key role in synaptic vesicle priming and are crucial for presynaptic short-term plasticity. Recent NMR structural investigations of a CaM/Munc13-1 peptide complex have revealed an extended structure, which contrasts the compact structures of most classical CaM/target complexes. This unusual binding mode is thought to be related to the presence of an additional hydrophobic anchor residue at position 26 of the CaM binding motif of Munc13-1, resulting in a novel 1-5-8-26 motif. Here, we addressed the question whether the 1-5-8-26 CaM binding motif is a Munc13-related feature or whether it can be induced in other CaM targets by altering the motif''s core residues. For this purpose, we chose skeletal muscle myosin light chain kinase (skMLCK) with a classical 1-5-8-14 CaM binding motif and constructed three skMLCK peptide variants mimicking Munc13-1, in which the hydrophobic anchor amino acid at position 14 was moved to position 26. Chemical cross-linking between CaM and skMLCK peptide variants combined with high-resolution mass spectrometry yielded insights into the peptides'' binding modes. This structural comparison together with complementary binding data from surface plasmon resonance experiments revealed that skMLCK variants with an artificial 1-5-8-26 motif cannot mimic CaM binding of Munc13-1. Apparently, additional features apart from the spacing of the hydrophobic anchor residues are required to define the functional 1-5-8-26 motif of Munc13-1. We conclude that Munc13 proteins display a unique CaM binding behavior to fulfill their role as efficient presynaptic calcium sensors over broad range of Ca2+ concentrations.  相似文献   

13.
Following a lag of about 30 min, the F1-ATPase from the thermophilic bacterium, PS3 (TF1), was inactivated slowly by 0.8 mM 5'-p-fluorosulfonylbenzoyladenosine (FSBA) at 23 degrees C and pH 7.0. When the enzyme was treated with 0.2 mM FSBA at pH 7.0 and 23 degrees C for 15 min and gel-filtered, no enzyme activity was lost. However, the lag in inactivation was abolished when the enzyme was subsequently incubated with 2.0 mM FSBA at 23 degrees C in the pH range from 6.8 to 10.0. The pH-inactivation profile obtained under these conditions revealed a pK alpha of about 9.3 which was associated with the inactivation. When pretreated TF1 was inactivated at 23 degrees C with [3H]FSBA by about 90%, greater than 20 mol of [3H]SBA was incorporated per mole of enzyme. TF1 was inactivated rapidly by 0.8 mM FSBA at pH 6.4 and 65 degrees C, and no lag was observed. Following inactivation of TF1 with 0.8 mM [3H]FSBA at 65 degrees C and pH 6.4, about 10 mol of [3H]SBA was incorporated per mole of enzyme. When a tryptic digest of the labeled enzyme was fractionated by reversed-phase high-performance liquid chromatography, a single major radioactive peptide was isolated. When subjected to automatic Edman degradation, this peptide was shown to have the amino acid sequence: A-L-A-P-E-I-V-G-E-E-H-X-Q-V-A-R, where X indicates that a phenylthiohydantoin derivative was not detected in cycle 12. However, from the DNA sequence of the gene encoding the subunit of TF1 (Y. Kagawa, M. Ishizuka, T. Saishu, and S. Nakao (1985) Abstracts International Symposium on Energy Transducing ATPases, Kobe, Japan, p. 84), this position has been shown to be occupied by tyrosine. This tyrosine is homologous with beta-Tyr-368 of the bovine mitochondrial F1-ATPase (MF1) the modification of which is responsible for the inactivation MF1 by FSBA.  相似文献   

14.
The basic mechanism by which calmodulin activates bovine-cardiac muscle myosin light-chain kinase was investigated using highly purified preparations of mixed bovine-cardiac myosin light chains or isolated myosin light chain 2. The apparent contamination of these substrate proteins by calmodulin, as detected by activation of calmodulin-sensitive phosphodiesterase, was less than 4 parts/million and was undetectable by antibodies against calmodulin. The apparent KA for calmodulin was 2 nM and 20 nM in the presence of isolated myosin light-chain 2 and mixed myosin light chains, respectively. Purified bovine cardiac troponin C activated myosin light-chain kinase by about 10% at a concentration of 2 microM. Mixed myosin light chains were phosphorylated in the absence and presence of calmodulin and in the presence of calcium with a V of 11.1 and 11.0 mumol phosphate transferred min-1 (mg enzyme)-1, respectively. The apparent Km values for mixed myosin light chains were 8.0 and 0.35 mg/ml in the absence and presence of calmodulin, respectively. Similarly calmodulin lowered the Km value for isolated myosin light-chain 2 over 20-fold and increased the V value only about 1.5-fold. Activity observed in the absence of calmodulin was dependent on the presence of calcium and was suppressed by chelating free calcium either before or during a phosphorylation reaction. The apparent KA for calcium was 1.2 microM and 0.4 microM in the absence and presence of calmodulin. Activity in the absence of calmodulin was inhibited at very high concentrations of the 'specific' calmodulin antagonists W-7, trifluoperazine and R24571 with apparent IC50 values of 0.3 mM, 0.2 mM and 0.02 mM. Antibiotics raised against calmodulin suppressed completely the kinase activity in the presence of calmodulin but had no effect on the activity measured in its absence. These results suggest that calmodulin stimulates the activity of bovine-cardiac myosin light-chain kinase by increasing over 20-fold the affinity for its substrate myosin light-chain 2.  相似文献   

15.
Liquid chromatographic procedures have been developed for rapidly locating the site of reaction of chemical modification reagents with Salmonella typhimurium 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) synthetase. The enzyme was reacted with the active site-directed reagent 5'-(p-fluorosulfonylbenzoyl)adenosine (FSBA). FSBA bound to the enzyme with an apparent KD of 1.7 +/- 0.4 mM. The enzyme was inactivated during the reaction, and a limiting stoichiometry of 1.2 mol of FSBA/mol of enzyme subunit corresponded to complete inactivation. Inclusion of ATP in the reaction protected the enzyme from inactivation and incorporation of the reagent. Inclusion of ribose 5-phosphate increased the rate of reaction of PRPP synthetase with FSBA. Amino acid analyses of acid hydrolysates of modified enzyme failed to detect any known FSBA-amino acid adducts. Tryptic digestion of 5'-(p-fluorosulfonylbenzoyl)-[3H]adenosine-modified enzyme at pH 7.0 yielded a single radioactive peptide. The peptide, TR-1, was subjected to combined V8 and Asp-N protease digestion, and a single radioactive peptide was isolated. This radioactive peptide yielded the sequence Asp-Leu-His-Ala-Glu, which corresponded to amino acid residues 128-132 in S. typhimurium PRPP synthetase. No radioactivity was associated with any of the phenylthiohydantoin-amino acid fractions, all of which were recovered in good yield. A majority of the radioactivity was found in the waste effluent (64%) and on the glass fiber filter loaded into the sequenator (23%). The lability of the modification and the sequence of this peptide indicate His130 as the site of reaction with FSBA.  相似文献   

16.
The relative effectiveness of the ligands Mg2+, Na+, and ATP in preparing sodium plus potassium ion transport adenosine triphosphatase for phosphorylation was studied by means of a rapid mixing apparatus. Addition of 2 mM MgC12, 120 mM NaC1, and 5 muM [gamma-32P]ATP simultaneously to the free enzyme gave an initial phosphorylation rate of about 0.3 mu mol-mg-1-min-1 at 25 degrees and pH7.4. Addition of Mg2+ to the enzyme beforehand, separately or in combination with Na+ or ATP, had little effect on the initial rate. Addition of Na+ only to the enzyme beforehand increased this rate 1.5- to 3-fold. Early addition of ATP 130 ms before Na+ plus Mg2+ increased the rate 6- to 7-fold. Early addition of Na+ plus ATP was most effective; it increased the rate about 10-fold. The data indicate that Na+ and ATP bind in a random order and that each ligand potentiates the effect of the other. The rate of dissociation of ATP from the enzyme was estimated by a chase of unlabeled ATP of variable duration. This rate was slowest in the presence of Mg2+ (k = 540 min-1), most rapid in the presence of Na+ (k = 2000 min-1), and intermediate (k = 1100 min-1) in the absence of metal ions. The effect of Na+ concentration on the rate of phosphorylation was estimated when Na+ with Mg2+ was added to the enzyme-ATP complex. The rate followed Michaelis-Menten kinetics with a maximum of 2.9 mu mol-mg-1 and a Km of 8 mM. The effect of Na+ concentration was also estimated on the increment in the rate of phosphorylation produced by the presence of Na+ with the enzyme-ATP complex beforehand. The increment followed the same kinetics with a maximum of 3.75 mu mol-mg-1-min-1 and a Km of 5.4 mM. In both cases estimation of the Hill coefficient failed to show cooperativity between binding sites for Na+. In contrast, the dependence of ouabain-sensitive ATPase activity on Na+ concentration in the absence of K+ indicated two sites for Na+ with apparent Km values of 0.16 and 8.1 mM, respectively.  相似文献   

17.
Calcium-, calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum increases the rate of calcium transport. The complex dependence of calmodulin-dependent phosphoester formation on free calcium and total calmodulin concentrations can be satisfactorily explained by assuming that CaM X (Ca2+)4 is the sole calmodulin-calcium species which activates the calcium-, calmodulin-dependent, membrane-bound protein kinase. The apparent dissociation constant of the E X CaM X (Ca2+)4 complex determined from the calcium dependence of calmodulin-dependent phosphoester formation over a 100-fold range of total calmodulin concentrations (0.01-1 microM) was 0.9 nM; the respective apparent dissociation constant at 0.8 mM free calcium, 1 mM free magnesium with low calmodulin concentrations (0.1-50 nM) was 2.60 nM. These results are in good agreement with the apparent dissociation constant of 2.54 nM of high affinity calmodulin binding determined by 125I-labelled calmodulin binding to sarcoplasmic reticulum fractions at 1 mM free calcium, 1 mM free magnesium and total calmodulin concentration ranging from 0.1 to 150 nM, i.e. conditions where approximately 98% of the total calmodulin is present as CaM X (Ca2+)4. The apparent dissociation constant of the calcium-free calmodulin-enzyme complex (E X CaM) is at least 100-fold greater than the apparent dissociation constant of the E X CaM X (Ca2+)4 complex, as judged from non-saturation 125I-labelled calmodulin binding at total calmodulin concentrations of up to 150 nM, in the absence of calcium.  相似文献   

18.
Aminoimidazole ribonucleotide (AIR) synthetase (PurM) catalyzes the conversion of formylglycinamide ribonucleotide (FGAM) and ATP to AIR, ADP, and P(i), the fifth step in de novo purine biosynthesis. The ATP binding domain of the E. coli enzyme has been investigated using the affinity label [(14)C]-p-fluorosulfonylbenzoyl adenosine (FSBA). This compound results in time-dependent inactivation of the enzyme which is accelerated by the presence of FGAM, and gives a K(i) = 25 microM and a k(inact) = 5.6 x 10(-)(2) min(-)(1). The inactivation is inhibited by ADP and is stoichiometric with respect to AIR synthetase. After trypsin digestion of the labeled enzyme, a single labeled peptide has been isolated, I-X-G-V-V-K, where X is Lys27 modified by FSBA. Site-directed mutants of AIR synthetase were prepared in which this Lys27 was replaced with a Gln, a Leu, and an Arg and the kinetic parameters of the mutant proteins were measured. All three mutants gave k(cat)s similar to the wild-type enzyme and K(m)s for ATP less than that determined for the wild-type enzyme. Efforts to inactivate the chicken liver trifunctional AIR synthetase with FSBA were unsuccessful, despite the presence of a Lys27 equivalent. The role of Lys27 in ATP binding appears to be associated with the methylene linker rather than its epsilon-amino group. The specific labeling of the active site by FSBA has helped to define the active site in the recently determined structure of AIR synthetase [Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M., and Ealick, S. E. (1999) Structure (in press)], and suggests additional flexibility in the ATP binding region.  相似文献   

19.
《BBA》1985,809(1):17-26
Treatment of spinach thylakoids with the adenosine affinity inhibitor 5′-p-fluorosulfonylbenzoyl adenosine (FSBA) resulted in at least 95% inhibition of phosphorylation of the light-harvesting protein complex of Photosystem II (LHC II), while the Mr 10 000 polypeptide showed a 35% decrease in phosphorylation. This residual kinase activity after FSBA treatment appears to have the same properties as the control, since phosphorylation of the Mr 10 000 polypeptide subsequent to FSBA treatment could be achieved with either light or reducing conditions in the dark. [14C]FSBA labelled several polypeptides, but only the Mr 50 000 band was protected against the label by prior addition of ADP or adenosine, making it a possible candidate for the LHC II kinase. FSBA had no effect on electron transport, and [14C]FSBA did not label LHC II or the Mr 10 000 polypeptide, indicating that the FSBA was not interfering with activation of the kinase or modifying the substrates, but rather acting at the level of the LHC II protein kinase. Inhibition of LHC II phosphorylation by FSBA resulted in the elimination of the slow ATP-induced decrease in variable fluorescence, a parameter believed to be associated with phosphorylation of the LHC II. The half-times and time-course for inhibition of LHC II phosphorylation and inhibition of the ATP-induced decrease of fluorescence yield were identical, consistent with the concept that LHC II phosphorylation plays a major role in this fluorescence change.  相似文献   

20.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号