首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Gu Q  Wang D  Wang X  Peng R  Liu J  Deng H  Wang Z  Jiang T 《Radiation research》2004,161(6):703-711
Radiation-induced endothelial cell apoptosis is involved in the development of many radiation injuries, including radiation-induced skin ulcers. The proangiogenic growth factor basic fibroblast growth factor (bFGF, NUDT6) enhances endothelial cell survival. In the present study, we set up a model of apoptosis in which primary cultured human umbilical vein endothelial cells (HUVECs) were irradiated with (60)Co gamma rays to explore the effects of bFGF on radiation-induced apoptosis of HUVECs and the signaling pathways involved. We found that bFGF inhibited radiation-induced apoptosis of HUVECs, and that the effect was mediated in part by the RAS/MEK/ MAPK/RSK (p90 ribosomal S6 kinase)/BAD pathway. This pathway was activated by exposure of irradiated HUVECs to bFGF, involving phosphorylation of FGFR, MEK and p44/42 MAPK. The survival-enhancing effect of bFGF was partly inhibited by U0126 and PD98059. The fact that the anti-apoptosis effect of bFGF on irradiated HUVECs was not completely abrogated by U0126 and PD98059 suggests that other survival signaling pathways may exist. Transfection of a dominant-negative form of RSK2 (DN RSK2) partly blocked the anti-apoptosis effect of bFGF in irradiated HUVECs. Moreover, we provide evidence for the first time that bFGF induced BAD phosphorylation (at serine 112) and CREB (cAMP response element-binding protein) activation (phosphorylation at serine 133) in gamma-irradiated HUVECs. In our model, inhibition of MAPK signaling-dependent phosphorylation of BAD at serine 112 promoted increased association with BCL-X(L), suggesting that MAPK pathway-dependent serine 112 phosphorylation of BAD is critical for the effect of bFGF on cell survival. These results showed that RAS/MAPK/BAD pathway participated in the bFGF-induced effect on survival of HUVECs exposed to radiation. It is suggested that RAS/ MAPK pathway in tumor vascular endothelium could be a potential therapeutic target to enhance the efficacy of ionizing radiation.  相似文献   

3.
The effect of the p42/44 mitogen-activated kinase (MAPK) inhibitor, PD98059, on MAPK activation and meiosis resumption in mouse oocytes was studied. When germinal vesicle (GV)-stage denuded oocytes (DOs) were cultured continuously in 50 microM PD98059, germinal vesicle breakdown (GVBD) was postponed for 2-3 h. MAPK phosphorylation and activation was delayed as well. However, PD98059 did not impair histone H1 kinase activation. After 14 h of culture there was no significant difference in the rate of DOs reaching metaphase II (MII) arrest in either control or experimental conditions. The effect of PD98059 on MAPK inhibition was further tested in epidermal growth factor (EGF)-treated oocytecumulus complexes (OCCs). Exposure of GV-stage OCCs for 5 min to EGF (10 ng/ml) induced a considerable increase in MAPK phosphorylation. After OCCs were further cultured in 50 microM PD98059 a rapid dephosphorylation of MAPK was induced. Already after 1 min of treatment the non-phosphorylated form of MAPK dominated, indicating the high effectivity of PD98059. This result indicates that short EGF/PD98059 treatment of OCCs induced MAPK phosphorylation/dephosphorylation in cumulus cells only. As only a transient delay in MAPK phosphorylation and activation was observed in PD98059-treated DOs we conclude that there is also another PD98059-nonsensitive pathway(s) leading to MAPK activation in mouse oocytes. The data obtained suggest that meiosis resumption in mouse oocytes is somehow influenced by the MEK/MAPK activation pathway.  相似文献   

4.
Although it is known that transforming growth factor (TGF)-beta induces vascular endothelial growth factor (VEGF) synthesis in vascular smooth muscle cells, the underlying mechanisms are still poorly understood. In the present study, we examined whether the mitogen-activated protein (MAP) kinase superfamily is involved in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle A10 cells. TGF-beta stimulated the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase, but not that of SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The VEGF synthesis induced by TGF-beta was not affected by PD98059 or U0126, specific inhibitors of the upstream kinase that activates p42/p44 MAP kinase. We confirmed that PD98059 or U0126 did actually suppress the phosphorylation of p42/p44 MAP kinase by TGF-beta in our preparations. PD169316 and SB203580, specific inhibitors of p38 MAP kinase, significantly reduced the TGF-beta-stimulated synthesis of VEGF (each in a dose-dependent manner). PD169316 or SB203580 attenuated the TGF-beta-induced phosphorylation of p38 MAP kinase. These results strongly suggest that p38 MAP kinase plays a part in the pathway by which TGF-beta stimulates the synthesis of VEGF in aortic smooth muscle cells.  相似文献   

5.
The role of p44/42 mitogen-activated protein kinase (MAPK) in the expression of intercellular adhesion molecule-1 (ICAM-1) in NCI-H292 cells, a human bronchial epithelial cell line, was analyzed. Treatment with the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) (16.2 nM) or interferon-gamma (IFN-gamma) (100 U/ml) induced phosphorylation of p44/42 MAPK. The MEK inhibitor U0126 (0.1 to 10 microM) enhanced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. U0126 also enhanced the ICAM-1 expression induced by two other PKC activators teleocidin (22.5 nM) and aplysiatoxin (14.9 nM). Furthermore, PD98059 (0.5 to 50 microM), another MEK inhibitor, enhanced the TPA-induced ICAM-1 expression as well. The inhibitor of p38 MAPK SB203580 did not affect the TPA-induced ICAM-1 expression. BAY11-7082, an inhibitor of nuclear factor kappaB (NF-kappaB) activation, and MG132, a 26S proteasome inhibitor, reduced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. TPA partially decreased the level of IkappaB-alpha and the reduction was further augmented by U0126 in a concentration-dependent manner. These findings suggested that, in NCI-H292 cells, p44/42 MAPK suppresses PKC activator-induced NF-kappaB activation, thus negatively regulating the PKC activator-induced ICAM-1 expression but not the IFN-gamma-induced one.  相似文献   

6.
Although there have been many reports on the relationship between activation of telomerase and carcinogenesis, the role of telomerase in normal cellular growth is still unclear. In this study, we analyzed the relationship between upregulation of telomerase activity and cell cycle progression during the liver regeneration process by using an in vivo mouse two-thirds partial hepatectomy (PH) model as well as by using in vitro hepatocyte culture systems. Furthermore, we also investigated the effects of growth factors on telomerase activity during liver regeneration and the influence of MAPK pathway inhibitors (MEK inhibitors PD98059 and U0126; p38 MAPK inhibitor SB203580) on the telomerase activity of regenerating hepatocytes in vitro. An upregulation of the telomerase activity was found at 24 h after PH, and thereafter an increase in the S-phase fraction was observed at 36-48 h. There was no remarkable change in the telomere length after PH. Preoperative treatment with EGF and HGF increased the in vivo telomerase activity. In a hepatocyte primary culture, the upregulation of the telomerase activity required the presence of EGF, and this upregulation was accelerated by the addition of HGF. A remarkable activation of p44/42 MAPK was seen but no such activation of p38 MAPK was observed at 48 h after PH. Although SB203580 had no effect on the telomerase activity of regenerating hepatocytes, treatment with MEK inhibitors (PD 98059, U0126) significantly repressed the telomerase activity. In conclusion, the telomerase activity is upregulated before hepatocytes enter the S phase, and both EGF and HGF play important roles in this step. In addition, the activation of the p44/42 MAPK pathway seems to play an essential role in telomerase upregulation during the liver regeneration process.  相似文献   

7.
It has been shown that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) modulate vascular smooth muscle cell functions. In the present study, we investigated the effect of simvastatin on vascular endothelial growth factor (VEGF) release, and the underlying mechanism, in a rat aortic smooth muscle cell line, A10 cells. Administration of simvastatin increased the VEGF level in rat plasma in vivo. In cultured cells, simvastatin significantly stimulated VEGF release in a dose-dependent manner. Simvastatin induced the phosphorylation of p44/p42 MAP kinase but not p38 MAP kinase or SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). PD98059 and U-0126, inhibitors of the upstream kinase that activates p44/p42 MAP kinase, significantly reduced the simvastatin-induced VEGF release in a dose-dependent manner. The phosphorylation of p44/p42 MAP kinase induced by simvastatin was reduced by PD98059 or U-0126. Moreover, a bolus injection of PD98059 truly suppressed the simvastatin-increased VEGF level in rat plasma in vivo. These results strongly suggest that p44/p42 MAP kinase plays a role at least partly in the simvastatin-stimulated VEGF release in vascular smooth muscle cells.  相似文献   

8.
It has been shown that thyroid hormone stimulates the activity of alkaline phosphatase, a marker of mature osteoblast phenotype, in osteoblasts. In the present study, we investigated whether p44/p42 mitogen-activated protein (MAP) kinase is involved in the thyroid hormone-stimulated alkaline phosphatase activity in osteoblast-like MC3T3-E1 cells. Triiodothyronine (T(3)) markedly induced the phosphorylation of p44/p42 MAP kinase. PD98059 and U0126, inhibitors of the upstream kinase that activates p44/p42 MAP kinase, significantly enhanced the T(3)-induced alkaline phosphatase activity in a dose-dependent manner. The phosphorylation of p44/p42 MAP kinase induced by T(3) was reduced by U0126. These results strongly suggest that p44/p42 MAP kinase takes part in the thyroid hormone-stimulated alkaline phosphatase activity in osteoblasts and that p44/p42 MAP kinase plays an inhibitory role in the thyroid hormone-effect.  相似文献   

9.
10.
It has been suggested that A(3) adenosine receptors (ARs) play a role in the pathophysiology of cerebral ischemia with dual and opposite neuroprotective and neurodegenerative effects. This could be due to a receptor regulation mediated by rapid phosphorylation and desensitization carried out by intracellular kinases. In this study, we investigated the involvement of extracellular regulated kinase (ERK 1 and 2), members of the mitogen-activated protein kinase (MAPK) family, in A(3) AR phosphorylation. A(3) AR mediated the activation of ERK 1/2 with a typical transient monophasic kinetics (5 min). The activation was not affected by hypertonic sucrose cell pre-treatment, suggesting that this effect occurred independently of receptor internalization. The involvement of MAPK cascade in the A(3) AR regulation process was evaluated using two well-characterized MAPK kinase inhibitors, PD98059 (2-(2'-amino-3'-methoxyphenyl)oxanaphthalen-4-one) and U0126 (1,4-diamino-2,3-dicyano-1,4-bis (aminophenylthio) butadiene). The exposure of cells to PD98059 prevented MAPK activation and inhibited homologous A(3) AR desensitization and internalization, impairing agonist-mediated receptor phosphorylation. PD98059 inhibited the membrane translocation of G protein-coupled receptor kinase (GRK(2)), which is involved in A(3) AR homologous phosphorylation, suggesting this kinase as a target for the MAPK cascade.On the contrary, the chemically unrelated inhibitor of the MAPK cascade, U0126, did not significantly affect GRK(2) membrane translocation or receptor internalization. Nevertheless, the inhibitor induced a significant impairment of receptor phosphorylation and desensitization. These results suggested that the MAPK cascade is involved in A(3) AR regulation by a feedback mechanism which controls GRK(2) activity and probably involves a direct receptor phosphorylation.  相似文献   

11.
Oxidized low-density lipoprotein (OX-LDL) contributes significantly to the development of atherosclerosis. However, the mechanisms of OX-LDL-induced vascular smooth muscle cell (VSMC) proliferation are not completely understood. Therefore, we investigated the effect of OX-LDL on cell proliferation associated with a specific pattern of mitogen-activated protein kinase (MAPK) by [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in canine cultured VSMCs. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in VSMCs. Pretreatment of these cells with pertussis toxin (PTX) for 24 hours attenuated the OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating that these responses were mediated through a receptor coupled to a PTX-sensitive G protein. In cells pretreated with PMA for 24 h and with either the PKC inhibitor staurosporine or the tyrosine kinase inhibitor genistein for 1h, substantially reduced the [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to OX-LDL. Removal of Ca(2+) by addition of BAPTA/AM plus EGTA significantly inhibited OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating the requirement of Ca(2+) for these responses. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK). Furthermore, we also showed that overexpression of dominant negative mutants of Ras (RasN17) and Raf (Raf-301) completely suppressed MEK1/2 and p42/p44 MAPK activation induced by OX-LDL and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. Taken together, these results suggest that the mitogenic effect of OX-LDL is mediated through a PTX-sensitive G-protein-coupled receptor that involves the activation o Ras/Raf/MEK/MAPK pathway similar to those of PDGF-BB in canine cultured VSMCs.  相似文献   

12.
In the present study, we investigated whether the mitogen-activated protein (MAP) kinase superfamily is involved in the bone morphogenetic protein (BMP)-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. BMP-4 dose-dependently stimulated osteocalcin synthesis. BMP-4 markedly induced the phosphorylation of p44/p42 MAP kinase and p38 MAP kinase, while having little effect on SAPK (stress-activated protein kinase)/JNK (c-Jun N terminal kinase) phosphorylation. SB203580 and PD169316, specific inhibitors of p38 MAP kinase, significantly reduced the osteocalcin synthesis stimulated by BMP-4. In contrast, PD98059 and U0126, inhibitors of upstream kinase of p44/p42 MAP kinase, markedly enhanced the BMP-4-stimulated osteocalcin synthesis. The BMP-4-induced phosphorylation of p44/p42 MAP kinase was suppressed by PD98059, which did not, however, affect the BMP-4-induced phosphorylation of p38 MAP kinase. Taken together, our results strongly suggest that p38 MAP kinase takes part in BMP-4-stimulated osteocalcin synthesis as a positive regulator in osteoblasts, whereas p44/p42 MAP kinase acts as a negative regulator in the synthesis.  相似文献   

13.
Substance P (SP) released from sensory nerve endings in the airways induces several responses including cell proliferation. However, the mechanisms were not completely understood in tracheal smooth muscle cells (TSMCs). We therefore investigated the effect of SP on cell proliferation and activation of p42/p44 mitogen-activated protein kinase (MAPK) in these cells. SP stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Both DNA synthesis and phosphorylation of MAPK in response to SP were attenuated by pretreatment with pertussis toxin, genistein, D609, U73122, staurosporine, removal of Ca(2+) by BAPTA/AM plus EGTA, PD98059, and SB202190. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by SP and PDGF-BB. These results conclude that the mitogenic effect of SP was mediated through the activation of Ras/Raf/MEK/MAPK pathway, which was modulated by PC-PLC, PI-PLC, Ca(2+), and PKC in cultured human TSMCs.  相似文献   

14.
Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease.  相似文献   

15.
The mitogen-activated protein kinases (MAPKs) play a pivotal role in the mediation of cellular responses to a variety of signalling molecules. In the present study, we investigated possible linkage between glutamate signalling and the MAPK cascade in cultured rat cortical astrocytes. Exposure of the cells to L-glutamate (100-1000 microM) resulted in an increase in phosphorylated p44/42 MAPK (ERK1/2) in a concentration- and time-dependent manner. The glutamate-induced ERK1/2 phosphorylation was blocked by U0126 and PD98059, specific inhibitors of the MAPK-activating enzyme MEK. Furthermore, L-glutamate-induced ERK1/2 phosphorylation was not mimicked by glutamate receptor agonists and was not blocked by glutamate receptor antagonists. In contrast, the effect of L-glutamate was mimicked by D- and L-aspartate and transportable glutamate uptake inhibitors. These results suggest that the MEK/ERK cascade is activated by a mechanism related to glutamate transporters. We propose that the glutamate transporter functions as a receptor transmitting extracellular glutamate signal to intracellular messengers.  相似文献   

16.
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients. However, the implication of thrombin in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study we investigated the effect of thrombin on cell proliferation and p42/p44 mitogen-activated protein kinase (MAPK) activation in human tracheal smooth muscle cells (TSMCs). Thrombin stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor GF109203X, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and PI 3-kinase inhibitors wortmannin and LY294002. In addition, thrombin-induced [3H]-thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2), indicating that activation of MEK1/2 was required for these responses. Furthermore, overexpression of dominant negative mutants, RasN17 and Raf-301, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca(2+), PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in cultured human TSMCs.  相似文献   

17.
We examined the role of p38, p42, and p44 mitogen-activated protein kinase (MAPK) isoforms and cytosolic phospholipase A(2) (cPLA(2)) activation in human eosinophil adhesion to plate-coated fibronectin (FN). In the control state, eosinophil adhesion was maximal, with 10 microg/ml FN at 30 min, and decreased after 60-90 min. Western blot analysis demonstrated that p44/42 MAPK (extracellular signal-regulated kinase (ERK)1/2) and cPLA(2) were phosphorylated during adhesion to FN, whereas p38 MAPK phosphorylation was unchanged. Preincubation of eosinophils with U0126 or PD98059, two structurally unrelated MAPK kinase inhibitors, or arachidonic trifluoromethyl ketone, a cPLA(2) inhibitor, blocked eosinophil adhesion to FN. By contrast, eosinophil adhesion was unaffected by SB203580, a p38 MAPK inhibitor. Pretreatment of eosinophils with okadaic acid, a serine/threonine phosphatase inhibitor, at the concentrations that induced ERK1/2 and cPLA(2) phosphorylation caused an increase in maximal eosinophil adhesion to FN for >60 min. MAPK kinase inhibition but not p38 inhibition also blocked FN-mediated F-actin redistribution in eosinophils and prevented cPLA(2) phosphorylation caused by adhesion to FN. These results demonstrate that ERK1/2 mediating cPLA(2) activation is essential for eosinophil adhesion to FN.  相似文献   

18.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

19.
Bradykinin (BK), an inflammatory mediator, has been shown to induce cytosolic phospholipase A2 (cPLA2) expression implicating in inflammatory responses in various cell types. However, the detailed mechanisms underlying BK-induced cPLA2 expression in astrocytes remain unclear. RT-PCR and Western blotting analysis showed that BK induced the expression of cPLA2 mRNA and protein, which was inhibited by Hoe140, suggesting the involvement of B2 BK receptors, confirmed by immunofluorescence staining using anti-B2 BK receptor antibody. BK-induced cPLA2 expression and phosphorylation of p42/p44 MAPK was attenuated by PD98059, indicating the involvement of MEK1/2-p42/p44 MAPK in these responses. BK-induced cPLA2 expression might be due to the translocation of NF-kappaB into nucleus which was inhibited by Hoe140, helenalin, and PD98059, implying the involvement of NF-kappaB. Moreover, BK-induced cPLA2 expression was attenuated by rottlerin, suggesting that PKC-delta might be involved in these responses. This hypothesis was supported by the transfection with a dominant negative plasmid of PKC-delta significantly attenuated BK-induced response. In addition, BK-stimulated translocation of PKC-delta from cytosol to membrane fraction was inhibited by rottlerin but not by PD98059, indicating that PKC-delta might be an upstream component of p42/p44 MAPK. Accordingly, BK-induced phosphorylation of p42/p44 MAPK was attenuated by rottlerin but not by helenalin. These results suggest that in RBA-1 cells, BK-induced cPLA2 expression was sequentially mediated through activation of PKC-delta, p42/p44 MAPK, and NF-kappaB. Understanding the regulation of cPLA2 expression induced by BK in astrocytes might provide a new therapeutic strategy of brain injury and inflammatory diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号